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Automating the process of neurite tracing from light microscopy stacks of images is
essential for large-scale or high-throughput quantitative studies of neural circuits. While
the general layout of labeled neurites can be captured by many automated tracing
algorithms, it is often not possible to differentiate reliably between the processes
belonging to different cells. The reason is that some neurites in the stack may
appear broken due to imperfect labeling, while others may appear fused due to the
limited resolution of optical microscopy. Trained neuroanatomists routinely resolve such
topological ambiguities during manual tracing tasks by combining information about
distances between branches, branch orientations, intensities, calibers, tortuosities, colors,
as well as the presence of spines or boutons. Likewise, to evaluate different topological
scenarios automatically, we developed a machine learning approach that combines many
of the above mentioned features. A specifically designed confidence measure was used
to actively train the algorithm during user-assisted tracing procedure. Active learning
significantly reduces the training time and makes it possible to obtain less than 1%
generalization error rates by providing few training examples. To evaluate the overall
performance of the algorithm a number of image stacks were reconstructed automatically,
as well as manually by several trained users, making it possible to compare the automated
traces to the baseline inter-user variability. Several geometrical and topological features
of the traces were selected for the comparisons. These features include the total trace
length, the total numbers of branch and terminal points, the affinity of corresponding
traces, and the distances between corresponding branch and terminal points. Our results
show that when the density of labeled neurites is sufficiently low, automated traces are
not significantly different from manual reconstructions obtained by trained users.
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INTRODUCTION
Our understanding of brain functions is hindered by the lack
of detailed knowledge of synaptic connectivity in the underly-
ing neural network. With current technology it is possible to
sparsely label specific populations of neurons in vivo and image
their processes with high-throughput optical microscopy (see e.g.,
Stettler et al., 2002; Trachtenberg et al., 2002; De Paola et al.,
2006; Wickersham et al., 2007; Lichtman et al., 2008; Wilt et al.,
2009; Ragan et al., 2012). Imaging can be done in vivo for cir-
cuit development or plasticity studies (Trachtenberg et al., 2002),
or ex vivo for circuit mapping projects (Lu et al., 2009). In the
latter case, an unprecedented resolution can be achieved by first
clarifying the tissue (Hama et al., 2011; Chung et al., 2013), and
then imaging the entire brain from thousands of optical sections
(Ragan et al., 2012). The overwhelming obstacle remaining on
the way to brain mapping is accurate, high-throughput tracing
of neurons (Sporns et al., 2005; Lichtman et al., 2008; Miller,
2010; Gillette et al., 2011b; Kozloski, 2011; Lichtman and Denk,
2011; Liu, 2011; Svoboda, 2011; Helmstaedter and Mitra, 2012;
Van Essen and Ugurbil, 2012; Perkel, 2013). Presently, accurate
traces of complex neuron morphologies can only be obtained

manually, which is extremely time consuming (Stepanyants et al.,
2004, 2008; Shepherd et al., 2005), and thus impractical for large
reconstruction projects.

Many automated tracing algorithms have been developed in
recent years [see e.g., Al-Kofahi et al., 2002; Schmitt et al., 2004;
Zhang et al., 2007; Al-Kofahi et al., 2008; Losavio et al., 2008; Peng
et al., 2010; Srinivasan et al., 2010; Bas and Erdogmus, 2011; Peng
et al., 2011; Turetken et al., 2011; Wang et al., 2011; Xie et al.,
2011; Bas et al., 2012; Choromanska et al., 2012; Turetken et al.,
2012 and Meijering, 2010; Donohue and Ascoli, 2011; Parekh and
Ascoli, 2013 for review]. In general, existing algorithms can accu-
rately capture the geometrical layout of neurites but are not guar-
anteed to recover their correct branching topology (Figure 1).
Topological errors are inevitably present in traces obtained from
low signal-to-noise images, images of non-uniformly labeled neu-
rites, or images with high density of labeled structures. Close
examination of such traces often reveals topological errors such
as broken branches, missing branches, and incorrectly resolved
branch crossover regions (stolen branches). This is a particular
concern for high-throughput projects where topological errors
can accumulate over multiple stacks. For example, while tracing
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FIGURE 1 | Automated traces of neurites may contain hidden

topological errors. (A) Example of an automated trace of drosophila
olfactory neuron axon (Jefferis et al., 2007). For better visibility the initial
trace (red line) is shifted down with respect to the maximum intensity
projection of the image stack. Due to the simple morphological structure of
the neuron, as well as high and uniform contrast of the image, the initial
trace accurately captures both the geometrical and topological structure of
the arbor. (B) Maximum intensity projection of an image stack containing
mouse neocortical axons of layer 6 neurons (De Paola et al., 2006). The
initial trace (red lines) accurately captures the geometry of the neurites, but
contains topological errors. (C) These topological errors are revealed after
labeling each tree of the initial trace with a different color. The red tree in the
image is composed of multiple axons which were erroneously connected to
each other. (D) To correct such topological errors the initial trace is taken
apart up to a level of branches and subsequently put together by using the
knowledge of neuron morphology. An active machine learning framework is
used to accomplish this task. Scale bars in (A) and (B) are 20 μm.

a long-range axon from one optical section to the next, even a
very low error-rate, say 5% per section, will almost certainly lead
to erroneous connectivity after about 20 sections (typically about
10 mm), rendering the trace unusable for brain mapping projects.
Clearly, the rate of topological errors in automated reconstruction
projects must be carefully controlled (Chothani et al., 2011).

In this study we describe an active machine learning approach
(Settles, 2012) that has the potential to significantly reduce the
number of topological errors in automated traces. Our algo-
rithm first detects a geometrically accurate trace with the Fast
Marching method (Cohen et al., 1994; Cohen and Kimmel,
1997; Sethian, 1999; Mukherjee and Stepanyants, 2012), which
was extended to incorporate multiple seed points. Next, the
initial trace is dismantled to the level of individual branches,
and active learning is applied to reconnect this trace based on
knowledge of neuron morphology. We show that active learning
does not require large sets of training examples, and the results
generalize well on image stacks acquired under similar experi-
mental conditions. What is more, when the density of labeled

neurites is sufficiently low, automated traces are not significantly
different from reconstructions produced manually by trained
users.

METHODS
Results of this study are based on the analyses of two datasets
featured at the DIADEM challenge (Brown et al., 2011). The OP
dataset includes 9 image stacks containing axons of single olfac-
tory projection neurons from Drosophila (Jefferis et al., 2007),
and the L6 dataset consists of 6 image stacks containing axons
of multiple layer 6 neurons imaged in layer 1 of mouse visual
cortex (De Paola et al., 2006). The NCTracer software (www.

neurogeometry.net) was used to trace each image stack auto-
matically, as well as manually. The manual traces were generated
independently for each stack by three trained users.

THE INITIAL TRACE OF NEURITES
We refer to any trace providing geometrically accurate informa-
tion about the layout of neurites within an image stack as an
initial trace. Numerous segmentation and tracking-based meth-
ods (see e.g., Al-Kofahi et al., 2002; Schmitt et al., 2004; Zhang
et al., 2007; Al-Kofahi et al., 2008; Losavio et al., 2008; Peng et al.,
2010; Srinivasan et al., 2010; Bas and Erdogmus, 2011; Peng et al.,
2011; Turetken et al., 2011; Wang et al., 2011; Xie et al., 2011;
Bas et al., 2012; Choromanska et al., 2012; Turetken et al., 2012)
can be used to produce initial traces. In this study we adapt the
Fast Marching method (Cohen et al., 1994; Cohen and Kimmel,
1997; Sethian, 1999; Mukherjee and Stepanyants, 2012) to grow
the initial trace from multiple seed points (Figure 2), analogous
to the way light from multiple point sources spreads through a
non-uniform medium. This process is described by the Eikonal
boundary value problem (Sethian, 1999):

|∇T (r)| I (r) = 1
T (∂S) = 0

(1)

In this expression, vector r represents a position in the image stack
(or non-uniform medium), I is the image intensity normalized
to the 0–1 range (analog of the speed of light in the medium),
and ∇ denotes the gradient operator. Light rays originate from
the boundary, ∂S, at time zero, and the time map, T(r), pro-
vides information about the shortest time of arrival of these rays
to various locations in the image. Because higher image intensi-
ties correspond to faster speeds of light propagation, the arrival
time front in the image will preferentially spread along the high
intensity structures of neurites (see Figure 2C).

The Fast Marching algorithm of Sethian (Sethian, 1999) is
an efficient numerical scheme for solving the Eikonal boundary
value problem, Equation (1). Since the speed function in our
problem is defined by the image intensity, it is always positive. For
positive speed functions it is known that the Eikonal boundary
value problem can be solved more efficiently than the commonly
used alternative—the Hamilton-Jacobi problem of the Level Set
method (Sethian, 1999). One reason is that the stability condition
required for a numerical solution of the time-dependent Level Set
equation is more stringent than that used to solve the Eikonal
problem. Specifically, this condition requires very small time steps
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FIGURE 2 | The initial trace can be based on the solution of the Eikonal

equation. (A) Maximum intensity projection of an OP image stack. Green
dots mark the locations of seed points used to initialize the Fast Marching
algorithm (T = 0 points). The white square outlines the image section used
in (C–E) to illustrate the main steps of the algorithm. (B) The initial trace
resulting from Fast Marching is shown with a red line. (C) Arrival time map
for the front originating at T = 0 from the location marked by the green
seed point. Front propagation stops when the front reaches a user-defined
Euclidean distance (cyan point). Red arrow shows the path of shortest time
delay connecting the two points. (D) This path is obtained with the gradient
descent algorithm. (E) The arrival time map along the path of shortest time
delay is re-initialized to T = 0 (red line), and the Fast Marching algorithm is
restarted. Note that brighter intensities correspond to smaller arrival times.

and thus the Level Set method is expected to be more time con-
suming. The second advantage of Fast Marching has to do with
the outward only propagation of the fronts, which can be used to
find new front points very efficiently (Sethian, 1999).

We implement the Fast Marching algorithm (Sethian, 1999)
on a discrete lattice defined by the centers of image voxels, l =
(i, j, k)T . Here the time map is evolved from the boundary at
T = 0 by taking the upwind solution of a discretized version of
Equation (1):
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(2)
Parameters (sx, sy, sz) in this expression denote the voxel dimen-
sions which may not be the same due to a typically lower
z-resolution in confocal and two-photon microscopy images.

The arrival time front is initialized with T = 0 at multiple seed
points, which are automatically generated along the structure of
neurites based on image intensity (Figure 2A). As was previously

described (Mukherjee and Stepanyants, 2012), the arrival time
front is allowed to travel a specified distance, Dmax, to estab-
lish a local time map. The value of Dmax has to be chosen based
on two considerations: Dmax has to be larger than the caliber of
neurites (3–5sx for OP and L6) not to produce short spurious
branches and, at the same time, not much larger than the shortest
branch that needs to be resolved by the algorithm (10sx in this
study). Dmax = 15sx was used throughout this study. The path
connecting the farthest point of the front to the T = 0 bound-
ary is then found by performing gradient descent on T(i, j, k)
(see Figures 2C–E). Next, the gradient descent path is added to
the boundary ∂S and the Fast Marching algorithm is re-initialized
from the new boundary. This process continues until a stopping
condition is reached, at which point the final ∂S defines the initial
trace. The stopping condition used in this study is based on the
average intensity of the last added branch. When this intensity
falls below a set threshold (typically 20% of the average intensity
of the existing trace), Fast Marching is paused and can then be
continued or terminated by the user.

As long as the seed points used to initialize Fast Marching are
located in the foreground and are connected by higher than back-
ground intensity paths, their Fast Marching fronts are guaranteed
to collide. The gradient descent algorithm is invoked in this case as
well. Here, gradient descent paths originating from the collision
voxel back-propagate into every colliding region, thus connect-
ing their T = 0 boundaries. If there is a break in intensity along a
neurite linking two seed points, the Fast Marching algorithm may
terminate before the fronts have a chance to collide. In addition,
high levels of background intensity may lead to erroneous front
collisions. These and other topological errors in the initial trace
will be corrected as described in the following sections.

OPTIMIZATION OF THE INITIAL TRACE
We represent the initial trace as a graph structure consisting of
nodes linked by straight line segments. Each node, k, is described
by its position in the stack, rk = (xk, yk, zk)T , and the caliber,
Rk, of the neurite at that location. Information about connectivity
among the nodes is stored in the adjacency matrix, A. We find this
representation to be more convenient than the traditional SWC
format of neuron morphology (Cannon et al., 1998) because
the latter cannot be used to describe structures containing
loops.

Because the initial trace lies sufficiently close to the centerline
of neurites, this trace can be optimized by monitoring its fitness
in response to small changes in the position and caliber of every
node. The fitness function used in this study, F ({rk, Rk}), con-
sists of the intensity integrated along the trace and regularizing
constraints on the positions and calibers of the connected nodes:
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Vectors rk in this expression specify the positions of the trace
vertices, while vectors lm denote the positions of voxel centers in
the image stack. Index k′ enumerates the neighbors of vertex k.
Parameter λ denotes the average density of nodes in the trace, i.e.
the number of nodes per voxel. Lagrange multipliers αr > 0 and
αR > 0 control the stiffness of the regularizing constraints. The
first term in this expression is the convolution of the image with
the Laplacian of Gaussian. This convolution can be performed by
using the Fast Fourier Transform (Press, 2007) or, in case of rel-
atively small density of trace nodes, it may be faster to perform
explicit summation over the index m. In this case, due to the fast
decay of the Gaussian factor, the summation can be restricted to
a small number of voxels in the vicinity of the trace (see Chothani
et al., 2011 for details).

Maximization of the fitness function, F , is performed with
Newton’s method (Press, 2007):

{
rk (n + 1) , Rk (n + 1)

}
=
{

rk (n) , Rk (n)
}

−β
(

ĤF
({

rk (n) , Rk (n)
}))−1

∇F
({

rk (n) , Rk (n)
})

(4)

Variable n in this expression enumerates the iteration steps of the
algorithm, parameter β > 0 controls the step size, Ĥ denotes the
Hessian operator acting on all the node variables {rk(n), Rk(n)},
and -1 in the exponent denotes matrix inversion. The positions
and calibers of all nodes of the trace, including branch and ter-
minal points, are synchronously updated at every iteration step.
The values of all three terms in the fitness function are monitored
during optimization. Optimization is terminated once the rela-
tive changes in all three quantities fall below 10−8. For the OP
and L6 datasets considered in this study, the optimization pro-
cedure typically converges to the optimum solution in less than
50 steps. Optimization improves the layout of branches as well as
the placement of branch and terminal points in the initial trace
(Vasilkoski and Stepanyants, 2009; Chothani et al., 2011). The
values of parameters αr , αR, and β are constrained by the consid-
erations of algorithm stability, speed of convergence, and accurate
representation of neurites’ curvature and caliber. Some of these
issues were discussed in Vasilkoski and Stepanyants (2009) and
Chothani et al. (2011).

LEARNING BRANCHING MORPHOLOGY OF NEURITES
As shown in Figure 1, even when the initial trace accurately
describes the geometry of neurites, it often fails to capture the cor-
rect branching topology. To address this problem, we disconnect
branches of the initial trace from one another and then assem-
ble them into tree-like structures based on prior knowledge of
neuron morphology. In order to discriminate between correct
and erroneous ways to assemble branches, different branch merg-
ing scenarios are evaluated in a machine learning approach by
combining information about various features of the trace. Such
features may include distances between branches, branch orienta-
tions, average intensities, intensity variations, branch thicknesses,
curvatures, tortuosities, colors, and presence of spines or boutons.

Features 1–9 of Figure 3 were used to produce the results of this
study. These features were selected based on our knowledge of
neuroanatomy and intuition gained from manual neuron trac-
ing. We carefully examined the decisions we make when faced
with branch merging tasks and initially created a list of 17 features
that are shown in Figure 3. Features 15 and 16 are not applica-
ble for the OP and L6 datasets as these datasets include grayscale
images of axons only. Features 10–14 and 17 were tested but did
not improve the performance of the classifiers. This is why the
above features (10–17) were left out of the analysis. This is not to
say that features 10–17 are not important; they may be useful for
other dataset types.

To evaluate different branch merging patterns in the dis-
connected initial trace we cluster branch terminal points on
the basis of their relative distances. For this, we first create
an all-to-all connected graph in which nodes represent the
branch terminal points. Next, the links between distant nodes
(>10sx) are removed, exposing the clusters of nearby branch
points. The threshold distance of 10sx was chosen based on
two considerations. First, this distance has to be larger than
the voxel size (sx) and the size of a typical gap in inten-
sity resulting from imperfect labeling of branches (0 for OP
and ∼5sx for L6). Second the threshold distance has to be
smaller than the typical branch length (20sx-50sx for OP and
L6). Results of branch merging are not sensitive to the precise
value of this parameter in the 5sx–15sx range. Branch merg-
ing is examined within each cluster of branch terminal points
independently.

Within a given cluster, all possible branch merging scenar-
ios are considered (Figure 4A), and the correct merging pattern
is determined in a classification framework. Clusters contain-
ing 2 terminal points lead to two scenarios, i.e., to connect or
not to connect the terminal points. Three terminal point clus-
ters result in 5 scenarios, 4 terminal point clusters lead to 15
(Figure 4A), and the number of scenarios increases exponentially
with the complexity of clusters (Figure 4B). This exponential
increase gives a unique advantage to our classification approach
to branch merging.

Generally, machine learning applications require large sets of
labeled data. Creating such sets can be very time-consuming
and, in many cases, impractical. Our training strategy circum-
vents this problem by exploiting the large numbers of branch
merging scenarios. Labeling the correct branch merging scenario
in a single cluster can provide thousands of training examples.
Hence, it becomes possible to train the classifier in real time and
obtain accurate results by labeling only 10–100 clusters of branch
terminal points.

All possible branch merging scenarios are evaluated within a
given cluster of branch terminal points. Each scenario, i, is char-
acterized by a feature vector xi (Figure 4A) whose components
consist of features of the trace that may be important for selecting
the correct branch merging scenario (Figure 3). The problem is
thus reduced to learning the best set of weights, w, for discrimi-
nating between the correct and erroneous scenarios within every
cluster,

wTxall erroneous mergers > wTxcorrect merger (5)
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FIGURE 3 | Table of morphological features that may be useful for

classification of branch merging scenarios. Features 1–9 were used to
generate the results of this study. The weights of Perceptron and SVM
classifiers, obtained as a result of active training on 100 clusters of branch

points, show high degree of correlation. As expected, within-dataset
correlations were higher than between-dataset correlations indicative of the
fact that the classifier algorithms are able to learn details of neuron
morphology that are dataset-specific.

This formulation leads to another important advantage for the
implementation of the classification strategy. Due to the linearity
of the problem, Equation (5) can be rewritten as,

wT
(

xall erroneous mergers − xcorrect merger
)

> 0, (6)

resulting in a subtractive normalization of the feature vectors
within individual clusters. Because branch merging scenarios are
only compared within clusters, Equation (6) effectively normal-
izes for the variations in image intensity and density of neurites
across clusters.

The classification problem of Equation (6) is solved with sign-
constrained perceptron (Engel and Broeck, 2001) or SVM clas-
sifiers (Wang, 2005), which were modified to be able to account
for the relative importance of some training examples. The sign-
constrained perceptron algorithm was previously described in
Chapeton et al. (2012):

1
N wT�xμ > κ√

N
, μ = 1, 2, ..., m

wkgk ≥ 0, k = 1, 2, ..., N
, (7)

where w is the weight vector of the perceptron classifier, �xμ

is the difference between the feature vectors for the erroneous

merger μ and the correct merger from the same cluster, N is
the number of features (9 features were used in this study), and
m is the number of comparisons made (total number of scenar-
ios minus number of clusters). The value of the parameter gk

can be set to −1 or 1, constraining the corresponding weight,
wk, to be negative or positive, or set to 0, in which case the
weight is unconstrained. Because larger distances, overruns, and
offsets of terminal points (see Figure 3) decrease the likelihood
that branches should be merged, the weights of these features
were constrained to be positive. In addition, the weight associ-
ated with the number of free terminal points was constrained to
be positive to promote branch merging. All other weights were
left unconstrained as we did not have clear motivation for doing
otherwise. Hence, g = (1,1,1,0,0,0,0,0,1)T was used in this study.
Parameter κ is referred to as the perceptron robustness (analo-
gous to SVM margin). Increasing κ should initially improve the
generalization ability of the perceptron, but as the perceptron fails
to correctly classify a progressively increasing number of train-
ing examples, this generalization ability should decrease. We used
the leave-one-out cross-validation scheme to examine this trend.
In this scheme, training is done on all but one labeled example,
and the remaining example is used for validation. In Figure 5
each branch merging cluster was used once for validation and the
results were averaged. Figure 5A shows that there is a large range
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FIGURE 4 | Branch merging scenarios. (A) Illustration in the middle shows
the maximum projection image of two neurites from Figure 1B. The neurites
appear fused in 3D, leading to a provisional branch point which must be
resolved automatically. The initial trace of these neurites (lines are shifted
down and to the right for clarity) has been disconnected at the branch point

resulting in a terminal point cluster which has to be merged according to one
of the 15 possible scenarios (circled traces). Each scenario, i, is described by
a unique multi-dimensional feature vector, xi . (B) The number of possible
branch merging scenarios increases exponentially with the number of
terminal points, leading to large numbers of classification examples.

FIGURE 5 | How to choose best classification parameters. (A)

Leave-one-out cross-validation error-rate as function of the perceptron
robustness parameter, κ [see Equation (7)]. (B) Same error-rate as function
of the SVM parameter, C [see Equation (9)]. The inset shows how SVM
margin, M, depends on C. Solid and dotted lines show the results for the
OP and L6 datasets respectively. Large empty circles indicate the
parameter values that were used throughout this study, κ = 20 and
C = 220.

of κ for which the perceptron performs reasonably well for both
L6 and OP datasets. The value of κ was set to 1 throughout this
study.

The sign-constrained perceptron problem of Equation (7) was
solved by using a modified perceptron learning rule (Engel and
Broeck, 2001):

�w = θ
(

κ√
N

− 1
N wT�xμ

)
1√
N

�xμ

wk = wkθ
(
wkgk

)
, k = 1, 2, ..., N

(8)

In this expression, �w denotes the change in the perceptron
weight vector in response to presentation of the training example
μ; θ is the Heaviside step function, which is defined to be
1 for non-negative arguments and zero otherwise. The step
functions in Equation (8) ensure that training is not done on
learned examples, and that the perceptron weights violating the
sign-constraints are set to zero at every step of the algorithm.
Perceptron weights are updated asynchronously by training on
examples, μ, that are drawn from the set of all examples with
probabilities proportional to user-defined cluster weights, Qμ. All
cluster weights are initially set to 1 and can be modified by the
user to increase the probabilities with which examples from some
clusters come up for training. This makes it possible to enforce
learning of certain rare branch merging topologies. Though user-
defined cluster weights may be used to improve the outcome of
training, this feature was not examined in the present study to
avoid subjectivity associated with different choices of Qμ.

An SVM classifier can also be used to solve the system of
inequalities in Equation (6). To incorporate the used-defined
cluster weights, Qμ, we modified the standard formulation of
the SVM problem (Wang, 2005), and in this study maximize the
following dual Lagrangian function in order to obtain the SVM
weight vector w:

Ld (α) = 1
m

l∑
i = 1

αi − 1
2Nm2

l∑
i,j = 1

(
(�xi)T�xj

)
αiαj

0 ≤ αi ≤ CQi, i = 1, 2, ..., l

w = 1
m

l∑
i = 1

αi�xi

(9)

In these expressions, l is the number of SVM support vectors and
C is the SVM margin (see the inset in Figure 5B). Similar to the
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perceptron robustness, there is a large range of values of C for
which the SVM produces reasonably good generalization results
for both datasets. C = 220 was used to produce results of this
study. Again, all used-defined cluster weights, Qμ, were set to 1
during training.

ACTIVE LEARNING STRATEGY
In this section we describe a pool-based sampling approach
(Lewis and Gale, 1994) that can be used to actively train the
Perceptron and SVM classifiers on branch merging examples. In
this approach the user selectively draws queries from the pool of
all branch merging clusters based on the value of the confidence
measure:

Confidence = e−wT xcorrect merger/T∑
i∈all

mergers
e−wT xi/T

(10)

This measure assigns low confidence values (in the 0–1 range)
to clusters in which the erroneous merging scenarios are located
close to the decision boundary defined by w. Parameter T con-
trols the spread of confidence values but does not affect their
order. This parameter was set to 1 throughout the study. Training
can be performed after labeling a single or multiple low confi-
dence clusters, and the confidence measure is updated after each
training step. It is absolutely essential that clusters in which the
correct merging scenario cannot be identified with high certainty
should not be used for training, as a small number of errors
in the labeled set may significantly worsen the performance of
classifiers.

RESULTS
The methodology described in this study is implemented in
the NCTracer software for automated tracing of neurites. This
methodology consists of two major parts—initial tracing and
branch merging. In the first part, an initial trace is created by
using the Voxel Coding (Zhou et al., 1998; Zhou and Toga, 1999;
Vasilkoski and Stepanyants, 2009) or the Fast Marching (Cohen
et al., 1994; Cohen and Kimmel, 1997; Sethian, 1999; Mukherjee
and Stepanyants, 2012) algorithm, and optimized to ensure that
the trace, including its branch and terminal points, conforms well
to the intensity in the underlying image (see the Methods section
for details). Below we examine the initial traces from two very
different dataset types: axons of single olfactory projection neu-
rons from Drosophila (OP dataset, n = 9 image stacks) (Jefferis
et al., 2007) and axons of multiple layer 6 neurons imaged in layer
1 of mouse visual cortex (L6 dataset, n = 6 image stacks) (De
Paola et al., 2006). These datasets were featured at the DIADEM
challenge (Brown et al., 2011) and serve as benchmarks for
automated reconstruction algorithms. Figures 1A,B show repre-
sentative image stacks from the OP and L6 datasets. The initial
traces are superimposed on the maximum intensity projections
of the image stacks, and are slightly shifted for better visibility. As
can be seen, these initial traces accurately represent the geometry
of neurites contained in the image stacks. However, a closer exam-
ination of the L6 trace topology reveals numerous erroneously
merged (stolen) branches. Such errors in the initial trace often
occur when the neurites belonging to different trees appear to
be in contact due to poor z-resolution or due to high density of

labeled structures. Presence of these topological errors becomes
evident after labeling distinct tree structures with different colors
(Figure 1C). The second part of our automated tracing algorithm
uses a machine learning approach that actively learns the mor-
phology of neurites in an attempt to resolve the errors present in
the initial trace (see Figure 1D).

COMPARISON OF AUTOMATED INITIAL TRACES AND MANUAL USER
TRACES
Below we evaluate how well automated and manual traces cap-
ture the layout (geometry) of the neurites in the image stack,
as well as how well they represent the morphology of branching
tree structures (topology). Similar comparisons have been carried
out in other studies (Gillette et al., 2011a; Choromanska et al.,
2012; Mayerich et al., 2012). Each OP and L6 image stack was
traced automatically using the Fast Marching algorithm as well as
manually by three trained users. Figure 6A shows an example of
the resulting four traces of a single OP stack. Inevitably, imper-
fect labeling and limited resolution of optical microscopy lead to
uncertainties in tracing. Trained users often resolve such uncer-
tainties differently from one another, and hence no single trace
can be viewed as a gold standard. Thus, we had to first establish
quantitative measures describing the baseline inter-user variabil-
ity, and only then evaluate the performance of the automated
tracing algorithm in comparison to this baseline. To this end, each
manual trace was chosen to be the gold standard and compared
to the automated trace and the remaining two manual traces. This
led to 6 inter-user and 3 automated-to-user trace comparisons for
each stack.

To ensure the uniformity of the reconstructed dataset, all traces
were subdivided into segments of equal length (d = 0.25 vox-
els). To compare a pair of traces (a test trace and a gold standard
trace) we perform a bi-directional nearest neighbor search to
find corresponding nodes, i.e., nodes on the two traces sepa-
rated by less than h = 10 voxels (see Figure 6B). A node in the
test trace which has (does not have) a corresponding node in
the gold standard trace is referred to as a true (false) positive
node. A node in the gold standard trace for which there is no
corresponding node in the test trace is referred to as a false nega-
tive node. Short terminal branches (less than 12 voxels) and dim
branches (average intensity less than 0.12) were excluded from the
comparisons.

Results of the geometrical comparisons between automated
initial traces and manual traces for the OP image stacks are
shown in Figures 6C–E. The plots show probability densi-
ties of distances between corresponding nodes, corresponding
branch points, and corresponding terminal points for both
inter-user (blue lines), as well as automated-to-user compar-
isons (red lines). The geometrical precision of the automated
and manual traces is evidenced by the fact that 95% of dis-
tance values lie below 2.3 voxels in Figure 6C, 7.3 voxels in
Figure 6D, and 6.6 voxels in Figure 6E. More importantly,
the difference between mean distances for the inter-user and
automated-to-user comparisons (0.19, 0.51, and 0.65 voxels
respectively) is smaller than the resolution of the image, and
thus should have little bearing on trace dependent measure-
ments. Similar conclusions were drawn from the geometrical
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FIGURE 6 | Assessing the quality of automated traces. (A) Three manual
traces (green, blue, and yellow) and one automated trace (red) are
superimposed on a maximum intensity projection of an OP neuron. The
traces are staggered upward for better visibility. The inset shows a zoomed
view of the boxed region. Scale bar is 20 μm. (B) Several geometrical and
topological features are used to compare traces. Gold standard trace (yellow)
and test trace (blue) are shown. Both traces are composed of nodes
connected by edges of length d. Nodes on these traces are referred to as
corresponding nodes if they are located within distance h of each other
(d << h). Circles highlight false negative and false positive branch and
terminal points. (C–E) Automated traces reliably capture the geometry of
neurites. Nine OP axons were reconstructed with NCTracer, first
automatically and then manually by three trained users. The probability

densities for distances between the corresponding trace nodes (C), terminal
points (D), and branch points (E) were used as metrics for geometrical
comparisons. Red lines show the results of automated-to-user trace
comparisons. Here, all user traces for every stack were used one by one as
the gold standard, leading to 27 automated-to-gold standard trace
comparisons. The results were pooled. Blue lines show similar results based
on 54 user-to-user trace comparisons. (F–H) Automated traces accurately
represent the topology of OP neurons. Three topological measures were
compared: false positive/negative trace lengths (F), numbers of false
positive/negative terminal (G) and branch (H) points. Red and blue bars show
the fractions of automated-to-user (n = 27) and user-to-user (n = 54)
comparisons for different error types. The fractions for false positive and false
negative errors are indicated with the bars above and below the x-axes.

comparisons of automated and manual traces of the L6 dataset
(Figures 7A–C).

Topological errors that occur due to incorrectly merged
branches are more difficult to detect and can be detrimental to
circuit reconstruction projects. Three measures were selected to
quantify the extent of such errors: false positive/negative trace
lengths, numbers of false positive/negative terminal points, and
numbers of false positive/negative branch points. The results of

comparisons for the OP dataset (Figures 6F–H) show that similar
numbers of topological errors were made by the algorithm and
the users, and these numbers were generally small (less than one
false positive/negative branch or terminal point per stack). For
the L6 image stacks, the mismatches in length for the automated
and manual traces were similar (Figure 7D), indicating that the
automated algorithm performed as well as trained users in tracing
the majority (in terms of length) of labeled structures. However,
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FIGURE 7 | Assessment of initial traces of multiple neuron axons.

Six L6 image stacks were reconstructed manually and automatically with
NCTracer (see Figure 6 legend for details). (A–C) Automated traces reliably
capture the geometry of neurites. The probability densities for distances
between the corresponding trace nodes (A), terminal points (B), and
branch points (C) were used as metrics for geometrical comparisons.

Red lines (n = 18) and blue lines (n = 36) show the results of
automated-to-user and user-to-user trace comparisons. (D–F) While the
automated traces capture the geometry of the neurites well, they contain
a markedly large number of false positive branch points (F). These
topological errors result from erroneous mergers of distinct axons that
pass in close proximity of one another.

in contrast to manual traces, automated traces contained more
false positive/negative terminal points (Figure 7E) and markedly
larger number of false positive branch points (Figure 7F). The
former errors result from branches that are broken due to imper-
fect labeling, while the latter arise from a specific artifact of
the Fast Marching algorithm, i.e., merging nearby, but distinct
branches. In particular, lower z-resolution of an image stack
makes such mergers more prevalent, leading to larger numbers
of false positive branch points.

ACTIVE LEARNING OF BRANCHING MORPHOLOGY OF NEURITES
To resolve the above mentioned topological errors, branches of
the initial trace were disconnected from one another and merged
into tree-like structures in an active learning approach described
in the Methods section. Briefly, the positions of branch and termi-
nal points were clustered based on distance, and branch merging
was performed within every cluster independently (see Figure 4).
Perceptron and SVM classifiers were designed and trained online
to accomplish the branch merging task generating the final traces
of the OP and L6 image stacks.

To assess the performance of the classifiers, their generalization
error rates were monitored as functions of the number of training
examples. Figures 8A,B compare the performance of the classi-
fiers trained on randomly selected branch merging examples with
that of classifiers trained in an active learning approach. The plots

show that the active learning approach provides a clear advantage
in terms of the number of training examples required to reach a
given error rate. For each dataset, error rates of less than 5% were
achieved by both classifiers with less than 40 actively chosen train-
ing examples. The rapid decline of the generalization error rate
validates our choice of features used for the branch merging task
(see Figure 3). As expected, trained SVM and perceptron classi-
fiers established nearly identical decision boundaries, as judged
by the distance between their normalized weight-vectors (0.29
for OP and 0.10 for L6). In contrast, between-dataset distances
were larger (0.63 for perceptron and 0.63 for SVM), indicative
of the fact that classifiers were able to capture dataset specific
morphological information.

Geometry and topology of the final automated traces pro-
duced by the branch merging algorithm were compared to the
user traces in the manner described in Figures 6, 7. No sig-
nificant geometrical changes resulted from automated branch
merging. This was expected, as trace modifications that accom-
pany branch merging are confined to very local regions in the
vicinity of branch or terminal points. In addition, automated
branch merging did not alter the topology of initial traces
of OP neurites. The reason is that the initial traces of these
morphologically simple structures did not contain significant
topological errors in the first place (Figures 6F–H). As for the
topology of L6 traces, no significant changes were observed in
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FIGURE 8 | Online training can be used to reduce the numbers of

topological errors present in initial traces. (A) Generalization error-rate as
function of the number of training clusters for the perceptron classifier. Black
lines (mean) surrounded by gray margins (standard errors) show the results
of random training. For each number of training clusters, training sets were
generated at random 1000 times. Training was performed on each set of
clusters, while testing was done on the remaining clusters. Results for all
1000 experiments were averaged. Solid and dotted lines show the results for
the OP and L6 datasets respectively. Red lines show the corresponding

results for active training experiments. (B) Same for the SVM classifier.
(C) The number of false positive branch points present in the initial trace of
L6 dataset (Figure 7F) is greatly reduced by the branch merging algorithm.
(D) The sum of false positive and false negative branch point errors is an
increasing function of length density of labeled neurites. Length density is
calculated as the average length of neurites traced by the users divided by
the image stack volume. Error-bars indicate the range of branch point errors.
Automated tracing algorithm performs as well as trained users when the
density of labeled neurites is low (<0.003 μm−2).

false positive/negative lengths (Figure 7D) and terminal point
numbers (Figure 7E).

As was intended, automated branch merging greatly reduced
the number of false positive branch points present in the ini-
tial traces (Figure 8C vs. Figure 7F). Though the reduction in
the number of false positive branch points was large (about
two-fold), the branch merging algorithm failed to achieve the
level of user performance (Figure 8C). To examine the rea-
son behind this disparity we plotted the sum of false positive
and false negative branch point errors for every L6 stack as
function of length density of neurites contained in the stack
(Figure 8D). The length density is defined as the total length of
traced neurites (in μm) divided by the stack volume (in μm3)
and was calculated for each image stack by averaging over all user
traces. These comparisons show that in every stack the branch
merging algorithm substantially reduced the total number of

errors present in the initial trace. What is more, when the den-
sity of labeled neurites was small (less than 0.003 μm−2, e.g.,
Figure 1D), the resulting final automated traces were on par with
user reconstructions.

COMPARISONS WITH OTHER AUTOMATED TRACING TOOLS
The geometrical and topological measures used to evaluate the
quality of automated traces were also used to compare the
performance of NCTracer, Vaa3D (Xiao and Peng, 2013), and
NeuronStudio (Rodriguez et al., 2009). To this end, automated
traces of OP and L6 image stacks were obtained with Vaa3D and
NeuronStudio. We visually inspected these traces and varied the
software parameters to achieve good coverage and performance.
Inter-user and automated-to-user comparisons were performed
as previously described. To evaluate the geometry of automated
traces we calculated the mean distances between corresponding
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nodes and corresponding terminal and branch points. To assess
the topology of automated traces, we obtained the Miss-Extra-
Score (MES) for trace length and for the numbers of terminal
and branch points (Xie et al., 2011). Trace MES is defined as
the ratio of the gold standard length reduced by the false neg-
ative length to the gold standard length increased by the false
positive length. Terminal and branch point MES are defined in
a similar manner. The results of these comparisons are shown in
Table 1.

Smaller distance and higher MES indicate greater affinity
between test and gold standard traces. Table 1 shows that all
automated tracing tools were able to capture trace geometry and
topology of single OP axons reasonably well. The advantage of
the branch merging strategy proposed in this study becomes evi-
dent from examining the values of topological measures for L6
stacks, which contain multiple axons. According to these mea-
sures, NCTracer significantly outperforms other software. And in
general, all geometrical and topological measures of NCTracer are
closest to the inter-user measures. Table 1 also shows a trade-off
between the quality of automated traces and tracing time. Vaa3D
and NeuronStudio are 15–20 fold faster than NCTracer. We do
not view this as a major drawback because tracing of single stacks
with the current version of NCTracer can be easily performed on
modern day workstations, while high-throughput projects could
still be carried out on computer clusters.

DISCUSSION
Much of our understanding of brain structure and function is
derived from quantitative analyses of neuron shapes. Researchers
routinely utilize partial or complete single cell reconstructions,
as well as reconstructions of multiple cells often spanning sev-
eral stacks of images in order to address various questions.
Single cell reconstructions are often used in cell classification
and comparative neuroanatomy studies, theoretical studies of
neuron shapes, and detailed computational models of intracel-
lular activity. Single cell reconstructions are frequently pooled
in silico to simulate structural connectivity of local neural cir-
cuits. Reconstructions of multiple labeled cells are used for the
analyses of synaptic connectivity in local circuits, in vivo stud-
ies of circuit plasticity, and large-scale brain mapping projects.
There is no doubt that automating the tracing process will
advance these studies, significantly increasing their throughput
and eliminating the biases and variability associated with manual
tracing.

It is important to understand that it is usually not sufficient
to obtain the basic layout of all labeled neurites. In particular,
projects aimed at the analyses of synaptic connectivity require
accurate knowledge of branching morphology of individual cells
(Figure 1). In this study, we use machine learning to evaluate
topologically different scenarios of constructing automated traces
(Figure 4A) and then determine the correct branching pattern
based on previously learned morphological features. A machine
learning approach to image processing typically requires a large
labeled set of examples, and creating such a set can be very
time-consuming. Our active learning strategy circumvents this
problem by taking advantage of the combinatorial nature of
the numbers of branch merging scenarios (Figure 4B). Another T

a
b

le
1

|
C

o
m

p
a
ri

s
o

n
s

o
f

m
a
n

u
a
l

a
n

d
a
u

to
m

a
te

d
tr

a
c
e
s
.

O
P

d
a
ta

s
e
t

(s
in

g
le

c
e
ll

a
x
o

n
s
)

L
6

d
a
ta

s
e
t

(a
x
o

n
s

o
f

m
u

lt
ip

le
c
e
ll
s
)

G
e
o

m
e
tr

ic
a
l

m
e
a
s
u

re
s

T
o

p
o

lo
g

ic
a
l

m
e
a
s
u

re
s

T
im

e
G

e
o

m
e
tr

ic
a
l

m
e
a
s
u

re
s

T
o

p
o

lo
g

ic
a
l

m
e
a
s
u

re
s

T
im

e

T
ra

c
e

T
P

B
P

T
ra

c
e

T
P

B
P

T
ra

c
e

T
P

B
P

T
ra

c
e

T
P

B
P

d
is

t.
d

is
t.

d
is

t.
M

E
S

M
E

S
M

E
S

d
is

t.
d

is
t.

d
is

t.
M

E
S

M
E

S
M

E
S

In
te

r-u
se

r
1.

03
±

0.
02

2.
18

±
0.

08
2.

17
±

0.
09

0.
99

5
±

0.
00

1
0.

95
±

0.
01

0.
98

±
0.

01
∼1

5
m

in
1.

01
±

0.
02

1.
84

±
0.

05
1.

80
±

0.
09

0.
83

8
±

0.
02

3
0.

90
±

0.
01

0.
90

±
0.

01
∼1

00
m

in

N
C

Tr
ac

er
1.

19
±

0.
02

2.
57

±
0.

14
2.

77
±

0.
08

0.
99

6
±

0.
00

1
0.

93
±

0.
01

0.
94

±
0.

01
∼2

0
s

1.
07

±
0.

02
3.

02
±

0.
07

3.
13

±
0.

16
0.

85
9

±
0.

02
4

0.
86

±
0.

01
0.

85
±

0.
02

∼6
m

in

Va
a3

D
1.

39
±

0.
03

4.
86

±
0.

13
3.

46
±

0.
10

0.
98

9
±

0.
00

2
0.

77
±

0.
02

0.
85

±
0.

02
∼1

s
1.

32
±

0.
01

6.
04

±
0.

02
3.

36
±

0.
10

0.
73

6
±

0.
03

2
0.

68
±

0.
02

0.
68

±
0.

02
∼2

5
s

N
eu

ro
nS

tu
di

o
2.

19
±

0.
17

4.
17

±
0.

24
4.

19
±

0.
23

0.
97

6
±

0.
00

6
0.

85
±

0.
02

0.
92

±
0.

02
∼ 1

s
N

A
N

A
N

A
N

A
N

A
N

A
N

A

M
an

ua
lt

ra
ce

s
w

er
e

cr
ea

te
d

by
th

re
e

tr
ai

ne
d

us
er

s.
A

ut
om

at
ed

tr
ac

es
w

er
e

ge
ne

ra
te

d
w

ith
N

C
Tr

ac
er

as
de

sc
rib

ed
in

th
is

st
ud

y,
as

w
el

la
s

Va
a3

D
(X

ia
o

an
d

Pe
ng

,
20

13
)

an
d

N
eu

ro
nS

tu
di

o
(R

od
rig

ue
z

et
al

.,

20
09

)a
ut

om
at

ed
tr

ac
in

g
so

ft
w

ar
e.

Pa
ra

m
et

er
s

fo
r

Va
a3

D
an

d
N

eu
ro

nS
tu

di
o

so
ft

w
ar

e
w

er
e

tu
ne

d
to

th
e

be
st

of
ou

r
kn

ow
le

dg
e.

B
ec

au
se

N
eu

ro
nS

tu
di

o
do

es
no

t
au

to
m

at
ic

al
ly

tr
ac

e
ne

ur
ite

s
of

m
ul

tip
le

ce
lls

,t
hi

s

so
ft

w
ar

e
w

as
no

t
us

ed
fo

r
th

e
L6

da
ta

se
t

(N
A’

s
in

th
e

ta
bl

e)
.

G
eo

m
et

ric
al

an
d

to
po

lo
gi

ca
lm

ea
su

re
s

us
ed

ar
e

de
sc

rib
ed

in
th

e
te

xt
.

Th
ei

r
nu

m
er

ic
al

va
lu

es
ar

e
gi

ve
n

in
m

ea
n

±
s.

e.
m

fo
rm

at
(n

=
9

fo
r

O
P

an
d

n
=

6
fo

r
L6

).
A

ll
ca

lc
ul

at
io

ns
w

er
e

pe
rf

or
m

ed
on

a
3.

59
G

H
z,

24
G

B
w

or
ks

ta
tio

n
ru

nn
in

g
W

in
do

w
s

7.
Th

e
fo

llo
w

in
g

ab
br

ev
ia

tio
ns

ar
e

us
ed

in
th

e
ta

bl
e:

di
st

.,
di

st
an

ce
;T

P,
te

rm
in

al
po

in
ts

;B
P,

br
an

ch
po

in
ts

;M
E

S,

m
is

s-
ex

tr
a-

sc
or

e
(X

ie
et

al
.,

20
11

).

Frontiers in Neuroanatomy www.frontiersin.org May 2014 | Volume 8 | Article 37 | 11

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Gala et al. Automated neuron tracing with NCTracer

advantage of this strategy is subtractive normalization, Equation
(6). Branch merging scenarios are only compared within clusters,
normalizing for the variations in local intensity and density of
labeled neurites.

The results of this study show that the quality of auto-
mated traces is strongly dependent on the length density of
labeled neurites. When this density is lower than 0.003 μm−2

the automated tracing algorithm performs on par with trained
users (Figure 8D); the reliability of automated traces diminishes
rapidly with increase in density beyond this point. Hence, proof-
reading and error-correction may be required for some auto-
mated traces. Proofreading must be done in a computer guided
manner, which is particularly important for high-throughput
reconstruction projects. The confidence measure described in
Equation (10) can be used to convey information about the cer-
tainty in the outcome of automated tracing. This measure can
be calculated for every vertex in the trace and can be used to
direct the user’s attention to the most uncertain parts of the trace.
Only the lowest confidence mergers will need to be examined by
the user, leading to a substantial reduction in proofreading time.
Such low confidence regions can be highlighted automatically and
the user would choose from an ordered set of best alternative
scenarios (based on decreasing confidence).

With the automation of tracing and proofreading it should
be possible to map intact, sparsely labeled circuits on the scale
of a whole brain, e.g. in the fly or the mouse. Consider a hypo-
thetical experiment of mapping structural connectivity in the
mouse brain. The adult mouse brain is roughly 500 mm3 in vol-
ume (Ma et al., 2005). Subsets of mouse neurons can be labeled
in vivo to reveal the layout of their axonal and dendritic arbors.
The brain can then be divided into 0.5 × 0.5 × 0.1 mm3 opti-
cal sections, and imaged in 3D with two-photon or confocal
microscopy at 0.5 × 0.5 × 1.0 μm3 spatial resolution. This pro-
cedure would result in 20,000 stacks of images, each composed
of 1000 × 1000 × 100 voxels, totaling 2 TB of raw imaging
data. A dataset of this size would have to be reconstructed on
a high-performance computer cluster, and the results could be
viewed and proofread on modern-day workstations. Depending
on the density of labeling, reconstruction of a single stack may
take on the order of 1 core-hour, or 20,000 core-hours for the
entire brain. Thus, whole mouse brain mapping is no longer an
unfeasible goal.

Brain mapping at a much lower spatial resolution has long
been performed with diffusion tensor imaging (DTI). This non-
invasive technique measures the diffusion tensor associated with
anisotropic movement of water molecules along white matter
fiber bundles. Numerous algorithms have been developed to con-
struct tracts from such information, establishing coarse-grain
connectivity between brain regions (for review see Le Bihan,
2003; Hasan et al., 2011; Soares et al., 2013). Such algorithms
typically use streamline tractography to connect voxels of sim-
ilar tensor-field orientations into a trace. The reconstruction
problem encountered in DTI is somewhat related to the prob-
lem of neurite tracing described in this study; however, there
is an important difference. Due to the relatively low resolution
of DTI (typically 1 mm3 per voxel) there is no anatomical basis
for trying to detect branching patterns in DTI tracts. Hence,

unlike neurite tracing, where topological errors may have a catas-
trophic effect on the overall connectivity map, the results of
DTI tracing are expected to be less sensitive to such errors. It
remains to be seen to what extent brain mapping at single neu-
ron resolution correlates with the connectivity maps established
with DTI.
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