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INTRODUCTION

Psychiatric disorders are heterogeneous in many aspects. Due to this heterogeneity, many
hypotheses have been proposed especially in regards to understanding the etiopathology of these
disorders. A variety of molecules and their associated systems have been proposed as presumptive
etiological factors in different psychiatric disorders. Based on some of these hypotheses, many
pharmacological agents have been developed over the course of over half a century. It is impossible
to state whether a certain hypothesis is right or wrong. Each hypothesis may be applicable to
certain individuals, for a certain condition and/or specific symptoms. In the majority of psychiatric
syndromes, more than a single system is involved in the pathophysiology of the disorder in a
given individual. As a matter of fact, in most of these patients, an array of different molecules
act synergistically as a network, at times facilitatory and at times inhibitory. However, there
are certain molecules or systems that play a key role in the network of several molecules. For
example, chronic subclinical imbalances in the immune system is such a key etiopathogical
determinant. Furthermore, imbalances in the kynurenine pathway resulting mainly through
imbalances in the immune system, play a key role in dysregulations in several other systems,
such as serotonergic, glutamatergic, dopaminergic, noradrenergic and Gamma amino-butyric acid
(GABAergic) neurotransmissions (1).

The kynurenine pathway (Figure 1) has been reported to be involved in several psychiatric
disorders (2–6). Medications, such as escitalopram, reportedly reduce neurotoxicity in depression
(7). Recently, based on knowledge of the kynurenine pathway, and involvement of NMDA-R
in chronic depression and suicide, a new medication which acts through NMDA-R antagonism,
esketamine nasal spray, was developed and approved by the United States Food and Drug
Administration (FDA) for treatment resistant depression (8) and in emergency situations to
prevent suicide in severe depression (9). Based on the fact that the kynurenine pathway has a huge
network with other neurochemical pathways, questions remain whether esketamine might also be
therapeutically useful in other psychiatric conditions.

In this minireview, we analyzed the knowledge and information we have regarding
the involvement of the kynurenine pathway in different psychiatric disorders, its complex
interactions with other neuronal and neurochemical systems, and the introduction of innovative
therapeutic agents, notably esketamine, and its possible therapeutic roles since esketamine
is the only currently available medication which is directly link to the role of kynurenine
pathway in psychiatric disorders. Nevertheless, the role of timely administration of anti-
inflammatory agents is also discussed as a preventive measure for treatment resistant depression.
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The blue, green and red colored text and arrows indicate the
metabolic pathway itself. Blue color depicts the neutral nature in
terms of neurotoxicity while the red color depicts neurotoxicity
and green color depicts neuroprotection. The black color lines
and texts indicate the network. The dotted arrows depict the
inhibitory effect, while the complete arrows depict the excitatory
or stimulatory effect. The double headed arrow indicate the
antagonism in action. The thickness of the arrow indicates the
strength of the effect.

KYNURENINE PATHWAY IN RELATION TO
OTHER NEUROCHEMICALS

Kynurenine Pathway and Serotonergic
System
The kynurenine pathway is directly related to the serotonergic
system. Serotonin is synthesized from tryptophan which is an
essential amino acid. This amino acid can also be degraded
into kynurenine in the tryptophan metabolic pathway. This
degradation can occur through one of two enzymes, tryptophan
2,3-dioxygenase (TDO) or indolamine 2,3-dioxygenase (IDO)
(10–12). The enzyme TDO is activated by the stress hormone
cortisol (13, 14), while the IDO enzyme is activated by the
pro-inflammatory cytokines, such as interferon γ (IFN γ),
interleukin 6 (IL6) and tumor necrosis factor α (TNF α) (15, 16).
Therefore, chronic inflammation or the unregulated chronic
imbalance in the immune system, as well as stress can activate the
tryptophan degradation pathway, the kynurenine pathway. This
increased degradation of tryptophan will lead to reduction in the
availability of tryptophan for serotonin synthesis and ultimately
reduction in the synthesis of serotonin. Serotonergic deficiency

FIGURE 1 | Brief description of the kynurenine pathway and its interaction with other systems.

has been closely associated with depressive mood, and reversal of
serotonergic deficiency by serotonin reuptake inhibitors (SSRI’s)
restores mood at least in a percentage of depressed patients.

Kynurenine (KYN), the degradation product of tryptophan
by the enzymes, IDO or TDO, is further degraded to kynurenic
acid (KYNA) via kynurenine amino transferases (KATs), or to
3-hydroxy kynurenine (3-HK) by kynurenine monooxygenase
(KMO). 3-HK is further degraded to quinolinic acid (QUIN),
the final product of which is nicotinamide adenine dinucleotide
(NAD). QUIN is the antagonist of the NMDA type of
the glutamate receptor. NMDA receptors are important in
information processing in neurons, as well as in toxicity (17).
On the other hand, KYNA is a NMDA-R agonist and considered
to be neuroprotective against QUIN induced neurotoxicity
(18). Since KMO enzymatic activity is enhanced by the pro-
inflammatory cytokine, IFN γ, formation of QUIN is enhanced in
cases of chronic immune activation. KMO activity is suppressed
by the anti-inflammatory cytokine, IL4 (19). Enhanced QUIN
can induce excitotoxicity through the NMDA-R and, in turn,
neurotoxicity. These processes might, at least partially, contribute
to treatment resistance or chronicity in depression and expand
our understanding of the etiopathology of depression beyond
serotonin depletion (20). In addition, this mechanism may not
be confined only to depression since other disorders such as
schizophrenia and bipolar disorders are also chronic disorders.

Kynurenine Pathway and Glutamatergic
System
Since QUIN is the antagonist of the NMDA type of the
glutamate receptor, when there is chronic uncorrected immune
activation, the formation of QUIN is enhanced and its synergistic

Frontiers in Psychiatry | www.frontiersin.org 2 June 2022 | Volume 13 | Article 913303

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Myint and Halaris Kynurenine Biomarker MH

agonistic action to Glutamate at the NMDA-R is also enhanced.
This increase of QUIN can occur with or without increase in
KYNA, the metabolite from the other arm of the KYN pathway.
Sometimes, KYNA becomes even decreased, since the pathway
is shifted to the arm of QUIN and in this manner, QUIN
can induce neurotoxicity. Although this outcome might not be
directly involved in inducing the symptoms of depression or
schizophrenia or bipolar disorder or any specific symptoms of a
psychiatric disorder, it could definitely induce neurotoxicity and
neurodegeneration which could eventually result in treatment
resistance or chronicity of the psychiatric illness (20).

However, KYNA which is a NMDA-R antagonist, and is
generally considered as a protective metabolite against QUIN
(21), can also be toxic, since it is also an antagonist of
all ionotropic excitatory amino acid receptor activities (19).
Its abnormal accumulation beyond physiological levels could
induce glutamatergic hypo-functioning and might diminish
cognitive function (22). Moreover, while one of the tryptophan
metabolites, 5-hydroxyindole (5HI), activates the α7-nicotinic
acetylcholine receptor (α7nAchR) and induces glutamate release
(23, 24), KYNA is an antagonist of a7nAchR (25). Since KYNA
downregulates the permissive role of 5HI activation at the α

7nAchR, the accumulation of KYNA could suppress α7nAchR
function and induce disruption of auditory sensory gating
(26). This is considered to be a causal factor in psychotic
symptoms development.

In summary, the above referenced imbalances in the
metabolism of the kynurenine pathway play an important
role in psychiatric disorders in regards to aspects of acute
psychotic symptom development as well as chronicity or
treatment resistance. In addition, the neurotoxicity and cognitive
disturbances through the enhanced degradation of KYN into
KYNA and QUIN might play a role in neurodegenerative
disorders. This would explain the connection between depression
and dementia.

Kynurenine Pathway and
Dopaminergic/Noradrenergic System
In addition, 5HI inhibits the non- α7nAchR mediated release of
noradrenaline, dopamine and acetylcholine (27), while KYNA
regulates the activity and expression of non-a7nAchR based on
dosage and length of exposure (25). Through this action, the
abnormal accumulation of KYNA might disturb dopaminergic
and noradrenergic neurotransmission as well. It has long been
known that noradrenergic and dopaminergic neurotransmission
play important roles in both mood disorders and schizophrenia.

Kynurenine Pathway and GABAergic
System
Although not through the direct action of kynurenines on
the GABAergic pathway, the kynurenine pathway has an
association with GABAergic neurotransmission through its
NMDA receptor activity. In this subsection, the interaction
between GABAergic and glutamatergic transmission in general,
and its associations with psychiatric and neuropsychiatric
disorders will be briefly described.

To maintain optimal central nervous system (CNS)
function, a balance between excitatory and inhibitory

synaptic transmission is essential for long-term stability
and function of neuronal networks. Traditionally, excitatory
and inhibitory neurotransmission systems have been associated
with the glutamatergic and GABAergic systems, respectively.
Homeostatic synaptic plasticity depends on signaling cascades
regulating in parallel the efficacy of glutamatergic and
GABAergic transmission and homeostatic synaptic plasticity
(28). In this context, glutamine (Gln) is a precursor of several
neurotransmitter amino acids, notably. the excitatory amino
acids, glutamate (Glu) and aspartate (Asp), and the inhibitory
amino acid, γ-amino butyric acid (GABA). Gln is present in
the CNS and participates in a variety of metabolic pathways.
Disturbances of Gln metabolism and/or transport contribute to
changes in glutamatergic or GABAergic transmission associated
with brain pathology (29).

Dysfunction of the GABAergic/glutamatergic network in
telencephalic brain structures may be the major pathogenetic
mechanism underlying psychotic symptoms in schizophrenia
and bipolar disorder. GABAergic neuropathology may underlie
the disturbance of the reciprocal interaction between GABAergic
interneurons and principal glutamatergic pyramidal neurons and
this may induce positive and negative symptoms and cognitive
dysfunction that are observed in psychotic patients (30, 31).
Many studies have suggested that schizophrenia and bipolar
disorder are diseases characterized by a deficit of GABAergic
transmission with consequent glutamatergic andmonoaminergic
network dysfunction (32–34).

Stress has long been recognized as a major contributory
factor to medical and psychiatric illnesses. Prolonged stress
and different forms of experimental stress suppress the
inhibitory action of GABA, thereby causing hyperactivation of
glutamatergic stimulation of Corticotrophin releasing factor
(CRF) producing cells and exhaustion of the hypothalamo-
pituitary-adrenal (HPA) axis resulting in low levels of
glucocorticoids. This is sometimes referred to as “the GABAergic
deficit hypothesis of major depressive disorder” (35, 36). Since
cortisol, a stress hormone enhances the tryptophan degradation,
increased formation of kynurenine pathway metabolites plays
a role in enhanced glutamatergic neurotransmission through
NMDA-R activity.

An imbalance between excitatory and inhibitory
neurotransmission systems may also underlie the synaptic
dysfunction caused by β-amyloid (Aβ) peptides (37–40).
Pharmacological treatments aimed at modulating excitatory
and/or inhibitory neurotransmission may be helpful in
improving symptoms of Alzheimer’s Disease (AD). It has been
suggested that strategies aimed at reestablishing the balance
between both systems, particularly in early stages of AD, may
be effective in halting, if not reversing, the functional deficits
caused by Aβ (40–42). The correlation between kynurenine
pathway (KP) metabolites and AD with major emphasis on its
two functionally contrasting neuroactive metabolites, KYNA and
QUIN the reader is referred to this review article (43).

A significant non-invasive imaging tool that is presently
available to elucidate brain biochemistry, especially as it relates
to the highly complex neuronal pathways, such the pathways
summarily reviewed in this article, is magnetic resonance
spectroscopy (MRS). Using 13C label, 13C MRS can visualize
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the role of glutamate/GABA neurotransmission in disorders
referred to above, notably AD, schizophrenia, and bipolar
disorder (44).

KYNURENINE PATHWAY INVOLVEMENT IN
PSYCHIATRIC DISORDERS

Mood Disorder
As stated earlier, in the case of a pro-inflammatory state and
IDO activation, there will be reduced serotonin availability for
serotonergic neurotransmission. The pro-inflammatory status in
major depressive disorder, documented in numerous studies,
would activate not only IDO but also KMO enzyme activities
and this activation may in turn shift KYN metabolism to the
3-HK and QUIN arm. It has been proposed that the increase
in these toxic metabolites, may make the astrocyte–microglia–
neuronal network vulnerable to environmental factors, such as
stress. It has also been proposed that an impaired glial-neuronal
network, induced by the unbalanced KYN pathway, may
contribute to the recurrence and chronicity of major depressive
disorder (20). The neurotoxic metabolites may then induce
astrocytic and neuronal apoptosis, which would weaken the
function of the glial–neuronal network. Loss of astrocyte function
could also impair glutamate–glutamine metabolism through
the glutamine synthetase enzyme, which occurs mainly in
astrocytes (45).

In medication-naïve or medication-free patients with major
depressive disorder, an imbalance has been demonstrated
between these neuroprotective and neurotoxic pathways, with
reduction in the protective metabolite, KYNA (2). The ratio
between KYNA and KYN, which indicates how much of
the KYN would be degraded into KYNA, was significantly
lower in depressed patients than healthy controls. After a
6-week medication trail with currently available antidepressants,
mainly selective serotonin reuptake inhibitors (SSRI’s), the
metabolic imbalance in the KYN pathway could not be
reversed. This imbalance might, in the long term, induce
neurodegenerative changes and these, in turn, might induce
chronicity and treatment resistance. In our study (5) on QUIN
immunoreactivity in post-mortem brain tissues from patients
with major depressive disorder or bipolar depression and
normal controls, we demonstrated that QUIN immunoreactivity
was increased in the prefrontal cortex area in the brains
of patients with major depression and patients with bipolar
depression who committed suicide. However, in our postmortem
immunohistochemical investigation, we observed decreased
QUIN immuno-stained microglia in the hippocampal area of
the depressed patients (46). This could be due to the fact
that QUIN enhanced expression in the brain is area specific,
or, that there was a failure to detect QUIN expression due
to cell loss in hippocampal area. Another study on KYN
metabolites concentrations in the cerebrospinal fluid (CSF)
of suicidal patients with different psychiatric disorders also
demonstrated the increase in QUIN concentration regardless
of the psychiatric disorders (47). This indicates that the KYN
metabolites imbalance in the brain in suicidal patients is not
limited only to major depression.

Kynurenine Pathway Involvement in
Schizophrenia
Regarding the KYN pathway in schizophrenia, a study of
KYNA concentrations in post-mortem brain tissue in different
cortical regions revealed increased KYNA in the samples
from schizophrenic patients compared with a control sample,
particularly in the prefrontal cortex (48). In another investigation
of the anterior cingulate cortex, a small and non-significant
increase of KYNA in medicated schizophrenics was observed
(49). Our postmortem histochemical study in brain tissue from
chronically medicated patients showed reduced QUIN staining
in the hippocampal area (50). These studies raised the question
of whether the increase in KYNA might be associated with
antipsychotic medication. However, increased levels of KYNA
were also observed in the cerebrospinal fluid of schizophrenic
patients (51). Since most of the patients in this study were
drug-naïve first-episode patients, this increase could not have
been caused by antipsychotic treatment. It was hypothesized that
accumulation of KYNA may lead to schizophrenic symptoms
(52). Our finding in medication-naïve schizophrenic patients
indicated increased plasma 3-HK and decreased plasma KYNA
compared to healthy controls, and this was reversed after 6 weeks
of antipsychotic treatment. This finding would be an indirect
indicator of the accumulation of 3-HK due to enhanced KMO
activity (4) in those patients whichmight further lead to increased
QUIN formation. In addition, a recent study on KYNmetabolites
in brain tissue failed to show either increased KYNA or decreased
QUIN in schizophrenia (53). Thus, the findings regarding KYN
metabolites in schizophrenia are inconclusive.

While increased KYNA could induce psychotic symptoms,
increased QUIN could also induce neurotoxicity and probably
also suicide. Therefore, it is not very conclusive in management
of schizophrenia via manipulation of KYN metabolites.

Kynurenine Pathway and Drug Discoveries
Based on all findings from basic, preclinical and clinical studies,
ketamine, an NMDA antagonistic medication, has received
major interest over the last two decades (54, 55). A study
has demonstrated that a single infusion of ketamine could
induce reduction in Montgomery Asberg Depression Rating
Score (MADRS) and suicidal ideation score in treatment resistant
patients with major depression or bipolar depression (56). An
even stronger but short-term effect was demonstrated with
(S)-ketamine, an enantiomer of ketamine (9). Although (S)-
ketamine is four times more potent at the NMDA receptor than
another enantiomer (R)-ketamine (57), the (R)-isoform showed
a longer-term effect on depressive symptom reduction (58). The
improvement of suicidal ideation was also documented with
intranasal ketamine (59). In 2019, esketamine as an intranasal
antidepressant for treatment resistant depression, was approved
by FDA (8). Esketamine is also now approved for use in major
depressive disorder patients presenting with suicidal ideation
or intent.

As discussed above, increased QUIN concentration in CSF of
suicidal patients is not limited to major depression. A question
could be raised whether indications for the use of esketamine
could be expanded to other psychiatric emergency conditions
beyond major depression.
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FUTURE PERSPECTIVES

In previous studies, both QUIN immunohistochemical
expression in the anterior cingulate cortex (5) and increased
QUIN CSF concentration (47) were documented in suicidal
patients with different psychiatric disorders. However, in
hippocampus of both depressed and schizophrenic patients
in general (both suicide victims and those who died due to
other causes), we could not demonstrate increased QUIN
immunohistochemical expression (46, 50), but we found
decreased expression instead. This raises the question whether
the imbalance in QUIN expression between different brain
areas could induce compulsive and aggressive behavior, such
as suicide in those patients with psychiatric disorders, notably
mood and schizophrenic disorders. If this were to be the
case, further opportunities could present themselves in drug
development. Carefully and closely observed clinical studies
should be performed to achieve the preventive treatment for
suicide in both depressive disorders and psychotic disorders.

Moreover, based on the findings which indicated the
role of inflammatory state in inducing increased tryptophan
degradation and imbalance in KYN metabolites, to prevent the
development of treatment resistance in psychiatric disorders
through timely use of anti-inflammatory medication should also
be considered.

Since it is not easy to analyze the KYN metabolites
in the specific brain regions, new invention in imaging
technology to achieve a surrogate marker for this imbalance
in the KYN metabolites in the different brain region could
be very useful to take preventive measures for suicide
and neurotoxicity.
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