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Abstract 

Background:  Newcastle disease virus (NDV) belongs to the genus Avaluvirus and Paramyxoviridae family, and it can 
cause acute, highly contagious Newcastle disease in poultry. The two proteins, haemagglutinin neuraminidase (HN) 
and Fusion (F), are the main virulence factor of the virus and play an essential role in immunogenicity against the 
virus. In most paramyxoviruses, the F protein requires HN protein to fuse the membrane, and HN proteins substantially 
enhance the viruses’ fusion activity.

Results:  The present study describes the successful cloning and expression of HN protein from NDV in Bacillus subtilis 
WB800 using the modified shuttle vector pHT43. HN coding sequence was cloned into the pGet II vector. It was then 
subcloned into the PHT43 shuttle vector and transferred to Escherichia coli for replication. The recombinant plasmid 
was extracted from E. coli and used to transform B. subtilis by electroporation. After induction of recombinant B. subtilis 
by IPTG, total cell protein and the protein secreted into the media were analysed through a time course using SDS-
PAGE. The expressed HN protein was purified using cation exchange chromatography followed by metal affinity chro-
matography, using the 6× His epitope introduced at the carboxyl terminus of the recombinant protein. The accuracy 
of the PHT43-HN construct was confirmed by sequencing and enzymatic digestion. SDS-PAGE results showed that 
the recombinant HN protein was successfully expressed and secreted into the medium. Moreover, the purified HN 
protein showed neuraminidase activity with characteristics similar to the indigenous HN NDV protein. B. subtilis is a 
free endotoxin host that could be a favourite prokaryotic platform for producing the recombinant HN protein.

Conclusion:  The establishment of this expression and purification system has allowed us to explore further the 
biochemical characteristics of HN protein and obtain material that could be suitable for a new production of NDV 
candidate vaccine with high immunogenicity.
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Background
The Newcastle disease virus (NDV) is a member of the 
Orthoavulavirus genus in the Paramyxoviridae fam-
ily. The virus can cause the highly contagious Newcastle 
disease (ND) in poultry  [1–4] resulting in a significant 
annual damage to the industry of poultry, especially in 
developing countries [2, 5, 6]. This enveloped virus has a 
single-stranded non-segmented RNA genome of negative 
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sense [1, 2]. The NDV genome contains six major struc-
tural (3′-NP-P-M-F-HN-L-5′) and two minor proteins 
called W and V which are achieved through the process 
of RNA editing on the P gene by adding guanine nucleo-
tides [7]. Viral replication, transcription, translation and 
protein processing all take place in the cytoplasm of the 
host cell, while virus particles are released through the 
plasma membrane through budding [8–10]. Haemagglu-
tinin–neuraminidase (HN) and fusion (F) proteins play 
an essential role in immunogenicity against the virus and 
are the virus’ key virulence factors [11–14]. Two glyco-
proteins, F and HN, play essential roles in the assembly 
and development of envelop viruses and determining 
tropism in the host and tissues [14, 15]. The F protein 
induces fusion, while HN is responsible for binding 
[16–18]. HN glycoprotein has activities such as hemag-
glutination (HA) and neuraminidase (NA) and stimulates 
F protein activity [19]. The HN binding to the sialic acid 
receptor on the cell’s surface initiates membrane fusion 
by the F protein [20]. The HN of NDV is an integral 
membrane protein type II, which contains three main 
areas: a cytoplasmic tail in the N-terminals, a stalk mem-
brane-proximal domain and a globular head domain the 
C-terminal [21–24]. The globular head in the C-terminal 
domain is where the receptor binding and enzymatic 
activity happen [25, 26], while it is also the site for neu-
raminidase activity. By removing sialic acid from the cell’s 
surface, the HN of NDV prevents the self-aggregation of 
the virus progenies during budding and helps with the 
release of the virus from the cell [27, 28].

Bacillus subtilis is an excellent host for expressing high 
levels of recombinant proteins [29, 30]. This non-patho-
genic bacterium belongs to the group of GRAS bacteria 
[31]. The ability of the bacterium to release recombinants 
to the crop medium facilitates processes downstream and 
protein isolation and cleansing [31]. Using non-biassed 
codons affects the quality of large-scale protein produc-
tion, which is one of the appealing features of this expres-
sion system [31].

The present study describes the successful cloning of 
the HN protein from the NDV and its expression in B. 
subtilis WB800 using a modified pHT43 shuttle vector. 
In addition, the recombinant hemagglutinin–neuramini-
dase biochemical properties are characterized.

Methods
Virus, bacterial strains and plasmids
In this experimental study, the complete HN gene 
sequence (Accession No. AF07761.1) was obtained from 
the NCBI database. Razi Vaccine and Serum Research 
Institute of Iran provided the Iranian lentogenic LaSota 
strain of NDV grown in 10-day-old specific pathogen-
free (SPF) embryonated chicken eggs. B. subtilis WB800 

(#PBS022-MoBiTec, Germany) was used as the expres-
sion host. Moreover, Escherichia coli DH5α (Invitro-
gen Inc.) was used for the amplification of recombinant 
plasmids. The pGet II plasmid (#CLo841-Sinaclon, Iran), 
containing an ampicillin and kanamycin-resistant gene, 
was used as the initial cloning/sequencing vector. The 
pHT43 shuttle vector (#PBS002-MoBiTec, Germany), 
containing ampicillin and chloramphenicol-resistant 
gene, was used to express the heterologous HN protein 
from the NDV.

Media composition and culture conditions
Bacterial strains of E. coli and B. subtilis were grown 
aerobically at 37 °C and 200 rpm in a Luria–Bertani (LB) 
culture medium, containing 1% w/v of peptone, 0.5% 
w/v of yeast extract and 0.5% w/v of sodium chloride. LB 
medium will be supplemented with ampicillin amp 100 
g/ml for E. coli or chloramphenicol 5 g/ml for Bacillus.

RNA extraction and synthesis of the HN gene
According to the standard protocols, the lentogenic 
LaSota strain of NDV was propagated and harvested 
in SPF eggs [32]. Briefly, viral RNA was extracted from 
200 μl supernatant of the harvested cell culture using a 
SinaPureTMViral (#EX6061-Sinaclon, Iran) commercial 
kit. Following the manufacturer’s guidelines, cDNA syn-
thesis was performed using a ThermoScript™ RT-PCR 
(Invitrogen, USA). DNTPs (10 mM per base) and a spe-
cial buffer for enzymatic reactions and an RNase inhibi-
tor were used in the presence of specific primers (at 10 
μM or 10 pmol/μl each for each primer). An RNAase/
DNase-free micro-tubes (Extra gene, USA) were used in 
all experiments. Specific (forward and reverse) primers 
were designed using CLC Main Workbench 4.5 (QIA-
GEN Co.) to amplify the complete ORF of the HN gene 
of NDV (1734 bp). Moreover, the PCR reaction was per-
formed using 5 μl of cDNA; 1 μl of the forward primer, 
i.e. 5′ GGA-TCC​-ATG-GAC-CGC-GCC-GTT-AG 3′; 
1 μl of the reverse primer, i.e. 5′ TCT-AGA​-CTA-GCC-
AGA-CCT-GGC-TTC-TC 3′ (underlined nucleotides 
correspond to BamHI and XbaI sites, respectively); 10 μl 
of the reaction buffer (containing Tris-Cl at the pH of 8.3 
and 50 mM of KCl); 1.5 mM of the MgCl2 buffer; 10 mM 
of dNTPs; and one unit of high-fidelity PCR Enzyme Mix 
(Genetbio-Korea) in a total volume of 20 μl in a thermo-
cycler device (Biorad, USA) below the subsequent condi-
tions: 5 min at 95 °C, followed by 30 cycles at 95 °C for 30 
s, 60 °C for 30 s, and 72 °C for 80 s, with a final extension 
step at 72 °C for 7 min. The PCR products were then ana-
lysed on 1% (w/v) agarose gel and stained with a safe view 
(Kiagene, IRI) [33, 34].
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Cloning and construction of the expression plasmid 
containing the HN gene
The RT-PCR product was extracted from low melting 
agarose gel using DNA extraction kit (Vivantis-Korea). 
Subsequently, it was cloned in the pGet II-T/A cloning 
vector (SMOBio-TW, #CV1100) to obtain the recom-
binant pGet-HN plasmid. After amplification in E. coli 
DH5α, the target gene was subjected to automatic one-
directed sequencing using forward and reverse prim-
ers, described previously for the HN gene amplification. 
Then, it was sub-cloned into the pHT43 donor plasmid 
(MoBiTec-GR, #PBS002C) using BamHI/XbaI sites to 
obtain the pHT43-HN recombinant expression vec-
tor. This vector uses a powerful promoter before the 
groESL Bacillus subtilis operon, induced by the Lock 
operator, and the induction is enabled by adding ITPG. 
An efficient Shine-Dalgarno (SD) sequence and a vector 
multiple cloning sites (BamH I, Xba I, AatII, SmaI) were 
inserted. This vector uses the amyQ signal peptide to 
obtain recombinant secretory proteins. The presence of 
the pHt43-HN recombinant vector was confirmed using 
PCR and enzymatic digestion analysis. After amplifica-
tion in E. coli DH5α, the expression plasmids have been 
extracted and transferred into B. subtilis WB800.

Protein structures prediction
The GOR4 (http://​expasy.​org/​tools/​gor4.​html) and the 
Continuum Secondary Structure Predictor (http://​pprow​
ler.​itee.​uq.​edu.​au/​sspred) servers were used to obtain the 
secondary structure of the HN protein. Secondary struc-
ture prediction defined each residue as an alpha helix, 
beta-sheet or random coil. The prediction of protein 
structure and production of 3D models of the protein 
was performed by the I-TASSER server (http://​zhang​lab.​
ccmb.​med.​umich.​edu/I-​TASSER) and Swiss modelserver 
(https://​swiss​model.​expasy.​org). The three-dimensional 
structural quality of the HN protein was performed by 
online software, such as Uppsala Ramachandran Server 
(http://​eds.​bmc.​uu.​se/​ramac​han.​html) and PROCHECK 
(http://​swiss​model.​expasy.​org/​works​pace) were used for 
energy minimization.

Expression and purification of the recombinant HN protein 
expression
In order to evaluate the expression in B. subtilis WB800, 
three bacterial groups were tested, i.e. (a) the expres-
sion of B. subtilis WB800 carrying pHT43-HN recom-
binant plasmids, (b) the expression of B. subtilis WB800 
carrying pHT43 plasmids without the HN gene, and (c) 
the expression of B. subtilis WB800 without plasmids. 
All three groups were cultivated overnight in 10-ml LB 
broth, containing 3 μg/ml of chloramphenicol (only the 

A and B groups) at 37 °C with centrifuging at 200 rpm. 
An aliquot (1.5 ml) of the overnight culture (1% v/v) was 
inoculated in the fermentation medium in a 50-ml flask 
containing chloramphenicol, followed by incubation for 8 
h. When the culture reached OD600 of 0.7–0.8, it was split 
into two equal portions, followed by inducing expres-
sion with 1 mM of IPTG added to one portion (t = 0). 
The samples collected from the culture medium were 1 
ml before the induction and 4 ml (3 ml per 2 h) after the 
induction. The process of precipitating the protein from 
the supernatant was performed by saturating it with 
NaCl, followed by centrifugation at 6000×g for 10 min at 
4 °C. Subsequently, the protein’s expression was studied 
by examining the samples using SDS-PAGE, western blot 
and Bradford methods.

Western blot analysis
Samples were loaded on 12% SDS-PAGE for analysing 
about western blotting method. After running the gel, 
proteins were electroblotted on a presoaked nitrocellu-
lose membrane (Merck-India, #WHA7191014) using the 
transfer buffer including 25mM Tris, 192mM glycine and 
6.20% v/v methanol (pH 8.3) and run on 400 mA for 2.5 
h. The membrane was presoaked with 1× PBST [NaCl 
3.0 g, KH2PO4 0.2 g, NaHPO4 1.15 g and KCl 0.2 g/l 
(pH 7.4) containing 0.5% Tween-20], and blocking was 
done with blocking buffer [5% skimmed milk powder in 
1× PBS (NaCl 3.0 g, KH2PO4 0.2 g, NaHPO4 1.15 g and 
KCl 0.2 g/l, pH 7.4)] and incubated for overnight at 4 °C. 
The blocked membrane was washed with 1× PBS three 
times for 15 min each. Anti-HN antibody (Abcam, USA, 
#ab226322) at a dilution of 1:500 specific to the target 
protein was incubated with the membrane at room tem-
perature for 2 h. After washing of unbound primary anti-
body with 1× PBST, the secondary antibody anti-mouse 
IgG peroxidase conjugate HRP (#GR129315-1) at 1:1000 
dilution was added at room temperature for 2 h. For 
protein detecting, 3,3′,5,5′ tetramethylbenzidine (TMB) 
(Invitrogen) was used as a substrate, and 1M H2SO4 
stopped the reaction.

Purification
B. subtilis WB800 carrying pHT43-HN recombinant 
plasmids was cultivated overnight in 250 ml of LB broth 
containing chloramphenicol, and the expression was 
induced with 1 mM of IPTG, followed by incubation 
for 24 h. When the incubation ended, the crude culture 
broth was centrifuged at 10,000 rpm at 4 °C for 10 min, 
and the supernatant containing the HN protein was 
recovered. The purification of the recombinant HN pro-
tein was performed in three steps. First, a total of 200 ml 
of culture supernatant was freeze-dried, decreased the 
volume to 10 ml with a freeze dryer and then was dialyze 

http://expasy.org/tools/gor4.html
http://pprowler.itee.uq.edu.au/sspred
http://pprowler.itee.uq.edu.au/sspred
http://zhanglab.ccmb.med.umich.edu/I-TASSER
http://zhanglab.ccmb.med.umich.edu/I-TASSER
https://swissmodel.expasy.org
http://eds.bmc.uu.se/ramachan.html
http://swissmodel.expasy.org/workspace
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with Tris-Cl (pH 8.5). The collected supernatant was pre-
cipitated according to the method discussed in the sec-
tion expression, and it was subsequently suspended in 20 
ml of sodium phosphate buffer (pH 6.0). For the 63-kDa 
HN protein purification, a Q Sepharose® column (2 × 
25 cm) was used. Then, 20 ml of the protein suspension 
was gently and carefully transferred to the column, and 
the washing process was performed according to the 
standard method. To wash the proteins attached to the 
substrate, a concentration gradient of 0 to 1 mM of NaCl 
was used. The obtained product was then loaded onto a 
20-ml Ni-NTA Agarose column (Qiagen). Afterwards, 
the column was washed and then eluted with a gradient 
of 1 to 320 mM of imidazole. Finally, all the samples with 
peak fractions were stored at 4 °C for further analysis. All 
purification steps were carried out at 4 °C [9].

Characterization of the recombinant hemagglutinin–
neuraminidase
Neuraminidase enzymatic activity assay
The neuraminidase activity measurement of the recom-
binant HN protein at 37 °C in white 96-well plates with 
a total volume of 150 μl was performed using the Neu-
raminidase Activity Measurement Kit (Abcam- USA, # 
ab138888) according to the manufacturer’s instructions. 
The fluorescence level was monitored every minute for 
30 min using a GEMINI spectrofluorometer with exci-
tation and emission wavelengths of 320 and 450 nm, 
respectively.

Salt and pH dependence of neuraminidase activity
The neuraminidase activity of the recombinant HN pro-
tein was performed in buffers with different pH values 
at a final concentration of 50 mM, containing 4 mM of 
CaCl2, 5–160 mM of NaCl and 50 μM of the Neuro Blue 
substrate (Sigma, USA, #1911). Two buffering systems 
were used in this study, i.e. NaOAc for pH values of 4.0–
7.0, and MES for pH values of 5.0–7.0. All reactions were 
conducted at 37 °C in white 96-well plates in a total vol-
ume of 150 ml.

Statistical analysis
The serological data analysed using ANOVA one-way 
data for challenge assays were compared using Pearson’s 
chi-squared test. Moreover, P < 0.05 was considered as 
the threshold for significant differences.

Results
Amplification and characterization of the HN gene
The full-length sequence of the HN gene (1734 bp) was 
amplified by RT-PCR using the specifically designed 
primers (Fig. 1). The produced fragment after extraction 
from agarose gel was cloned into the T/A cloning vector, 

and it was confirmed using PCR (Fig. 2a), and the analy-
sis of enzyme digestion was verified (Fig.  2b). Sequenc-
ing validated the correctness of the HN gene ORF in the 
T/A cloning vector. Chromas was used to analyse the 
sequence (version 1.45, Australia). After determining the 
recombinant vector sequence, the blast analysis showed 
that the sequence belonged to a new virus generation 
with a 98% similarity to the HN gene of the Newcastle 
virus. Therefore, due to the lack of similarity of 100%, this 
sequence was taken as the IRI1399 isolate, and it was reg-
istered in the gene bank with the ID number MT551214.1 
as the sequence native to Iran. Following that, the HN 
segment was sub-cloned into the pHT43 donor plasmid, 
as previously reported in the “Methods” section. PCR 
and enzymatic digestion were used to validate the recom-
binant vector (results not presented). The analysis of the 
nucleotide sequence of HN revealed an ORF of 1734 bp, 
encoding a protein with 577 amino acids. The molecular 

Fig. 1  Gel electrophoresis analysis of HN gene (1734 bp) RT-PCR 
products. Lane 1: negative control. Lane 2: 1-kb DNA size marker 
(Fermentas #SM0311). Lane 3: demonstrating a thick bond of 1734 bp 
amplicon
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mass of the recombinant protein was predicted to be 63 
kDa with a theoretical pI of 7.13 using the ExPASy server 
(https://​web.​expasy.​org/​cgi-​bin/​protp​aram/​protp​aram). 
It was also observed that the total numbers of negative 
and positive charge residues were equal (total number of 
negatively and positively charged residues, 53). Moreo-
ver, evaluating the protein’s secondary and 3D structures 
showed that the secondary structure of the HN protein 
consisted of three domains, seven alpha-helix regions 
(19.3%), 31 extended strand regions (18.21%) and 39 ran-
dom coil regions (58.6%) (Fig. 3).

The prediction of the 3D structure of the recombi-
nant HN protein was performed and compared to the 
native HN protein using Swiss modelling. The recom-
binant HN protein-predicted structure showed high 
identity (46.3% E-value 0.00e−1) by homology with 
the HN protein (SV5:PDB: 1Z4V). The structure of the 
recombinant HN protein was similar to that of para-
myxoviruses [25], indicating that the recombinant HN 
protein and native HN protein both had two calcium ion 
regions, i.e. CA.4 five residues within 4Å (E.256, D.261, 
S.264, V.266, V.296) and five PLIP interactions (A:D.261, 
A:S.264, A:S.264, A:V.266, A:V.296) and CA.9, four resi-
dues within 4Å (D.261, S.264, V266, V.269) and four 
PLIP interactions (B:D.261, B:S.264, B:V.266, B:V.296) 
(Fig.  4a); two 2-deoxy-2,3-dehydro-N-acetyl-neuraminic 

acids, including DAN.2 (11 residues within 4Å (R.174, 
I.175, E.258, Y.299, Y.317, R.363, E.401, R.416, V.466, 
R.498, Y.526) and nine PLIP interactions (hydrophobic 
interactions: A:Y.299-hydrogen bonds: A:Y.317, A:Y.317, 
A:R.363, A:E.401, A:R.416-salt bridges: A:R.174, A:R.416, 
A:R.498) (Fig.  4b); two sugars (2-(Acetylamino)-2-de-
oxy-A-d-glucopyranose), including NDG.3 and NDG.7, 
each with three residues and three PLIP interactions 
(Fig. 4c), and finally, two sugars (O-sialic acid) with nine 
residues and ten PLIP interactions (Fig.  4d). The mini-
mum energy calculation in the Swiss-PdbViewer shows 
that the protein has a stable structure. The Ramachan-
dran plot of the refined model estimated the number of 
residues in the favoured region to be 453 (92.4%), the 
number of residues in the allowed region to be 25 (5.1%), 
and the number of residues in the outlier region to be 12 
(2.4%) (Fig. 5).

Expression and purification of the recombinant protein
Investigation of the expression in three bacterial groups 
(i.e. A, B and C) tested with the sample before induction 
was performed using the Bradford method and then on 
polyacrylamide gel (Fig.  6a, b). The SDS-PAGE results 
showed that the expression of the recombinant HN pro-
tein gradually increased up to 8 h after induction (63-
kDa expressed protein in Bacillus subtilis). The results 

Fig. 2  Enzymatic digestion map of the new pGet-HN recombinant T/A cloning vector. A Lane 1: BamHI/Xb double digestion on the HN-containing 
recombinant T/A cloning vector (clone) revealed expected 3954-bp and 1734-bp fragments. Lanes 2–5: single digested, revealed expected 
fragment (5688 bp). Lane 6: 1-kb DNA size marker (Fermentas #SM0311). Lane 7: undigested plasmid of the new HN-containing recombinant T/A 
cloning vector. B HN, gene PCR with specific primer, six white colonies were selected randomly. Lane 1: negative control (blank). Lane 2: 1-kb DNA 
size marker (Fermentas #SM0311). Lanes 3–8: HN-gene fragment (1734 bp)

https://web.expasy.org/cgi-bin/protparam/protparam
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also showed that the expressed protein band in Bacillus 
subtilis had a weight of approximately 63 kDa in western 
blotting (results for groups B and C are not presented). 
The HN protein confirmation test results were analysed 
using the western blot analysis with mouse monoclonal 
antibody, i.e. the anti-HN in Fig.  7, which confirms the 
expression of the HN protein (Fig. 7).

A three-step purification protocol was employed for 
the recombinant HN purification. After dialysis, the 
cultural supernatant was loaded onto a Q sepharose 

cation-exchange column under an acidic pH of 4.6, 
as described in the “Purification” section. The pooled 
eluted fractions containing neuraminidase were puri-
fied through chromatography on a Ni-NTA affinity 
column. SDS-PAGE analysis revealed a single band 
with a molecular weight of 63 kDa.The study of neu-
raminidase specific activity suggested that this double-
step chromatography would cleanse HN by about 3.8 
fold (detailed description of the calculation is given in 
Table 1 (Fig. 8)).

Fig. 3  Deduced amino acid sequence and the secondary structure of the HN protein. The helices are shown by a yellow colour, the strands are 
represented as purple arrows and the coils are represented as pink lines
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pH and chloride dependence of the recombinant 
neuraminidase activity
Paramixovirus neuraminidase activity had been shown 
to be pH-dependent and chloride ion-dependent. Par-
amyxoviruses prefer acidic pH and low chloride ion 
concentrations, suggesting that paramyxovirus neu-
raminidase may act in some cellular components, 
such as the ER or Golgi apparatus, to prevent virions 
from accumulating before being released from host 
cells [35]. Comparing the affect of chloride ion and 
pH on recombinant purified HN protein, neuramini-
dase showed interest among local viral HN protein in 
viral lysate. The neuraminidase activity of native HN 
protein showed an optimal protein activity at a pH of 
5. Increasing chloride ion concentration from 5 to 160 
mM was decreased 10% neuraminidase activity. A com-
parison of the neuraminidase activity of recombinant 
purified HN protein displayed an optimum pH of 4 and 
decreased 35% neuraminidase activity upon increas-
ing chloride ion concentration from 5 to 160 mM. Our 
observations showed that both native HN protein and 
recombinant HN protein prefer an acidic environment, 

and their activity is reduced in high chloride buffers 
(Fig 9).

Discussion
The paramyxovirus HN protein is a type II glycopro-
tein anchored in the viral envelope membrane con-
nected to the membrane by a hydrophobic domain [3, 
9, 35]. HN protein, along with protein F, is a major fac-
tor in viral virulence. In other words, this surface pro-
tein can be an important target for the host’s immune 
response to fight the virus [36]. Choosing the right host 
to express and produce recombinant protein is one of 
the most major issues. Using bacillus expression vec-
tors for eukaryotic gene expression has two advantages: 
easy purification and protein secretion into the cul-
ture medium. However, this expression system cannot 
implement modifications after translating eukaryotic 
proteins [37]; however, since many eukaryotic proteins 
retain their three-dimensional structure and complete 
biological activity in the non-glycosylated form, they 
can be expressed in Bacillus subtilis [38–41].This study 
successfully used the Bacillus expression system to 

Fig. 4  Evaluation of the protein structure in terms of calcium ion position, 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid and sugar. A Residuesof 
calcium ions, atomic arrangement and interaction. B Residuesof 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid, atomic arrangement and 
interaction. C Residuesof 2-(acetylamino)-2-deoxy-A-d-glucopyranose, atomic arrangement and interaction. D Residuesof O-sialic acid, atomic 
arrangement and interaction
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express the HN protein of the Newcastle disease virus 
that has a biologically active form. The main limita-
tion of this system is the production of extracellular 
proteins that destroy foreign recombinant proteins. 
This problem has been solved using engineered host 
strains such as WB600 and WB800 [42, 43]. In the pre-
sent study, the HN protein of the Newcastle disease 
virus was expressed in a genetically modified strain of 
Bacillus subtilis called WB800 that has higher compe-
tency to uptake foreign DNA molecules. The WB800 is 
lacking six extracellular proteases and hence suited for 
extracellular recombinant protein synthesis [44, 45]. In 
the current study, the HN gene of the Newcastle dis-
ease virus was successfully cloned and expressed in B. 
subtilis strains WB800, and 10 μg per 200 ml culture 
of recombinant HN protein was produced successfully. 
pHT43-HN expression vectors contained the Pgrac 
strong promoter, and signal peptide sequence of the 
amy-Q (𝛼 amylase) gene of Bacillus amyloliquefaciens 
has been reported for the efficient secretion of recom-
binant proteins through the Sec pathway [45, 46]. Pro-
teins generated as pre-protein complex signal peptides 

translocate to the cell membrane and bind to the secre-
tory translocase complex identified by the Sec-depend-
ent secretory pathway signal peptide. After then, 
protein is transferred out of the cell a particular signal 
peptidase removes the signal peptide at the cleavage 
site [43]. Thus, the selection of suitable signal peptide 
affects the rate and yield of the secreted protein. One 
option for selecting the signal peptide is using commer-
cially available signal peptides, literature survey and 
review of the proteome of the host organism for signal 
peptide. The latter is associated with the production of 
homologous secreted proteins [43]. In actuality, in the 
absence of a signal peptide, any protein generated in the 
absence of a signal peptide is kept in the cytoplasm [8, 
43, 47]. Proteins formed as pre-protein complexes with 
N-terminal signal, peptidescross the cell membrane 
through the Sec associated secretory pathway. It inter-
acts with the signal peptide-recognized secretory trans-
locase complex. After the signal peptide is removed at 
the cleavage site by a unique signal peptidase, the pro-
tein is transported out of the cell [8].Therefore, choos-
ing the suitable signal peptide affects the rate of protein 

Fig. 5  The Ramachandran plot of the refine model (the software MolProbity: http://​kinem​age.​bioch​em.​duke.​edu)

http://kinemage.biochem.duke.edu
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secretion and, ultimately, the yield of the secreted pro-
tein [40, 47, 48]. The expression vector used in this 

study included the -amy signal peptide, which has a 
high propensity for heterogeneous protein secretion. In 
this study, an expression vector containing the amy-Q 
signal peptide was used, which has a high potential for 
heterogeneous protein secretion. There have also been 
several reports of using this signal peptide to express 
human IL3 and INF [49, 50]. Westers et  al. had previ-
ously tested various signal peptides and promoters for 
IL-3 synthesis [51]. Accordingly, the best combination 
was using amy-Q signal peptide with pHT43 promoter, 
resulting in maximal IL-3 protein production and close 
to zero cytoplasmic retention [51]. These results con-
firm our choice of an expression vector containing the 
amy-Q signal peptide. WB800 cells have a high poten-
tial for recombinant protein secretion. However, previ-
ous data reports showed that plasmid instability is not a 
rare phenomenon in B. subtilis [52, 53]. Plasmid insta-
bility is widespread in low-copier plasmids [54]. How-
ever, in the present study, the plasmid used has good 
stability in the host cell due to the contained ColE1 
origin of replication associated with the relaxed type of 
replication control [41]. Another significant drawback 
of the bacillus secretory mechanism is extracellular 
proteases [44, 55]. Six extracellular proteins are in the 
WB800 strain, making it an ideal host for secretory pro-
teins. Previous studies on the recombinant production 

Fig. 6  Evaluation of recombinant protein expression in B. subtilis. A Summary of the normalized quantities of expression proteins in three bacterial 
groups. One-way analysis of variance (ANOVA) by Tukey’s method showed that in level P ≤ 0.05, the observed difference in pHT43_NH expression 
IPTG-induced pHT43 and the B. subtilis WB600 groups is statistically significant, whereas there was no statistically significant relationship between 
pHT43 and B.subtilis WB600. B Investigation of expression and secretion of recombinant HN protein (63KDa) in culture medium with acrylamide gel 
12%. Column 1: expression before induction. Columns 2 to 5: gradual increase in the expression from 1 to 8 h after induction. Column 6: molecular 
weight (#SL7001-Sinaclon, Iran). Column 7: lack of protein secretion in the culture medium before induction. Column 8: lack of recombinant protein 
secretion in bacterial cells containing plasmid without HN genes

Fig. 7  The result of western blotting to increase the sensitivity 
in the detection of membrane proteins. Lane 1: marker weight 
(#SL7001-Sinaclon, Iran). Lane 2: pre-induced protein without 
expression. Lane 3: a positive control sample, a positive western 
bloat response to a His-Tag protein sample weighing 63 kD. Lane 4: 
confirmation of recombinant HN protein (63KD) expression, 8 h after 
induction. Lane 5: lack of recombinant protein secretion in bacterial 
cells containing plasmid without HN genes
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of eukaryotic proteins by B. subtilis have reported vary-
ing amounts of secretion from 100 micrograms to 1000 
mg [44, 51, 56]. HN recombination levels were high. 
During the three-step filtration, the final purified HN 
yield of approximately 10 mg/L B. subtilis cell culture 

contained a recombinant plasmid. The paramyxovirus 
activity of neuraminidase depends on the pH and the 
concentration of chloride ions. It prefers acidic and 
low pH. The concentrations of chloride ions indicate 
that paramyxovirus neuraminidase functions in certain 
cellular compartments, such as the ER or Golgi [57]. 
In the current study, we showed that native neurami-
nidase and recombinant neuraminidase are active bet-
ter in acidic environments, and their activities decrease 
with increasing chloride ion concentration.

Conclusions
In this study, a successful expression and purifica-
tion of functional HN of NDV in the B. subtilis system 
are described. Sequencing the HN gene indicated that 
it consisted of 1734 bp, encoding a protein of 544aa. 
Through precipitation, gel filtration and anion exchange, 
the recombinant protein was purified to 3.8-fold with a 
specific activity of 5.8 U/mg. The purified enzyme was 
homogenous on SDS-PAGE, and its molecular weight 
was estimated to be 63 kDa. The recombinant HN pro-
tein started its optimum activity at pH 5.0, and increas-
ing chloride ion concentration from 5 to 160 mM 
decreased 10% neuraminidase activity. Although the 
post-translational processes such as glycosylation do not 
occur in the B. subtilis expression system, the recom-
binant HN protein retains the neuraminidase activity 
properties similar to the native protein. Bacillus subtilis 
(WB800) expression system which has desirable features 
such as unbiased codon usage [58], of most extracel-
lular proteases [44] and endotoxin, has a high capacity 
to secrete a soluble and active form of protein into the 
culture medium and prevent the formation of inclusion 
bodies [59, 60]. It provides a good platform for produc-
ing recombinant HN protein, and it retained the neu-
raminidase activity with characteristics similar to those 
of native HN protein. The establishment of this expres-
sion and purification system has allowed us to explore 
the biochemical characteristics of paramyxovirus HN 

Table 1  Purification of recombined HN protein

*Specific activity = (activity enzyme/protein)

**Fold purification = (specific activity/starting special activity)

***Yield = [(activity enzyme/starting activity enzyme) × 100]

Fraction Volume (ml) Protein (mg) Activity 
neuraminidase 
(unit)

Specific activity 
(pmol/min/mg)

Fold purification Yield %

Cultural supernatant 200 40.6 63.34 1.5 1× 100

Pooled eluates from SP 20 29.15 62.66 2.14 1.4× 98

Pooled eluates from Ni-NTA 20 10.64 61.84 5.8 3.8× 97

Fig. 8  The HN protein was purified by chromatography. Lane 1: 
marker weight (#SL7001-Sinaclon, Iran). Lane 2: purified HN protein 
(63 kD). Lane 3: negative control (culture medium)
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further obtain material that can be suggested as a new 
generation of NDV vaccine candidate.
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