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Abstract: Natural magnetotelluric signals are extremely weak and susceptible to various types
of noise pollution. To obtain more useful magnetotelluric data for further analysis and research,
effective signal-noise identification and separation is critical. To this end, we propose a novel
method of magnetotelluric signal-noise identification and separation based on ApEn-MSE and
Stagewise orthogonal matching pursuit (StOMP). Parameters with good irregularity metrics are
introduced: Approximate entropy (ApEn) and multiscale entropy (MSE), in combination with
k-means clustering, can be used to accurately identify the data segments that are disturbed by noise.
Stagewise orthogonal matching pursuit (StOMP) is used for noise suppression only in data segments
identified as containing strong interference. Finally, we reconstructed the signal. The results show
that the proposed method can better preserve the low-frequency slow-change information of the
magnetotelluric signal compared with just using StOMP, thus avoiding the loss of useful information
due to over-processing, while producing a smoother and more continuous apparent resistivity curve.
Moreover, the results more accurately reflect the inherent electrical structure information of the
measured site itself.

Keywords: magnetotelluric; signal-noise identification and separation; approximate entropy (ApEn);
multiscale entropy (MSE); stagewise orthogonal matching pursuit (StOMP)

1. Introduction

Since the Soviet scholar, Tikhonov, and the French scholar, Cagniard, proposed the magnetotelluric
(MT) method in the early 1950s [1,2], with its unique advantages, it has gradually been regarded by
geophysicists as an important and indispensable method for geophysical exploration. As it is a kind
of electrical branch method for sounding by changing the frequency of the electromagnetic field,
the exploration depth varies with the frequency of the electromagnetic field. The shallowest depths
can be tens of meters while the deepest depths can be up to hundreds of kilometers. It has been widely
used in many fields, such as the survey and exploration of petroleum and natural gas, the investigation
of geothermal fields, and the prediction of natural earthquakes, etc. [3–6]. In addition, it is used to
study the electrical structure of the crust and upper mantle, in which the discovery of the highly
conductive layer provides an important basis for tectonic mechanics.

A direct problem faced is that natural magnetotelluric signals are extremely weak and are
susceptible to various types of noise pollution. Performing effective signal-noise identification and the
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separation of magnetotelluric signals [7,8] has always been a challenge. However, the effectiveness of
processing directly affects further analysis of magnetotelluric signals. So far, there have been many
methods for the processing of magnetotelluric signals. Most of them are overall processing and, as they
lack signal-noise identification, they can easily cause the over-processing of signals and a loss of
useful information. Taking this into account, this paper introduces the k-means clustering algorithm,
approximate entropy (ApEn), and multiscale entropy (MSE) as the signal-noise identification method.

The k-means clustering algorithm [9–11] is a hard clustering algorithm, which is representative
of a typical prototype-based clustering method for objective functions. It utilizes the distance from
data points to the prototype as an optimized objective function and an adjustment rule of iterative
operation is obtained by using the method of function extreme value evaluation [12–15]. Entropy is
a method of measuring and quantitatively describing the randomness or irregularity of a time series
or nonlinear signals [16]. Pincus first proposed the ApEn method in 1991 [17], and Richman and
Moorman then proposed the sample entropy (SampEn) [18]; both have the advantages of minimal
data requirements, strong anti-noise ability, etc. However, SampEn is a measure of the irregularity
of a time series on a single scale, whereas Costa et al. developed another method, MSE, based on
the sample entropy [19,20]; it is used to measure the irregularity of time series at different scales and
greatly enhances the applicability of entropy [21–23]. The above values of entropy can be used as
indicators and characteristic parameters to characterize the randomness or irregularity of different
types of signals [24,25]. This paper will demonstrate how ApEn and MSE, in combination with k-means
clustering, can be used to accurately identify weak magnetotelluric signals and noise interference.
Based on ensuring the accuracy of signal-noise identification, the loss of useful information is
avoided. In recent years, Donoho et al. proposed a new theory of information acquisition known as
compressed sensing [26,27]. Compressed sensing theory mainly includes the sparse representation of
signals, an observation matrix measurement, and a reconstruction algorithm. Stagewise orthogonal
matching pursuit (StOMP) belongs to the class of greedy reconstruction algorithms in compressed
sensing theory [28,29]. It is an improved algorithm for matching pursuit (MP) [30,31] as well as
orthogonal matching pursuit (OMP) [32,33]. Compared with MP and OMP, it can further improve the
computational efficiency, reduce the computational cost, and improve the de-noising performance.
Thus, we propose a novel method of magnetotelluric signal-noise identification and separation based
on ApEn-MSE and StOMP.

Although ApEn-MSE does not seem to be directly related to StOMP, they are two indispensable
components of the magnetotelluric signal-noise identification and separation method. ApEn-MSE is
used as part of the magnetotelluric signal-noise identification, and StOMP is used for the magnetotelluric
signal-noise separation. Without the previous signal-noise identification, the subsequent signal-noise
separation will have no target.

2. Methods

2.1. Approximate Entropy (ApEn)

ApEn is a measuring method that quantitatively describes the irregularity of nonlinear signals [34–37].
Taking the time series {u(i)/i = 1, 2, · · · , N} of length N as an example, the regularity of u(i) can
be measured by approximate entropy in a multi-dimensional space. The approximate entropy is
calculated as follows:

(1) Reconstruct the m-dimensional vector, R(i), according to the sequence, {u(i)}:

R(i) = (u(i), u(i + 1), · · · , u(i + m− 1)), i = 1, 2, · · · , N −m + 1 (1)

(2) Calculate the distance, d(R(i), R(j)), between the elements of vector R(i) and R(j):

d(R(i), R(j)) = max
k=0,1,··· ,m−1

{|u(i + k)− u(j + k)|}i, j = 1, 2, · · · , N −m + 1 (2)
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(3) For each i value and a measure of similarity, λ(λ > 0), the number of vectors, R(j), satisfying
the condition, d(R(i), R(j)) < λ, is calculated. Additionally, the ratio of this number with respect to
the total N −m + 1 is called Cm

i (λ):

Cm
i (λ) =

number o f {d(R(i), R(j)) < λ}
N −m + 1

(3)

(4) The similarity, Cm
i (λ), in the above formula is taken as a logarithm, and the average value of i

is obtained: Φm(λ) =
1

N −m + 1

N−m+1
∑

i=1
ln Cm

i (λ); by increasing the dimension to m + 1 and repeating

the above step (1) through to (3), Φm+1(λ) is obtained. The approximate entropy of the time series,
{u(i)}, is defined as:

ApEn(m, λ, N) = Φm(λ)−Φm+1(λ) (4)

The larger the approximate entropy, the more random or irregular the signal will be.

2.2. Sample Entropy (SampEn)

SampEn is a time series complexity measure method, which has the advantages of simple
calculation and fast speed [38–41]. The larger the sample entropy, the more random or irregular
the sequence and the lower the self-similarity.

The calculation steps of the sample entropy of the time series, {u(i)}, with length N are similar to
the approximate entropy in Section 2.1 and are defined as follows:

SampEn(m, λ, N) = − ln
Bm+1(λ)

Bm(λ)
(5)

where λ represents a measure of similarity, Bm(λ) represents a logarithmic mean of similarity,
and Bm+1(λ) represents an m + 1-dimensional, Bm(λ).

Sample entropy can be used to describe nonlinear signals with a high complexity and a large
computational requirement [42,43].

In the experiment, the embedding dimension, m, of the approximate entropy and the sample
entropy is taken as 2, while the similarity tolerance, λ, of the approximate entropy and sample entropy
is 0.25 times the standard deviation.

2.3. Multiscale Entropy (MSE)

MSE is used to calculate the sample entropy on multiple scales of the original signal and it is
obtained by using a coarse granulation process at different scales [44–47].

(1) Take the one-dimensional time series, {u(i)/i = 1, 2, · · · , N}, as an example. A new coarse
grain vector,

{
y(τ)

}
, could be obtained as follows:

y(τ)j = 1/τ

jτ

∑
i=(j−1)τ+1

ui (6)

where 1 ≤ j ≤ N/τ, and the scaling factor, τ, is an integer in the [1, 2, · · · , τmax].
(2) The sample entropy of τ coarse-grained sequences is also obtained. The MSE analysis is

calculated by plotting MSE as a function of the scaling factor, τ.

2.4. Stagewise Orthogonal Matching Pursuit (StOMP)

Suppose x is a discrete signal of length N, in the sparse base, Ψ = [ψ1, ψ2, · · ·ψN ], only K
coefficients are not 0 or significantly larger than other coefficients, and K << N, we consider that the
discrete signal, x, is sparse, also known as K-sparse. The discrete signal, x, can be represented by S on
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the sparse basis, Ψ = [ψ1, ψ2, · · ·ψN ], then x =
N
∑

i=1
Siψi = ΨS. M(K << M << N) linear projections,

y(j) =
〈

x, φT
j

〉
, are obtained on the observation matrix, Ω =

(
ϕT

1 , ϕT
2 , · · · ϕT

M
)
, and j ∈ {1, 2, · · · , M}

is used to accurately reconstruct the original signal. The form of the matrix can be expressed as
y = Ωx = ΩΨS. The zero norm is actually the number of non-zero elements in the original signal, x,
which is the sparsity of x. If x is K-sparse, the zero norm is K. Then, the approximation process of the
signal can be equivalent to solving the optimal solution problem under the following constraints:

x̂ = argmin‖x‖0 subjecttoΩx = y (7)

To further improve the calculation efficiency and reduce the computational cost, the StOMP
algorithm is introduced to separate a signal and interference [48]. The signal to be processed must be
sparsely represented, and the sparse representation needs to construct the sparse basis. According
to the common interference types of magnetotelluric signals, the sparse basis in the paper contains
the wavelet packet and cosine atoms. The more similar the selected atom is to the interference itself,
the better the signal-noise separation effect. At the same time, the support set is updated and the
approximate solution is obtained by using least squares to complete the residual update. Therefore,
the algorithm uses the updated residuals to track the matching of atoms, reducing the number of
iterations and improving the reconstruction efficiency.

The specific steps of the StOMP algorithm are as follows:
y is the M-dimensional observation vector, Ω is the M × N-dimensional observation matrix,

and x̂s is the reconstruction signal.
(1) Initialize the residual, rs = y, where the counter, s = 1;
(2) Calculate the inner product, Cs = ΩTrs = 〈Ω, rs〉;
(3) The set, Js = {j : |Cs(j)| > θδs}, is generated by setting the soft threshold; here, δs is a noise

level, δs = ‖rs‖2
√

M, and θ is a threshold parameter;
(4) Update the support set, Is = Is−1 ∪ Js, and use the least squares method to calculate the

approximation, xs, (xs)Is
= (ΩT

Is
ΩIs)

−1
ΩT

Is
y;

(5) The residual is updated, rs = y−Ωxs;
(6) Check the termination condition. If s > 10 or ‖rs‖2 < OPT × ‖y‖2 (OPT = 10−6), the algorithm

terminates and
∧
xs = xs is the final output. Otherwise, set s = s + 1 and we proceed to the above

step (2) to continue with the algorithm flow.

3. Simulation Analysis

3.1. Sample Library Signals Classification

Figure 1 is two 3D clustering effect diagrams of sample library signals [49]. The x-axis represents
the number of samples. The y-axis represents the characteristic parameter values calculated for
200 samples. The z-axis indicates that the two different types are formed by extracting the characteristic
parameters from the sample library signals as input to the k-means clustering. The first 50 are without
electromagnetic interference samples, and the other 150 are samples that are subject to three types of
interference (square wave interference, triangular interference, and pulse interference).

Since the time series of the sample library signals without electromagnetic interference are more
random and irregular, as shown in Figure 1, the characteristic parameter value (ApEn or MSE) of MT
signals without electromagnetic interference is significantly higher than that of the sample library
signals with interference. Moreover, the greater the calculated entropy value, the less interference the
signal is subjected to. Therefore, it is feasible to calculate the entropy of the MT signal and input it to
the k-means clustering to obtain two different types of signals to realize signal-noise identification.



Entropy 2019, 21, 197 5 of 15

Entropy 2018, 20, x FOR PEER REVIEW  5 of 17 

 

electromagnetic interference samples, and the other 150 are samples that are subject to three types of 
interference (square wave interference, triangular interference, and pulse interference).  

Since the time series of the sample library signals without electromagnetic interference are more 
random and irregular, as shown in Figure 1, the characteristic parameter value (ApEn or MSE) of MT 
signals without electromagnetic interference is significantly higher than that of the sample library 
signals with interference. Moreover, the greater the calculated entropy value, the less interference the 
signal is subjected to. Therefore, it is feasible to calculate the entropy of the MT signal and input it to 
the k-means clustering to obtain two different types of signals to realize signal-noise identification. 

 
(a) 

Entropy 2018, 20, x FOR PEER REVIEW  6 of 17 

 

 
(b) 

 

Figure 1. Clustering effect diagrams of sample library signals with (a) Approximate entropy (ApEn) 
and (b) Multiscale entropy MSE. 

3.2. Add Artificial Interference to the Test Site Signal 

To verify the effectiveness of the method, simulated large-scale square wave interference, 
triangular wave interference, and pulse interference are added to the test site signal. The test site is 
from Qinghai Province, China, located in an area that is far away from any industrial areas, is sparsely 
populated, and has almost no external noise pollution. The test site signal is the natural 
magnetotelluric signal, which is what we call a signal that is almost unaffected by noise. The result is 
shown in Figure 2. In Figure 2, "Sample points" refers to the length of data to be processed. Simulated 
signals have no temporal resolution and only represent the data length. Figure 2 shows that the 
approximate entropy and multiscale entropy of the sample library signals, when they are extracted 
and input to k-means clustering, can be used to accurately identify strong interference and useful 
signals. 

To further illustrate the feasibility of the method proposed herein, normalized cross-correlation 
(NCC) [50] and signal-noise ratio (SNR) [51] are specifically introduced for the above three types of 
interference. Table 1 compares the two evaluation indicators of the original test site data and the 
reconstructed signal. 

Table 1. De-noising performance. 

       Type of Interference          NCC         SNR     
Square wave interference        0.9775       13.5165 
Triangular wave interference    0.9610       11.5246 
Pulse interference               0.9852       15.3308 

Figure 1. Clustering effect diagrams of sample library signals with (a) Approximate entropy (ApEn)
and (b) Multiscale entropy MSE.



Entropy 2019, 21, 197 6 of 15

3.2. Add Artificial Interference to the Test Site Signal

To verify the effectiveness of the method, simulated large-scale square wave interference,
triangular wave interference, and pulse interference are added to the test site signal. The test site is
from Qinghai Province, China, located in an area that is far away from any industrial areas, is sparsely
populated, and has almost no external noise pollution. The test site signal is the natural magnetotelluric
signal, which is what we call a signal that is almost unaffected by noise. The result is shown in Figure 2.
In Figure 2, “Sample points” refers to the length of data to be processed. Simulated signals have no
temporal resolution and only represent the data length. Figure 2 shows that the approximate entropy
and multiscale entropy of the sample library signals, when they are extracted and input to k-means
clustering, can be used to accurately identify strong interference and useful signals.
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Figure 2. Simulated interference to add to the test site signal with (a) square wave interference,
(b) triangular wave interference, and (c) pulse interference.

To further illustrate the feasibility of the method proposed herein, normalized cross-correlation
(NCC) [50] and signal-noise ratio (SNR) [51] are specifically introduced for the above three types of
interference. Table 1 compares the two evaluation indicators of the original test site data and the
reconstructed signal.

Table 1. De-noising performance.

Type of Interference NCC SNR

Square wave interference 0.9775 13.5165
Triangular wave interference 0.9610 11.5246
Pulse interference 0.9852 15.3308

As can be seen from Table 1, the NCC values between the original test site data and the
reconstructed signal are greater than 0.95, and the signal-noise ratios are greater than 10. Therefore,
StOMP has a good de-noising effect and can effectively retain the original useful signal.

4. Measured Data Analysis

4.1. Time Domain Analysis

Figure 3 shows the signal-noise identification and separation effect of measured MT signals
subjected to square wave interference, triangular wave interference, and pulse interference. These data
are from the Lu-Zong ore-concentration area in Anhui Province, China. For the measured data,
the sampling rate is 24 Hz. 2400 sampling points are selected for analysis, that is, data is processed
every 100 s. The data are subject to different types and varying degrees of noise interference and they
are used to verify the effectiveness of the proposed method.

Figure 3 shows that the method applied in the measured data processing can still accurately
identify the interfered data segment and effectively suppress the interference. This method avoids the
loss of useful signals and can better preserve the low-frequency slow-change information.
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4.2. Apparent Resistivity-Phase Curve Analysis

As the operating frequency decreases, the depth of exploration will gradually increase. Impedance
values at different frequencies measured on the ground can be used to obtain information about the
resistivity of the subsurface medium as a function of depth. It can be seen that the apparent resistivity
reflects the comprehensive situation of the electrical properties of the rock that can be affected by the
influence of the electromagnetic field in a certain frequency range. When the frequency is different,
the range of the influence of the electromagnetic field is different, which reflects the resistivity (Ωm)
at different depths measuring the signals of different frequencies. Thus, we use the trend of the
apparent resistivity-phase curve as an important indicator to evaluate the degree of interference of the
measured sites.

To further evaluate the proposed method, we introduce the data of two measured sites for
processing. These two sites are from the Tong-Ling ore-concentration area in Anhui Province, China
and are subject to different levels of noise interference. Figures 4 and 5 are the apparent resistivity-phase
curves of 2535BOAC and 2535BOAF, respectively.

In Figure 4, the black diamonds are the apparent resistivity-phase curve of the original data.
In the 40–0.3 Hz frequency band, the apparent resistivity curve in the Rxy direction asymptotically
rises to nearly 45◦, and the value of the apparent resistivity increases from 100 Ωm to 100,000 Ωm.
The above phenomenon is known as a near-source effect. If there is no electromagnetic interference
around the measured site, the apparent resistivity and phase of the geological structure reflected in
different frequency bands should be relatively stable and should not fluctuate greatly. Due to the
presence of various strong electromagnetic interferences, the noise robustness of the low-frequency
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band data is obviously worse and thus the result cannot truly reflect the information of a deep
underground structure.
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Figure 5. Comparison of the apparent resistivity-phase curves for site 2535BOAF; the black diamonds,
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the overall processing of StOMP, and the proposed method, respectively.

The blue triangles are the apparent resistivity-phase curve after being processed just using the
StOMP algorithm. Although the trend of asymptotic rising of the apparent resistivity curve in the
Rxy direction is alleviated, there is a falling off that occurs in the 3–0.3 Hz frequency band. In the
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10–0.3 Hz frequency band, the series of sharp falls in the Ryx direction are alleviated, but in the 1–0.3 Hz
frequency band, the frequency of the Ryx direction is obviously dispersed, showing a disjointed trend.
Compared with the phase curve of the original data, the frequency of the Pyx direction in the 1–0.3 Hz
frequency band is still disorderly and discontinuous.

The red circles are the apparent resistivity-phase curve after being processed by the proposed
method. Comparing the original data and StOMP overall processing, the apparent resistivity-phase
curve becomes smooth and continuous as a whole because the proposed method retains the
low-frequency slow-change component without interference while removing noise.

In Figure 5, the black diamonds are the apparent resistivity-phase curve of the original data. In the
40–0.3 Hz frequency band, the apparent resistivity curve in the Rxy direction asymptotically rises
to nearly 45◦. In the 2–0.3 Hz frequency band, the apparent resistivity curve in the Ryx direction is
disorderly and shows a downward trend. In the Pyx direction, the phase curve below 10 Hz shows that
the phase of some frequency is close to ±180◦ and the data at these frequencies is completely distorted.

The blue triangles are the apparent resistivity-phase curve after being processed by the StOMP
algorithm. In the 40–0.3 Hz frequency band, compared with the original data, it improved to a certain
degree in the Rxy and Ryx directions, and the apparent resistivity value is relatively stable. However,
in the 3–0.3 Hz frequency band, the falling off of the curve in the Rxy and Ryx direction is obvious, and
the scattered points in the phase of the Pyx direction increase.

The red circles are the apparent resistivity-phase curve after being processed by the proposed
method. In comparison to the original data and StOMP overall processing, the apparent resistivity
curve of the proposed method is smooth and continuous, and has the least number of scatter points.

4.3. Polarization Direction Analysis

The polarization direction [52] of the electromagnetic field is one of the important indicators used
to evaluate the degree of interference. To further verify the effectiveness of the proposed method,
the polarization direction of the electromagnetic field is calculated and analyzed. Figures 6 and 7
present a comparison of the polarization direction results at 5.2 Hz for site 2535BOAC, and at 2.3 Hz
for site 2535BOAF, respectively.
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According to the definition of the polarization direction of the electromagnetic field, the polarization
direction is random when there is no strong interference. Otherwise, the polarization direction will be
relatively concentrated and regular. As shown in Figure 6, the polarization direction of the H channel
(magnetic field) is concentrated between 70◦and 90◦, and in Figure 7, the polarization direction of the
E channel (electric field) is concentrated between −60◦and −90◦. The reason is that different types of
strong electromagnetic interference affect the original data. By analyzing the polarization directions of
the data processed by the proposed method, the polarization directions of the electric and magnetic
fields are slowly scattered to different directions, which is close to the random characteristics of the
natural electromagnetic field. Combined with the apparent resistivity-phase of these two measured
sites at 5.2 Hz and 2.3 Hz in Figures 4 and 5, we can see that the data quality is greatly improved,
preserving more of the useful and reliable underground geoelectric information.

5. Discussion

With the development of society and economy, the demand for energy is increasing. To meet
this demand, we must extend our research efforts to deep underground, using existing technology
to analyze collected data to find more energy and resources. However, various electromagnetic
interferences have also increased, especially in the eastern part of China, where a dense population,
many high-voltage electric wires, communication towers, and highways, etc. severely restrict the
reliability of magnetotelluric data. To obtain more useful and reliable magnetotelluric data, we urgently
need to find a more effective treatment. Most existing methods include the overall processing of
magnetotelluric data, and they lack signal-noise identification. Most importantly, the interference of
many measured sites is not particularly dense. Thus, the overall processing of the magnetotelluric data
is not necessary to avoid the loss of useful information. By observing the time domain waveform of
the measured magnetotelluric data, this can finally be processed in a targeted manner, which preserves
more low-frequency slow-change information for better analysis of the magnetotelluric data.

ApEn and MSE analyses can quantitatively describe the randomness or irregularity of the
magnetotelluric signal and both have good noise robustness. The experimental verification showed
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that the ApEn combined with MSE, used to describe magnetotelluric signals, has obvious advantages.
Figure 1 demonstrates the above points. Two kinds of entropy and k-means clustering were introduced
here to avoid the over-processing of the signal caused by the overall processing and to thereby avoid
losing the important information needed. Figures 2 and 3 illustrate the above. To perform effective
signal-noise separation on magnetotelluric data, we introduced the StOMP algorithm, and Figures 2–5
illustrate the effectiveness of the de-noising. The information of the low-frequency electromagnetic field
can truly reflect the underground distribution information. In addition, we only processed data that
were identified as containing strong interference. The effectiveness of the method is directly reflected
in the effectiveness of the low-frequency data processing and the similarity to the characteristics of the
natural magnetotelluric signals. Figures 4–7 illustrate the problem mentioned above.

The application of the proposed method is based on artificial segmentation of the magnetotelluric
data without adaptive segmentation based on the length of the interfered signal, so it may cause
over-processing of small amounts of data. The StOMP algorithm is required to set the threshold
to update the selected set of atoms for each iteration. However, it is especially difficult to select
this parameter in actual operation. Therefore, in future research, intelligent algorithms, such as
particle swarm optimizations, artificial fish swarm algorithms, and ant colony algorithms, will be
introduced to solve the adaptive segmentation of magnetotelluric data and the threshold selection in
the StOMP algorithm.

6. Conclusions

Natural magnetotelluric signals are extremely weak and irregular relative to a wide variety of
strong interferences. How to identify signal and noise, and extract useful magnetotelluric signals
from strong interference has become an inevitable problem in the field of magnetotelluric sounding.
When faced with massive amounts of measured magnetotelluric data, the distinction of different
signals by ApEn and MSE is still very obvious. Two types of entropy were input to k-means clustering
for signal-noise identification of the magnetotelluric signal, and were used to accurately identify
strong interference and useful signals. Signal-noise separation with the StOMP algorithm was possible
only for data segments identified as containing strong interference. Therefore, the proposed method
effectively ensured identification accuracy and improved de-noising performance. Experiments
showed that the apparent resistivity-phase curve is more continuous and smooth after being processed
by the proposed method, which better preserves the low-frequency slow-change information of the
magnetotelluric signal and greatly improves the data quality. The magnetotelluric data processed
by the proposed method will provide important geoelectric information for subsequent geological
inversion interpretation.
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