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ABSTRACT The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the
1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we
outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by
discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems.
We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments
that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to
selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in
adaptation to variable environments, including host–pathogen coevolution. We conclude by suggesting some future directions for
which experimental evolution with Caenorhabditis would be particularly informative.
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“With them, many important questions will be accessible to
patient observers who do not fear long-term experiments.” –
Emile Maupas (1900)

OVER a century ago, Emile Maupas introduced the nem-
atode Caenorhabditis elegans to the scientific commu-

nity with his report on a failed experiment aimed at testing
the hypothesis that continual self-fertilization (selfing)
should lead to population extinction (Maupas 1900). This
goal was ultimately thwarted, as after nearly 50 generations
of selfing, Maupas’ C. elegans culture collapsed due to an
errant spike in temperature that led to abnormalities in de-
velopment and reproduction independently of inbreeding ef-
fects. Maupas’ experimental evolution study was inspired by
an ongoing debate about the long-term sustainability of self-
ing as a reproductive strategy (Darwin 1876), and provides a
particularly telling introduction to experimental evolution:
the expected outcome (extinction) was achieved, but for
the “wrong” reason, as it was not a result of selfing.

Experimental Evolution (EE) has long been used as the
gold standard for testing evolutionary hypotheses about nat-
ural selection and genetic drift, estimating theoretical param-
eters regarding standing genetic variation, such as mutation
and recombination rates, and, more recently, as a means for
gene discovery. The main organismal models to which EE has
been applied are mice, fruit flies, yeast, and bacteria (Rose and
Lauder 1996; Bell 1997; Garland and Rose 2009; Kassen 2014).
Despite the promising start by Emile Maupas (Maupas 1900),
however, it was nearly 90 years before Caenorhabditis reap-
peared in EE research, during which time much evolutionary
theory had been mathematically formalized.

Because of its relative newcomer status in EE research, we
have barely begun to tap the potential of Caenorhabditis for
elucidating the patterns and processes of evolution (Gray and
Cutter 2014). But, as the community of Caenorhabditis evo-
lutionary biologists has grown—now sufficiently large to
merit regular meetings and dedicated stock and databases
(Supplemental Material, Table S1 in File S1; Carvalho et al.
2006; Haag et al. 2007; Braendle and Teotónio 2015)—so too
has the array of evolutionary problems being investigated
with experiments (Table 1 lists some of the studies that will
be covered here).

Caenorhabditis are free-living bactivorous roundworms
with over 25 species currently being cultured in the labora-
tory (Kiontke et al. 2011; Felix et al. 2014), although only

C. elegans, C. briggsae, and C. remanei have been utilized in
EE research. A distinctive feature of this group of nematodes
is that facultative selfing evolved independently from ances-
tral obligatory outcrossing three times (Kiontke and Fitch
2005). C. elegans, C. briggsae, and C. tropicalis have a rare
androdioecious reproduction system, with hermaphrodites
capable of selfing, and of outcrossingwithmales, but not with
other hermaphrodites. Hermaphrodites from these species
are developmentally similar to females of related dioecious
species, except for a period during germline specification and
differentiation when sperm is produced and stored in the
spermatheca prior to an irreversible switch to oogenesis at
adulthood. These hermaphrodites are therefore self-sperm
limited and can only fertilize all of their oocytes when mated
by males (Barker 1992; Cutter 2004). Behaviorally, hermaph-
rodites have lost the ancestral ability to attract males, and are
generally reluctant to mate until they have depleted their
own self-sperm store (Lipton et al. 2004; Chasnov et al. 2007).

Our aim with this review is to present Caenorhabditis spe-
cies as excellent models for EE. We first focus on the basic
principles of EE, which apply more or less to any organism,
and then introduce Caenorhabditis and related resources for
their use in EE. We next explore the common goals and out-
comes of EE studies in sections devoted to laboratory domes-
tication and specific EE designs that address the fundamental
processes of natural selection, genetic drift, mutation, segre-
gation, and recombination. We then review selected studies
that have greatly improved our understanding of several
evolutionary problems. More technical introductions are pre-
sented in Boxes and Figures, and in Supplementary Appen-
dices. We finish with future research directions for which we
believe Caenorhabditis to be particularly well-suited as model
systems.

What Is Experimental Evolution?

Advantages and limitations of the experimental
manipulation of evolution

EE practitioners employ laboratory or field manipulations to
understand the processes that lead to, and the mechanisms
underlying patterns of, genetic and/or phenotypic diversity
revealed by populations across multiple generations. The
basic approach is straightforward, with most experiments
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being leveraged on the insights that can be provided by
comparing phenotypes, and/or genotypes of populations
evolved under experimenter-imposed conditions with those
of an ancestor (divergence) or a control group (differentia-
tion). Using numerical simulations, we show in Figure 1 how
phenotypic responses would typically look like during EE,
and in Figure 2 the statistical power to detect divergence or
differentiation as a function of sample size and number of
replicate populations. In Appendix 1 in File S1, we discuss
some of the scaling and transformation problems in EE
studies.

Because the development of evolutionary theory has far
outpaced the generation of relevant data (genome-sequence
data being a singular exception), using EE to confront long-
standing problems has the potential to illuminate our un-
derstanding of evolution for decades to come provided a few
qualifications are appreciated. The most important consider-
ations are the potential difficulty in balancing simplicity
and realism in contrived laboratory experiments (Huey and
Rosenzweig 2009), the uncertainty surrounding the rele-
vance of observations from EE for natural populations
(Matos et al. 2000), and current limitations on our ability to
rapidly phenotype large numbers of individuals in the rele-
vant environment—the one in which EE was performed and
where fitness can be estimated. In principle, the power of EE
studies derives from the fact that they are designed, repeat-
able experiments; in practice, experimental design must be
carefully considered to avoid unintended consequences and
alternative explanations that are impossible to distinguish
from the hypothesis that the experimenter originally hoped
to address. The general advice for beginning students is to
limit the number of variables manipulated while controlling
for laboratory domestication.

Doing EE well requires careful planning and organization,
and the commitment to spend at least several hours trans-
ferring individuals every few days for months, or even years,
on end. Why would anyone take on such a thing when they
could start today on a comparative study in which nature has
alreadydonemostof thework?Since studentsof evolutionare
primarily driven by “why” questions (Mayr 1961), they will
often be left wanting by results of comparative studies alone.
Evolution is an inherently historical process, and so the va-
garies of history are often expected to play an important role
in determining evolutionary outcomes, and yet are likely to
be completely opaque to us unless we can actually control
and follow the structure of that history. While phylogenetic
methods can be applied to infer the underlying evolutionary
processes and ancestral character states (Felsenstein 2004),
this approach still involves a good deal of guesswork since
very different processes can plausibly lead to the same evo-
lutionary outcome (Leroi et al. 1996; Sanderson and Hufford
1996). And while the comparative perspective is vital for re-
vealing patterns of natural diversity and generating hypoth-
eses about the causes of those patterns, we can, in principle,
eliminate much of the guesswork by directly observing evo-
lution in controlled settings.

Advantages and limitations of Caenorhabditis for
experimental evolution

Some early studies on thermal adaptation (Brun 1966a,b,c;
Lower et al. 1968) and rates to lethal mutations (Rosenbluth
et al. 1983; Clark et al. 1988) notwithstanding, application
of EE methods with Caenorhabditis species did not begin in
earnest until the 1990s with the work of Johnson and col-
leagues on the evolution of aging (Johnson and Hutchinson
1993; Brooks et al. 1994; Walker et al. 2000; Jenkins et al.
2004), that of LaMunyon and Ward on sexual selection
(LaMunyon and Ward 1995, 1997, 1998, 1999, 2002), and
that of Keightley and colleagues on mutation rates and their
effects (Keightley and Caballero 1997; Davies et al. 1999;
Vassilieva and Lynch 1999; Denver et al. 2000; Vassilieva
et al. 2000; Azevedo et al. 2002; Peters et al. 2003). There
is now a remarkably broad range of problems being
addressed with Caenorhabditis EE (Table 1, and see Gray
and Cutter 2014).

One reason for the delay in adopting Caenorhabditis in EE
is that natural intraspecific and interspecific diversity was
little studied until the 2000s (Phillips 2006; Kiontke et al.
2011), at least in part because large-scale collection of natu-
ral isolates was not feasible until Felix et al. (2014) discovered
effective ways of targeting collections in natural habitats of
rotting fruit and plant stems. This lack of knowledge limited
the scope of questions that could be tackled. In particular,
since most short-term evolution in sexual species is thought
to occur from standing genetic variation rather than from
new mutational variance (Hill 1982; Caballero and Santiago
1995; Matuszewski et al. 2015), the highly inbred and genet-
ically depauperate C. elegans laboratory strains that were
available at the time were initially perceived as being of little
use for testing evolutionary theory.

We now understand that natural populations of C. elegans
are inbred due to selfing, and that outcrossing is rare
(Chasnov and Chow 2002; Stewart and Phillips 2002;
Barriere and Felix 2005; Teotónio et al. 2006). Selective
sweeps and background selection appear to dominate its pop-
ulation genetics (Cutter and Payseur 2003; Rockman et al.
2010; Andersen et al. 2012; Thomas et al. 2015), resulting
in poor gene diversity and extremely strong linkage disequi-
librium (Graustein et al. 2002; Sivasundar and Hey 2003;
Barriere and Felix 2005; Haber et al. 2005; Cutter 2006;
Thompson et al. 2015). Related outcrossing species display
extensive natural variation, however (Cutter et al. 2013; Dey
et al. 2013; Cutter 2015), with C. brenneri being perhaps the
most genetically diverse eukaryote described so far (Dey et al.
2013). And now, populations of C. elegans constructed via the
hybridization of wild isolates have been developed for the
specific purpose of studying evolution from standing genetic
variation (Table S1 in File S1 lists a few of the resources for
EE available in C. elegans).

Many of the same features that make the natural popula-
tion genetics of Caenorhabditis somewhat odd also make
it ideally suited for laboratory approaches to studying
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evolutionary questions (Frezal and Felix 2015; Petersen et al.
2015). For example, questions about the interaction between
reproduction system and standing genetic variation can be
nicely matched with the choice of experimental design (e.g.,
manipulating sex determination in C. elegans or using natural
populations of the highly polymorphic C. remanei as experi-
mental starting points). Of course, the real power here is the
ability to capitalize on decades of hard work on the genetics
and functional biology of C. elegans that has been provided by
the broader C. elegans research community (Corsi et al. 2015).

Because of these advantages, Caenorhabditis are now ar-
guably the best metazoan models for the experimental study
of evolution (Gray and Cutter 2014). Althoughworms cannot
match the short generation times or large population sizes of
microbes such as yeast or bacteria commonly employed for
EE (Bell 1997; Kassen 2014), relatively long-term evolution is
feasible with C. elegans; e.g., lineages have been cultured un-
der selfing for up to 400 generations (Matsuba et al. 2012; Katju
et al. 2015), and maintained under different reproductive sys-
tems for up to 200 generations (Theologidis et al. 2014).

Like many microbes, Caenorhabditis can be easily and re-
liably cryopreserved. Cryogenics allows one to halt evolution
of ancestral stocks and permits accurate evaluation of repeat-
ability and parallelism of evolution (Denver et al. 2010; Estes

et al. 2011). Not only does the ability to cryopreserve stocks
allow direct comparisons between evolved and ancestral
states, it means that an experiment can live on after the initial
period of evolution and new features of the experimental
system can be investigated—a major advantage over other
metazoan systems such as Drosophila.

But the feature of androdioecious Caenorhabiditis that is
unique among metazoan experimental systems is that sex
determination can be genetically manipulated, allowing re-
searchers to obtain populations with variable ratios of males,
females, and hermaphrodites (Haag et al. 2002; Baldi et al.
2009; Beadell et al. 2011), and thus to achieve different de-
grees of selfing and outcrossing. This has allowed the role of
segregation and recombination in evolution to be tested in-
dependently of confounding environmental factors (Cutter
2005; Morran et al. 2009b, 2011; Baer et al. 2010; Chelo
and Teotónio 2013; Theologidis et al. 2014). In contrast,
for microbes such as the yeast Saccharomyces cerevisiae
(Goddard et al. 2005; McDonald et al. 2016), and the green
alga Chlamydomonas reinhardtii (Colegrave 2002; Lachapelle
and Bell 2012), or metazoans like the rotifer Brachionus
calyciflorus (Becks and Agrawal 2010; Luijckx et al. 2017),
manipulation of sexuality usually involves distinct life-histories
imposed by different environments.

Figure 1 Phenotypic divergence and differentiation in EE. A typical evolution experiment involves manipulation of environmental conditions and letting
populations diverge from the ancestral population in trait value. To show that divergence is genetically based, one needs to account for confounding
environmental effects (including transgenerational carryover effects) by assaying ancestral and derived populations after some number of generations of
common “garden” culture. “Control” replicate populations are usually kept in the environment to which the ancestral population has adapted to,
that is, the domestication environment, and run alongside those in the new environment such that the mean differentiation between treatments is
interpreted to result from selection. It is usually assumed that control populations are under no selection, but it is perhaps more realistic to think
that they are under stabilizing selection for intermediate trait values. In mutation accumulation (MA) experiments, since selection efficiency is low,
a domestication stage prior to subjecting populations to new environmental conditions is not necessary. Any differentiation among replicates
within each treatment is presumed to result from genetic drift and idiosyncratic selection (e.g., placement within incubators, the experimenter
doing the culturing, etc.). We illustrate divergence and differentiation of a quantitative trait with individual-based simulations (http://datadryad.org/,
doi: 10.5061/dryad.bg08n). The plots in the figure show these simulations of divergence and differentiation for 20 populations reproducing
exclusively by selfing evolving under genetic drift and no selection (gray lines), or genetic drift and selection (black lines). With lower initial heritability
it takes longer for selection to take populations to the new phenotypic optimum (scenario 1; left), and the higher the initial heritability the faster the
initial response (scenario 2; middle). In natural populations, lower heritability is typical of behavioral traits, while high heritability is typical of
morphological traits (Lynch and Walsh 1998). The phenotypic “optimum” is shown by a dashed line. The right plot shows the fitness function
employed for the simulations, with the circles illustrating the mean evolution of the selected populations starting with high heritability. Further
details about the simulation can be found in Figure 2.

696 H. Teotónio et al.

http://datadryad.org/


Goals, Outcomes, and Interpretation of Experimental
Evolution

Domestication to laboratory conditions

When S. Brenner decided to embark on a new research pro-
gram based on studying a simple metazoan organism, he
selected a C. elegans strain, N2, which had been propagated
in the laboratory for perhaps thousands of generations
(Weber et al. 2010; Sterken et al. 2015; Nigon and Felix

2016). Unbeknownst to him, this strain had already under-
gone extensive adaptation to laboratory conditions and prob-
ably became even more specifically adapted to what are now
the standard C. elegans handling conditions (Stiernagle 1999).
It is now clear that the N2 strain is quite distinct from natural
isolates of C. elegans for a variety of developmental, physio-
logical, and behavioral traits. For example, specific alleles of
npr-1, glb-5, and nath-10 are only found in N2 and havewide-
ranging effects (Persson et al. 2009; McGrath et al. 2011;

Figure 2 Detecting phenotypic differentiation and divergence. The statistical power to detect divergence or differentiation depends on many variables.
Here, we consider how the number of replicate populations and sample size affect the power to detect responses to selection on a quantitative trait
when reproduction occurs exclusively by selfing. We rely on the numerical simulation model presented in http://datadryad.org/, doi: 10.5061/dryad.
bg08n; the reader can explore it to generate trait value trajectories and power curves as a function of standing and mutational genetic variance,
population size and number of offspring, truncation and Gaussian selection, sample sizes, etc. The analysis we show is based on the simulated
evolutionary trajectories of Figure 1. Individual fitness was defined as: w = exp{2[offspring_trait_value 2 optimum]^2/[2*(intensity^2)]} (Figure 1, right
plot), with the new fixed phenotypic optimum set to �1 SD from the ancestral phenotypic distribution, and an intensity resulting in an initial linear
selection gradient of 0.15. These are realistic numbers for natural populations (Kingsolver et al. 2001), but in the laboratory selection may be more
substantial. The trait value of each hermaphrodite in the simulations is defined by its breeding value plus a stochastic component, assumed both to
follow Gaussian distributions. Each hermaphrodite produced a fixed number of 10 offspring, with each one of them being represented in the next
generation with a probability given by the fitness function, while keeping population size constant at 1000 individuals. This number was the approx-
imately the effective population size of EE done by Teotónio et al. (2012), employing nonoverlapping and constant adult densities of 104 (Chelo and
Teotónio 2013). Many studies, however, employ overlapping generations, and do not test for the stability of age-structure during EE. Even though
densities may be large in these studies, it is unclear which effective population sizes are realized (Box 1). For all plots, segregation/mutational heritability
was of �0.15% at each generation, in line with Caenorhabditis MA estimates, e.g., (Salomon et al. 2009). But note that trait heritability will change
during EE depending on how selection and genetic drift influence standing levels of genetic variation. Once EE is done, testing for divergence or
differentiation requires that replicate populations within each treatment show random effects due to genetic drift and uncontrolled selection. When
employing frequentist statistical modeling, taking replicate populations as a fixed factor is incorrect since the degrees of freedom over which the
significance of evolutionary responses are tested will be inflated. Using a linear mixed effects model, we tested for differentiation of unselected and
selected populations after 50 generations by sampling 10 or 50 individuals from each of 2, 5, or 15 replicate populations. This model assumes that the
heterogeneity among replicates is the same between treatments, which may not be true. Left panels show the probability of detecting differentiation
(the cumulative density distribution of the simulations) as a function of significance level, for a trait that has a starting heritability of 5% (scenario 1 in
Figure 1) or 30% (scenario 2 in Figure 1). Right panels show similar power curves when testing for divergence, where EE populations at generation
50 are compared to the ancestral state. The null hypothesis is that there is no divergence or differentiation (the identity dashed line). This analysis shows
that detecting divergence is much easier than differentiation, and that a moderate to high number of replicate populations and high sample sizes are
necessary to be confident that divergence or differentiation are due to selection (power of at least 80% at the significance level of 0.05; vertical line).
Sampling several time points during EE will generally increase power, although it is often unclear how to model for trait autocorrelations across
generations and if linear or nonlinear trajectories are expected (see Figure 1).
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Duveau and Felix 2012; Andersen et al. 2014). Indeed, N2 is
unique relative to the more than .200 wild strains whose
genomes have been published thus far (Andersen et al. 2012;
Cook et al. 2016), suggesting that certain traits, such as higher
lifetime fecundity, lower ethanol tolerance, and lower pro-
pensity to aggregate, were unintentionally favored in lab-
oratory environments involving short generation times,
nonlimiting food and low-dimensional habitats.

A similar set of results has emerged from the analysis of
another strain, LSJ2, originally derived from N2 and main-
tained in liquid culture for a period of 50 years (McGrath
et al. 2011). Adaptation to the high-density growth condi-
tions experienced in liquid culture rendered individuals re-
sistant to the pheromone-induced dauer larval formation
observed in N2 and several wild C. elegans isolates—a re-
sponse shown to result from deletions in two pheromone re-
ceptor genes: srg-36 and srg-37. Comparison to a closely
relatedC. elegans laboratory strain and an isolate ofC. briggsae,
both of which had experienced multiple generations in high-
density liquid culture, revealed the same loss of resistance
due to deletions in identical or a paralogous gene(s), respec-
tively. This long-term laboratory selection has also modified
allocation among N2’s life-history traits via modification of
chromatin state by the NURF chromatin remodeling complex
(Large et al. 2016).

One important consequence of these results is that re-
searchers who study the so-called “standard,” “wild-type,”
or “reference” strain of C. elegans should recognize the pos-
sibility that the biological processes of interest could have
been perturbed by adaptation to laboratory conditions. If
nothing else, arguments regarding the putatively adaptive
nature of a given discovery should be tempered until they
can be verified with other natural isolates (Cutter 2015;
Frezal and Felix 2015; Petersen et al. 2015). The genetic dif-
ferentiation generated by long-term selection could be used
to identify the genetic changes underlying the response to
selection, yielding insights into the functional basis of the
response. However, because these particular domestication
studies were not specifically designed for this purpose, they
cannot be used to test specific evolutionary hypotheses in
the way that replicated and controlled designs can be.
While the capacity for parallel adaptive response revealed
by the study of McGrath et al. (2011) is intriguing, it is still
unclear whether this process (not to mention the particular
genes or alleles involved) is relevant to evolution beyond the
laboratory.

Two additional aspects of laboratory domestication poten-
tially confound the interpretation of responses to a given
experimental treatment, especially when evolution occurs
from standing genetic variation instead of mutational input.
First, laboratory conditions are a novel environment to which
only a few genotypes will, by chance, be either very well
adapted or very maladapted (Service and Rose 1985). Sec-
ond, for populations maintained even at relatively large sizes,
inbreeding depression will generate positive genetic correla-
tions among fitness components (Rose 1984). An example of

the latter problem is given by the study of Carvalho et al.
(2014) who conducted EE using the populations with stand-
ing genetic variation of Teotónio et al. (2012) and found that,
after 100 generations at stable and intermediate selfing rates,
hermaphrodite early-life fertility and lifespan increased
when they were selfed, but not when they were outcrossed.
This result is seemingly at odds with theory on the evolution
of aging, which predicts a fitness trade-off between early and
late life-history (Williams 1957; Hamilton 1966). However,
inbreeding depression may in this case explain the positive
genetic correlation between fitness components simply be-
cause more recessive alleles are expressed under selfing than
outcrossing. Thus, care must be taken to avoid misinterpret-
ing consequences of domestication as selective responses to
applied experimental treatments.

Natural selection and genetic drift

The central goal of evolutionary biology is to understand the
evolution of adaptive traits—the organismal features that
enhance survival and/or reproduction. Caenorhabditis offers
an attractive model for performing rigorous experimental
tests of theory describing rates of adaptation in terms of the
fundamental processes of mutation, segregation, recombina-
tion, and natural selection. EE approaches can serve both as a
source of potentially causal variants (e.g., mutations cap-
tured from sequencing of experimentally evolved lines),
and as a method for characterizing their phenotypic con-
sequences and evolutionary dynamics (see Table 2 for
types of EE approaches). The latter is usually achieved by
measuring fitness, and fitness component, responses in
the environment(s) where evolution took place. The appro-
priate measure of fitness, however, depends on whether gen-
erations are overlapping or nonoverlapping, if reproduction
is continuous or discrete, if there is density-dependence, and
if environments are temporally or spatially variable (Roff
2008). While many of the parameters can be controlled by
researchers in evolution experiments, some cannot, and fit-
ness proxies must be found. A review of the conceptual un-
derpinnings of defining fitness and fitness components in the
context of EE would require a book-length treatise (Mueller
2010; Chevin 2011). We briefly review current EE methods
for measuring natural selection and genetic drift in Figure 3,
and, in Box 1, we expand about how population size may de-
termine the efficiency of selection.

Competition experiments (CEs) are the best approach for
measuring natural selection (Figure 3 and Table 2). CEs are a
class of evolution experiments in which individuals of differ-
ent identifiable genotypes are allowed to evolve in head-to-
head competition with each other. Competition is implicit in
most evolution experiments; however, CEs are distinct in that
investigators control the starting frequencies of the differ-
ent types and the “trait” of interest is the change in fre-
quency of these types across generations. They are primarily
employed to understand how selection determines the fre-
quency dynamics of alternative alleles or genotypes that are of
a priori interest (Appendix 2 in File S1). Promisingly, CEs are
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beginning to be used for gene discovery and understanding the
genetic basis of adaptive traits in so-called “evolve and rese-
quence” experiments (Weber et al. 2010; Long et al. 2015).
For this purpose, in C. elegans, one can readily think of compet-
ing subsets of existing recombinant inbred panels (Table S1 in
File S1).

A related formofCE is an “invasion experiment,” inwhich a
focal genotype is tested for its ability to invade a resident
population of alternative type(s) (Table 2). In one form of
an invasion experiment, novel genotypes are introduced
at low frequencies to test the evolutionary stability of the
“resident” genotype, such as the ability of outcrossing popu-
lations to resist the invasion of a mutation that leads to self-
reproduction (Theologidis et al. 2014; Slowinski et al. 2016)
and vice-versa (Wegewitz et al. 2009). In invasion experi-
ments, competition can also be maximally restricted so that
the different genotypes have independent growth rate dy-
namics. By controlling the initial frequency of “invaders”
and population sizes, such experiments can be used to test
theoretical predictions regarding the role of genetic drift in
determining evolutionary outcomes (Figure 3). For example,
Chelo et al. (2013b) introduced a fixed number of mutants
into wildtype C. elegans populations of 1000 individuals, find-
ing that these new mutants were frequently lost even when
adaptive, and, conversely, tended to linger within popula-
tions at frequencies higher than the deterministic expectation
when they had deleterious effects, in keeping with the clas-
sical theory of stochastic population genetics (Haldane 1927;
Kimura 1957).

When we think of a selection experiment, we usually
imagine shifting a population to a new environment. We
might call such approaches “forward EE.” Some of the most
powerful evolutionary studies in C. elegans have taken the
opposite approach—“reverse EE”—by initially perturbing
the genetics of the population and then observing how they
respond to their ancestral environment, or to environments
that allow the recovery of ancestral states by selection. In this
fashion, one can assess if and how selection overcomes evo-
lutionary history (Estes and Teotónio 2009). For example,
following �240 generations of accumulation of deleterious
mutations under relaxed selection, populations of C. elegans
can recover ancestral fitness within only 60 generations
when selection is reimposed (Estes and Lynch 2003; Estes
et al. 2011). Interestingly, the rate of recovery was strongly
dependent on the specific combination of mutations present
within the genetic background before recovery was initiated.
Careful examination of one of the ancestral lineages via
whole-genome sequencing in Denver et al. (2010) suggested
that the fitness recovery to ancestral levels resulted in part
from the evolution of compensatory epistatic interactions,
albeit with some caveats (Box 2).

Much of our understanding of the genetics of complex and
quantitative traits comes fromartificial selection experiments,
particularly those whose aim is to improve plant yield and
animal production in agriculture (Lynch and Walsh 1998).
Artificial selection has also been commonly used in EE re-
search, mainly to test hypotheses about the genetic basis
of the trait under investigation and estimate quantitative

Table 2 Types of EE

Experiment type Goal(s) Design features Output

Artificial selection (i) Genetic architecture of specific
trait(s), (ii) domestication

Experimenter defines fitness as a
function of the value of the
trait(s) of interest

Response to selection of the trait of
interest; indirect responses of
correlated traits

Laboratory natural selection (i) Evolution of genetic systems, (ii)
genetic architecture of the response
to natural selection on fitness in a
defined context

Experimenter imposes selective
milieu; nature decides what the
relevant traits are

The multivariate phenotype,
genome-wide allele frequencies
in SNPs, CNVs, etc.

Competition experiments (i) Fitness of specific genotypes in a
defined context, (ii) find the loci of
adaptation

Experimenter defines starting
frequencies of different
identifiable genotypes, perhaps
associated with phenotypes;
nature selects among them

Derived allele (or genotype)
frequencies, associated with
phenotype frequencies

Reverse evolution Test for nonadditive gene interactions:
(i) Compensation of mutationally-
degraded genotypes, (ii) natural
selection erases history

Evolved population allowed to
re-evolve under ancestral
conditions

Some measure of phenotype or
fitness

Invasion experiments (i) Test for transitions in character state,
(ii) measure genetic drift
independently of selection

Rare genotypes introduced into a
population; Highly replicated

Proportion of invasions that go
extinct are observed

Inbreeding experiments Dominance and epistasis as revealed by
inbreeding and outbreeding
depression

Inbred individuals (typically
offspring of self-mating or
sib-mating) are compared to
outcrossed individuals

Some measure of phenotype or
fitness, lineage survival during
inbreeding

Mutation accumulation Rate, spectrum, and distribution of
mutational effects

Replicate populations derived from
a known ancestor are maintained
under minimal selection

Some measure of phenotype or
fitness; molecular mutations
measured by sequencing

Caenorhabditis Evolution Experiments 699

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.186288/-/DC1/FileS1.pdf


genetic parameters such as heritabilities and genetic corre-
lations. Artificial selection involves the intentional breeding
of individuals with particular trait values, which may or
may not have been otherwise favored by natural selection
(Figure 4). The primary distinction here is that in artificial
selection experiments, the investigator knows the target of
selection, while in “natural selection in the laboratory”
experiments, any feature of the organism that increases fit-
ness within that environment is expected to increase in
frequency.

Mutation and standing genetic variation

The constant pressure of newmutations,most ofwhichwill be
detrimental to their carriers, is a likely contributor to theorigin
and evolution of many biological features (sexual reproduc-
tion, genetic incompatibility, and genome architectures), and
is thought by some to be the primary driver of long-term
evolutionary patterns (Lynch et al. 2006; Jones et al. 2007).
Accurate measures of the rates, molecular spectra, and

distributions of fitness effects of mutations are thus critical
for many applications of evolutionary theory, including in-
ferring evolutionary relationships, testing for selection on
molecular sequence, estimating effective population size
from standing levels of neutral genetic variation, and pa-
rameterizing population genetic models (Lynch et al. 1999).

To accurately characterize the mutational process, an un-
biased sample of spontaneous mutations is needed; however,
the standing allelic variation is a biased sample because it has
beenpreviously screenedby selection.What is needed is away
to neutralize selection to themaximumextent possible so that
new mutants, despite their fitness effects, can be fixed within
replicate populations (Figure 5). This is the basic principle
underlying the method of “mutation-accumulation” (MA).
An MA experiment is, in essence, EE stood on its head: in-
stead of experimentally investigating what evolves when a
particular selective regime is imposed, the question of inter-
est is: what evolves when selection is removed? The basic
principles of MA are outlined in Appendix 3 in File S1, as

Figure 3 Measuring natural selection and genetic
drift. Fitness can be estimated in Caenorhabditis EE
with competitions between ancestral and derived
populations with a “tester” strain that is distinct in
morphology, for example by the expression of a
green fluorescent protein (GFP) (Morran et al.
2009a; Theologidis et al. 2014). EE populations
and tester are usually placed at equal frequencies,
and their frequency is followed for one generation
in the same environmental conditions as those dur-
ing EE. Their relative proportion after the competi-
tion can then be taken as an estimate of relative
fitness, assuming that there is no assortative mat-
ing. This way of estimating fitness is appropriate
for populations cultured under nonoverlapping
generations and stable densities. Fitness compo-
nents can be measured in a similar fashion. For
example, to estimate male fitness, EE males can
compete with tester GFP males for the fertilization
of tester females (these can be fog or femmutants,
for example), with male fitness being the relative
offspring proportion of wild-type vs. tester GFPs

(Teotónio et al. 2012). For Caenorhabditis EE with overlapping generations, and when a stable age-structure has been reached, then relative fitness
can be estimated as the solution of

P
e2rx l(x)m(x) = 1 for r, the “Malthusian” intrinsic growth rate parameter (Roff 2008). Here l(x) is the proportion of

individuals surviving to age x, andm(x) the fecundity at age x, see e.g., Estes et al. (2011) for an application of this model. For populations that have not
reached stable age distribution r may be taken as absolute “Darwinian” fitness, by measuring the total number of offspring produced during an
individual’s lifetime. In population genetics studies, the relative fitness of particular alleles at a given locus can be measured as the log ratio of their
frequency change across generations, a coefficient that is usually called “selection coefficient”: s = {ln[pG/(12pG)] 2 ln[p0/(12p0)]}/G; where pG and
p0 are the frequencies of the allele in question after G generations, and at the beginning of the competition G = 0, respectively. Similar but more
complicated expressions can be used when there is density- or frequency-dependent selection (Chevin 2011). In genome-wide studies, neutral
polymorphisms (SNPs, for example), linked to the putative selected alleles, but unlinked to each other, can be employed to measure selection. The
plots illustrate such examples: left, frequencies of the allele of interest; right, selection coefficients, with one SEM between the four replicates/neutral
SNPs. Note that, with frequency-dependence, selection coefficients may change sign during the competitions (gray). The variance in allele frequency
dynamics with EE can also be (retrospectively) used to estimate the effective population size, and thus the extent of genetic drift and inbreeding
(Goldringer and Bataillon 2004; Chelo and Teotónio 2013). Typically, the effects of genetic drift at the genotype or phenotype levels are only accounted
for as the random variation observed between replicate populations subject to the same treatment. One exception is when genetic drift can be thought
of as a branching process and the growth rates of alternative types (be it alleles, genotypes, phenotypes) are independent. This occurs when mutants
appear in very low numbers and invade a “resident” population composed of alternative types. Under discrete and nonoverlapping generations, with
stable densities, and with successful offspring distributions following Poisson distributions, the proportion of invasions that are not successful is an
estimate of the extent of genetic drift (Haldane 1927; Kimura 1957). Even for strongly selected mutants genetic drift can be estimated as the proportion
of mutant invasions as: (1 – probability of extinction) = 12e 22sn(Ne/N), where s is the selection coefficient, n the number of mutants invading, and Ne

and N the effective and census population size, respectively. These considerations are important since transitions in character states (for example
between outcrossing and selfing) are ruled first by genetic drift, and only later by selection.
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are some general findings about the mutational process in
Caenorhabditis.

Although mutation is crucial for long-term evolution, in
sexually reproducing organisms, short-term evolution on the

order of tens of generations mostly occurs from standing
genetic variation. Explicit tests of theoretical expectations
regarding the relative timeframes where mutation and/or
standing genetic variation are important are mostly missing,

Box 1 Census and effective population sizes

Population size per se is often a variable of interest in EE. For example, one might ask: Does trait X evolve qualitatively
differently in large populations than it does in small populations? In such cases, the role of population size is unambiguous
conceptually, but there are at least two potentially confounding empirical factors that must be taken into account:
population density and the distinction between census size and effective size of the population. Population density is
the number of individuals per unit resource, where the “resource” can be food, space, potential mates, etc. The particulars
of Caenorhabditis biology add several complications where density is concerned. First, since the food source is usually live
bacteria, the amount of food itself is not necessarily monotonically decreasingwith time, nor is its quality constant in time.
In some cases, relatively small differences in initial census size may lead to significant nonlinearity in the relationship
between population size and starvation resistance over time (Artyukhin et al. 2013).

Effective population size, Ne, can be defined as the size of an ideal population that experiences genetic drift and
inbreeding to the same degree as the population of census size N in question (Wright 1969). Assuming an infinitesimal
model of trait inheritance (meaning an “infinite” number of alleles each with “infinitely” small effects), differences in the
intensity of selection (i; defined as the trait value difference between selected parents relative to the population mean)
lead to predictable differences in Ne: the greater i is, the smaller Ne will be (Robertson 1960, 1961). This is because trait
evolutionary change depends only on its covariance with fitness. From the perspective of EE, the important considerations
regarding Ne are: is the relationship Ne/N consistent under a particular set of experimental conditions? And, does the
relationshipNe/N differ consistently between experimental conditions? If the answer to the first question is “no,” variation
in evolutionary outcomes among replicates will be greater than if the answer is “yes”. If the answer to the second question
is “yes,” it may be a real problem, because adjusting N among treatment groups such that the different treatments have
equivalent Ne may lead to meaningfully different experimental conditions, such as density, between different treatment
groups.

If the effects of variation in population size per se are not of interest, population size will be a feature of the logistics of
the experiment, chosen by the experimenter on practical grounds. Nevertheless, the choice of population size will have
important implications. First, all else being equal, the smaller the population, the greater the influence of genetic drift and
demographic stochasticity. Thus, the smaller the population, the greater the extent of replication needed to detect
consistent evolutionary outcomes that may be due to selection. Second, the efficiency of selection is governed by the
joint parameterNes, so the smaller the experimental population, the larger the fitness effect of an allele must be in order to
consistently contribute to a response to selection. Similarly, the smaller the population, the greater the influence of
deleterious alleles on the outcome.

The classic population genetics model, called the Wright-Fisher model, is appropriate to describe genetic drift and
inbreeding when generations are nonoverlapping, and reproduction is discrete in time. This is usually called the “neutral”
model. Any deviation from expectations under this neutral model is interpreted as resulting from selection: directional,
stabilizing or balancing, and disruptive. One should bear in mind, however, that in the presence of linked selection (hitch-
hiking of neutral alleles with selected ones: “Hill-Robertson” effects), genotype-by-environment, and epistatic interac-
tions, the usefulness of the concept of Ne is controversial (e.g., Gillespie 2001; Proulx and Adler 2010; Neher 2013). But
ignoring these complications, and using the expected variance of SNP marker frequencies across time, it has been shown
that Ne is about an order of magnitude lower than N in C. elegans EE employing discrete and nonoverlapping generations,
even with significant selfing (Chelo and Teotónio 2013).

The variance of the distributions of several fitness components is responsible forNe being generally lower thanN (Crow
and Kimura 1970), since, just by chance, individuals may not survive to reproduction or leave offspring. In outcrossing
populations, variation in male and female mating success cannot be ignored, while in selfing C. elegans populations
accounting for variation in hermaphrodite reproductive success should be taken into account. With overlapping gener-
ations, where individuals from different generations interact with each other and reproduction may be continuous in
time, the variances of the distributions of fitness components change with density and life-history stage, usually de-
creasing Ne. Quantifying genetic drift and inbreeding as a birth–death process is likely appropriate for this scenario of
overlapping generations.
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however, not only in Caenorhabditis but also in other model
organisms.

Evolution from standing genetic variation can occur
through the sorting of extant genotypes by segregation or
through a combination of segregation and recombination
between existing genotypes. For Caenorhabditis EE, the pop-
ulation genetic consequences of selfing vs. outcrossing should
be considered as breeding mode is expected to influence
the degree of effective segregation and recombination (Ap-
pendix 4 in File S1). In general, selfing reduces effective
population sizes, particularly if background selection of del-
eterious recessive alleles is present, potentiating genetic drift
and the loss of neutral diversity. When considering multiple
loci, however, neutral diversity can be maintained under self-
ing by hitchhiking with (positive) selected alleles and/or be-
cause of “identity disequilibrium” generated by genotypic
correlations. Understanding selection under selfing is highly
difficult but we do know that it fundamentally depends on
the degree of dominance within loci and epistasis between
loci.

Toaddress theproblemsof evolution fromstandinggenetic
variation, EE with C. remanei and C. elegans have employed
hybrid ancestors constructed from crosses of several wild
isolates (LaMunyon and Ward 2002; Anderson et al. 2010;
Schulte et al. 2010; Chen and Maklakov 2012; Teotónio et al.
2012; Sikkink et al. 2014b; Palopoli et al. 2015). The dioe-
cious C. remanei is highly polymorphic, with an average per
locus nucleotide diversity on the order of 5% (Cutter et al.
2006), and, despite the potential for outbreeding depression
during crosses among these isolates (Dolgin et al. 2007), the
resulting hybrid strains retain plenty of genetic variation
available for selection during EE (Chen and Maklakov
2012; Sikkink et al. 2014b, 2015). The same is true for
C. elegans hybrid ancestors (Anderson et al. 2011; Masri

et al. 2013; Carvalho et al. 2014), despite displaying average
polymorphism levels of only 0.2% (Cutter 2006). Recently,
however, sequencing of the Hawaiian CB4856 strain genome
revealed that polymorphism in C. elegans can be quite high,
reaching 16% and possibly higher in some genomic regions
(Thompson et al. 2015). It is perhaps not surprising then that
EE responses in C. elegans starting from hybrid populations
are comparable to those of obligate outcrossing species.
Nonetheless, these C. elegans hybrid populations have been
shown to lose much of their initial polymorphism via purging
due to outbreeding depression during strain construction
(Teotónio et al. 2012; Chelo et al. 2013a).

It is common to consider the evolutionary response of
individual phenotypic traits (e.g., “heat tolerance”) to selec-
tion, but organisms are, of course, not merely collections
of atomized traits. Multivariate evolutionary responses
will depend on how pleiotropy, linkage disequilibrium, and
inbreeding/assortative mating have shaped genetic variances
and covariances among traits [summarized in the genetic
variance-covariance matrix G; (Lande 1980; Phillips and
McGuigan 2006)]. Because of its highly selfing sexual sys-
tem, resulting in strong linkage and inbreeding, multivariate
evolution is expected to be more constrained in C. elegans
than in C. remanei. In the hybrid C. elegans populations of
Teotónio et al. (2012), 100 generations of EE under 50% of
partial selfing or 100% of obligate outcrossing similarly re-
duced the initially high linkage disequilibrium to background
levels for genetic distances�1 cM (on a F2map scale, where
each chromosome is 50 cM). Most evolution appeared to
result from single-locus selection with few signs of re-
duced heterozygosity signaling large-scale sweeps (Chelo
and Teotónio 2013). But, depending on chromosomal loca-
tion, and because recombination rates are not monotonic
along the chromosomes (Rockman and Kruglyak 2009), this

Box 2 Some caveats in EE

The studies of S. Estes, D. Denver and colleagues (Estes and Lynch2003; Denver et al. 2010; Estes et al. 2011)were useful in
terms of revealing the capacity for rapid, repeatable responses to a population genetic environment at phenotypic and
DNA sequence levels, but it is instructive to consider some limitations of this work, and how they may be overcome in
future Caenorhabditis EE research. First, the authors’ inability to genetically isolate candidate mutations meant that they
could not fully substantiate their claim that reverse evolution of fitness was due to compensatory mutation, or charac-
terize the exact nature of any deleterious-adaptive mutational interactions. Second, the Denver et al. (2010) study could
only detect single base pair changes in the nuclear genome; the contribution of other mutation types or mitochondrial
DNA sequence changes to the evolutionary response was thus unknown. Although detecting genome rearrangements can
still prove technically challenging, we can now readily survey other mutation types, like structural and copy-number
variants (Farslow et al. 2015), and, with the high sequence coverage achievable for mitochondrial DNA, evaluate
evolution of heteroplasmic mutations (e.g., Wernick et al. 2016). Lastly, a shortcoming of Estes et al. (2011) study was
that fitness of the evolved lines was quantified under standard, benign laboratory conditions rather than in the high-
density, competitive conditions under which evolution had occurred; this left room for lingering questions regarding how
genotype-by-environment, maternal, or other transgenerational effects may have contributed to the rapid response. A
better approach would have been to assess fitness changes using competitive head-to-head assays wherein evolved lines
are competed against a GFP-marked strain after culturing of populations in a “common garden” for a few generations
(Figure 2 and Figure 3).
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small amount of linkage still means that hundreds to possibly
thousands of alleles at different loci will tend to be inherited
together, and have the potential to generate significant ge-
netic correlations among traits.

Just as the fitness effects of new mutations can be charac-
terized by means of an MA experiment, the fitness effects of
standing genetic variants can be assessed by means of an
“inbreeding experiment.” As with MA, several lineages are
derived by selfing or extreme inbreeding with the goal of
reducing heterozygosity and fixing alternative alleles within
each lineage in a neutral fashion. A reduction of fitness
among inbred lineages relative to the ancestral outbred pop-
ulation indicates inbreeding depression, and deviations from
expected levels of homozygosity at marker (neutral) loci can
reveal if inbreeding depression is due to strongly deleterious
recessive alleles that are purged during the inbreeding exper-
iment (Dolgin et al. 2007; Ebel and Phillips 2016). In contrast,
deleterious recessive alleles in repulsion linkage disequi-
librium (“associative overdominance”) or truly overdomi-
nant alleles can be maintained through balancing selection
during inbreeding (Mukai et al. 1964; Ohta and Kimura
1970; Ohta 1971), and provide an alternative source of
inbreeding depression. Distinguishing between these two
latter alternatives is, however, notoriously difficult (Chelo
et al. 2013a).

Data availability

Rcode for simulationofEE isdepositedathttp://datadryad.org/
doi: 10.5061/dryad.bg08n.

Exemplars of Caenorhabditis Experimental Evolution

Maintenance of genetic variation

Oneof themost enduring questions in evolutionary biology is:
Why so much genetic variation? The discussion surrounding
that question will be familiar to most readers of GENETICS; it
suffices to say that the poles of the issue are “Mutation +
Drift” at one end, and “Balancing Selection” at the other. In
recent decades, the debate has centered on variation at the
molecular level, but arguments long antedates the molecu-
lar era. (Dobzhansky 1937; Lewontin 1974; Kimura 1983;
Charlesworth 2015).

With respect to the understanding of molecular variation,
EE, including in C. elegans, has made a critical contribution
by providing (nearly) unbiased estimates of the rate and
spectrum of spontaneous mutation unencumbered by selec-
tion (Appendix 3 in File S1). Direct estimates of the per-
nucleotide, per-generation mutation rate, m, in model
organisms provide a critical reality-check on indirect esti-
mates of m from sites putatively free from natural selection
(e.g., processed pseudogenes) because many tests of non-
neutral molecular evolution assume there is a class of neutrally
evolving sites that can serve as a reference (Kondrashov
and Crow 1993; Cutter and Payseur 2003; Witherspoon and
Robertson 2003). Direct estimates of m are usually within a

few-fold close to inferences drawn indirectly from putatively
neutral sites, although there are occasionally incongruities be-
tween direct and indirect estimates, notably a consistently
twofold higher direct estimate in humans (Shendure and Akey
2015).

The question “Why somuch...” takes an interesting turn in
C. elegans, into “Why so little genetic variation?”. Andersen
et al. (2012) reported a large-scale survey of genome-wide
nucleotide variation in C. elegans, and concluded that large
regions of the genome must coalesce within a few hundred
generations, presumably the result of one or more recent,
global selective sweep. However, Thompson et al. (2015)
compared the genomes of N2 and CB4856 (“Hawaii”), and
reported that 2–3% of the genome appeared to harbor an-
cient segregating variation (“ancient” meaning an estimated
average time of divergence on the order of 106 generations),
which they attributed to long-term balancing selection.
Taken at face value, these two studies lead to the seemingly
odd situation of most of the genome being genetically
depauperate, but a dispersed fraction carrying ancient
polymorphisms.

The question of Why so much genetic variation? applies
equally to emergent phenotypic traits. If mutation and ran-
dom genetic drift are the only forces at work, at mutation-
drift equilibrium the standing genetic variance for the trait
should equal VG = 2NeVM (Lynch and Hill 1986), where Ne

Figure 4 Artificial vs. natural selection. A good example of the use of
artificial selection to test a specific genetic hypothesis is provided by the
work of Azevedo et al. (2002), who selected for increased and decreased
body size on replicated highly inbred (and presumably isogenic) popula-
tions of C. elegans of 48 generations. They were able to generate a rapid
response to decreased body size but not to increased size. Because the
populations were initiated without any standing variation, the response
to selection must have been due to the contribution of novel mutations,
indicating that the asymmetry in the response to selection is caused by
an asymmetry in the distribution of mutational effects on body size—
something that was verified via direct estimates of the mutational effect
(Azevedo et al. 2002; Ostrow et al. 2007). These results suggest that
either increasing body size is difficult because of a small set of genetic
targets relative to decreasing body size, and/or increases in body size are
constrained because of the pleiotropic effects of new mutations on other
fitness components. The plots show figure illustrates a putative trade-off
between body size and fecundity such that artificial selection (AS, line) for
increased body size would lead to the fixation of deleterious mutations
across replicate populations, as observed after stopping AS. Conversely,
natural selection (NS, dashed lines) would result in a correlated decrease
in body size. One important distinction between AS and NS is that the
first usually involves “hard” truncation selection, where individuals below
a certain trait value threshold do not contribute to the next generation.
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is the effective population size (Box 1) and VM the mutational
variance (Appendix 1 in File S1). If an estimate of Ne is avail-
able, as it would be from segregating nucleotide variation
and an independent estimate of the per-nucleotide mutation
rate (because u = 4Nem), a value of VG ,, VM implies the
trait is subject to purifying selection and can be used as an
approximate estimate of the strength of selection acting
against mutations that affect the trait (Barton 1990). For
example, Denver et al. (2005) compared VM and VG for
hundreds of gene transcripts in four MA lines and five wild
isolates of C. elegans (including N2). Small sample sizes
notwithstanding, the results were impressive: of �3700
genes investigated, not one had a VM/VG ratio greater than
the neutral expectation, from which it could be concluded
that transcription is under strong and ubiquitous stabilizing
selection.

More recently, this approach has been used to assess
pattern of variation that are expected a priori to be under
different types of selection (Salomon et al. 2009; Braendle
et al. 2010; Etienne et al. 2015; Farhadifar et al. 2015). The
results are summarized in Figure 3 of Farhadifar et al. (2016).
Three salient results emerge. First, across a broad spectrum of
traits, VM explains a large fraction of the variance in VG
(�90%), and the ratio VM/VG is well below the neutral ex-
pectation. That finding is entirely consistent with genetic
variation in C. elegans being largely modulated by mutation
and purifying selection (Rockman et al. 2010), but it also
suggests that the strength of purifying selectionmust be quite
similar among disparate traits. Second, for a large fraction of
the traits, VG � 500VM. These findings are also consistent
with the conclusion of Andersen et al. (2012) that a large
fraction of the C. elegans genome coalesces on the order of
a few hundred generations, and they further suggest that
random background selection across a highly linked genome
predominates over trait-specific effects. However, VM/VG for
some traits is clearly well below the trend, and the pattern is
not random: life history traits and vulva development traits
(Braendle et al. 2010) clearly experience stronger purifying
selection than other traits.

The second class of unsupervised tests of non-neutral
evolution involves the comparison of the between-population
component of variance at putatively neutralmarker loci (FST),
with the between-population component of genetic variance
of phenotypic traits (QST) (Lande 1992; Spitze 1993). For
traits experiencing significant stabilizing selection, QST is pre-
dicted to be ,FST, whereas, for traits experiencing diver-
sifying directional selection (i.e., local adaptation), QST is
predicted to be .FST. To our knowledge, this type of test
has yet to be applied in Caenorhabditis. C. elegans is probably
not conducive to QST/FST comparisons due to its unusual
population structure, but C. briggsae, with its hierarchical
population structure (Thomas et al. 2015), would seem to
be an ideal candidate.

Although comparisons of VG and VM have not turned up
compelling evidence for balancing selection, several lines of
evidence support the conjecture that balancing selection
may play a role in maintaining genetic variation in natural
C. elegans (Thompson et al. 2015). For example, Greene et al.
(2016) recently presented evidence that balancing selection
on foraging behavior, mediated by chemoreceptor genes in-
volved in pheromone signaling, has maintained genetic var-
iation in foraging behavior, and, further, that the genomic
region involved was one identified by Thompson et al.
(2015) as a putative candidate for balancing selection. Com-
petition experiments further revealed that the fitness effects
depended on environmental context, such that one allele was
favored in a constant-food environment, and the other fa-
vored in a patchy-food environment. In another example,
Peters et al. (2003) characterized the fitness effects of EMS-
induced mutations and found that 10/19 lines had point-
estimates of fitness greater than the unmutated control,
and that 3/19 lines were significantly overdominant; see also
Manoel et al. (2007). Other examples of specific genes or
gene complexes being potentially maintained by balancing
selection have been found in natural C. elegans (e.g., Gloria-
Soria and Azevedo 2008; Seidel et al. 2008; Ghosh et al.
2012; Ashe et al. 2013), and, during EE from standing genetic
variation, balancing selection has been invoked to explain

Figure 5 Mutation accumulation (MA) ex-
periments. Left, illustration of how an MA
experiment is performed, adapted from
Halligan and Keightley (2009) and Katju
et al. (2015). G indicates the generation of
EE, N the number of individuals allowed to
reproduce within each MA line, and n the
number of MA lines. We schematize a dip-
loid chromosome devoid of genetic varia-
tion in the ancestor that accumulates and
fixes different (independent) mutations
within each MA line. The cryopreserved an-

cestor and/or control is usually phenotyped alongside the MA lines. Right, graphical representation of expected outcome of an MA experiment. The blue
line shows the expected trajectory of evolution of fitness among MA lines, which is unknowable in practice. Since most mutations will be deleterious in a
well-adapted population, it is expected that fitness will decline with MA. Trait X represents the expected average evolutionary trajectory of a trait
positively correlated with fitness; size at maturity is a typical example. Trait Y represents a trait negatively correlated with fitness; time to maturity is a
typical example. The orange line represents the genetic variance between the MA lines, which (ideally) is zero in the G0 common ancestor of the MA
line. The per-generation increase in the genetic variance is the “mutational variance,” VM.
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maintenance of excess heterozygosity (Chelo and Teotónio
2013) and frequency-dependence (Chelo et al. 2013b). In ad-
dition, for outcrossing species, heterozygosity levelsmay have
been underestimated (Barriere et al. 2009). Taken together,
all these findings have important implications, because even a
small number of overdominant loci (or recessive alleles at
multiple loci in repulsion linkage) capable of generating bal-
ancing selection can have an outsize effect on the total in-
breeding load (Dobzhansky 1955).

Evolution of reproductive mode

Transitions from outcrossing to selfing are believed to be
common in both animals and plants (Jarne and Auld 2006;
Barrett 2008), and, in the particular case of Caenorhabditis,
three independent transitions from dioecy to androdioecy
have occurred (Kiontke et al. 2004). Even though androdioecy
is a relatively rare reproductive system, and Caenorhabditis
hermaphrodites somewhat unusual in their inability to out-
cross with each other, EE with Caenorhabditis has contributed
to our understanding of selection during transitions from out-
crossing to selfing, as well as the maintenance of mixed breed-
ing modes during evolution.

Provided that mutation to self-compatibility is not limiting
(Hill et al. 2006; Katju et al. 2008; Baldi et al. 2009), one
route to selfing involves restrictions on outcrossing between
males and females (e.g., due to time required to find a mate).
Hermaphrodites able to self autonomously will in this case be
favored because they provide reproductive assurance and
guarantee population survival (Lloyd 1976; Busch and Delph
2012). Second, selfing lineages may outcompete outcrossing
lineages if the latter suffer from a “cost of males,” since males
do not reproduce by themselves, but still consume ecological
or developmental resources (Maynard Smith 1978; Lively
and Lloyd 1990). A final route to selfing involves density-
dependent selection among subpopulations (demes) for
higher dispersal, which can be correlated with the ability to
self and establish viable colonies without partners (Cheptou
2012).

Theologidis et al. (2014) took advantage of genetic ma-
nipulation of sex determination in C. elegans to show that the
benefit of reproductive assurance is sufficient to explain tran-
sitions to selfing. As expected under this hypothesis, the suc-
cessful invasion of hermaphrodites in male–female dioecious
populations resulted in adaptation to a novel environment
(high salt concentration) where outcrossing was restricted.
Adaptation was not due to the loss of males, but rather to the
replacement of females by hermaphrodites, as shown by the
lower adaptive rates of androdioecious populations, which
similarly lost males and reproduced exclusively by selfing
by the end of EE. (Theologidis et al. 2014) did not test for
density-dependent selection for dispersal among demes dur-
ing transitions to selfing, but it is unlikely this form of selec-
tion favors selfing over outcrossing in natural Caenorhabditis.
Not only are C. elegansmales are more vagile than hermaph-
rodites (Lipton et al. 2004), they also have higher survivor-
ship than hermaphrodites at the dauer stage (Morran et al.

2009a)—presumed to be the stage at which most dispersal
occurs. The jury is nonetheless still out, and tests of the role of
density-dependent selection on transitions to selfing are
needed.

Because outcrossing in androdioecious Caenorhabditis is
necessarily linked to the presence of males, transitions to
selfing will be more difficult if male fitness components
evolve prior to females being replaced by hermaphrodites—
see Theologidis et al. (2014) for such an example. Similarly,
because outcrossing allows for the continued generation of
adaptive genotypes not easily accessible through selfing, any
factor that reduces effective recombination may reduce the
likelihood of the transition to selfing. The latter hypothe-
sis was recently supported by the C. elegans EE study of
Slowinski et al. (2016). In this example, in which populations
evolved under ever-changing environmental conditions and
fluctuating selection (in the form of a coevolving pathogen),
hermaphrodites were unable to invade dioecious popula-
tions. In contrast, hermaphrodites readily invaded and
reached high frequencies in populations evolved under con-
stant environmental and selective conditions, either because
they provided reproductive assurance, or because popula-
tions no longer paid a cost of producing males.

Once the transition from outcrossing to selfing has been
achieved, classical theory suggests that the degree of standing
inbreeding depression generated by deleterious recessive
alleles will determine whether selfing persists or the popula-
tion reverts to outcrossing (e.g., Lande and Schemske 1985).
Given sufficient time, selfing populations are expected to suf-
fer less inbreeding depression than outcrossing populations
since deleterious recessive alleles will be more effectively
purged by selection. EE results with C. elegans are remarkably
consistent with this hypothesis. Although inbred C. elegans
populations with experimentally elevated mutation rates
(e.g., DNA-repair deficiencies or mutagenesis) do not main-
tainmales (Cutter 2005;Manoel et al. 2007), whenever there
is opportunity for the build-up of inbreeding depression be-
cause of high mutation rates, males are clearly favored and
outcrossing can be maintained at higher rates than in unmu-
tagenized controls (Morran et al. 2009b). And, as expected
from theory, comparative evidence between selfing and out-
crossing Caenorhabditis species indicates that male–female
populations, such as those of C. remanei, maintain higher
deleterious loads than predominantly selfing populations,
such as those of C. elegans (Dolgin et al. 2007). The EE results
from Chelo et al. (2013a) similarly suggest that partially self-
ing populations can maintain lower deleterious recessive
loads than obligately outcrossing populations.

Not surprisingly, whenever there is standing genetic var-
iation for fitness components related to outcrossing, like male
reproductive success (LaMunyon and Ward 1998; Teotónio
et al. 2006; Wegewitz et al. 2008; Murray et al. 2011), adap-
tation to novel environments is correlated with the evolution
of higher outcrossing rates (Morran et al. 2009a, 2011;
Teotónio et al. 2012; Slowinski et al. 2016). Adaptation is
faster in obligate outcrossing populations than in facultative
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selfing populations, which in turn evolve faster than obligate
selfing populations (Morran et al. 2009b). These observa-
tions are consistent with (i) balancing selection on overdom-
inant loci favoring outcrossing (since more heterozygotes are
produced by outcrossing than selfing); and/or (ii) outcross-
ing increasing effective recombination, and therefore gener-
ating more adaptive genotypes than selfing. Both of these
scenarios have received experimental support. In the exper-
iments of Teotónio et al. (2012), more heterozygosity was
maintained than that expected by genetic drift and associa-
tive overdominance of linked deleterious partially recessive
alleles (Chelo and Teotónio 2013), suggesting that outcross-
ing was favored because of balancing selection on over-
dominant loci. Further, consistent with multi-locus theory
(Navarro and Barton 2002). Chelo and Teotónio (2013)
inferred the presence of (negative) epistatic selection from
the observed diminishing returns of fitness with increasing
heterozygosity. Intriguingly, this form of epistasis can in part
explain the evolution of recombination modifiers under par-
tial selfing (Roze and Lenormand 2005), although no EE
study has yet been undertaken to provide direct support for
such an idea.

Regarding the second scenario, Morran et al. (2011)
showed that increased outcrossing rates were only main-
tained during evolution in a fluctuating novel environment
[as in (Slowinski et al. 2016), in the form of a coevolving
pathogen], but not during evolution in a novel but constant
environment in which case outcrossing rates increased ini-
tially and then decreased soon thereafter. Although rapid
fitness recovery from mutationally degraded backgrounds
can be achieved by selfing alone (Estes et al. 2004; Morran
et al. 2010), these results strongly suggest that outcrossing
increases effective recombination and allows the generation
of more adaptive genotypes than does selfing.

Over time, selfing can lead to the evolution of epistatic
gene complexes (by local adaptation or genetic drift) whose
break-up by outcrossing will lead to outbreeding depres-
sion. Comparison of crosses between wild isolates in several
Caenorhabditis species, followed by inbreeding experiments
have indicated that the break-up of coevolved gene com-
plexes could explain why selfing predominates over outcross-
ing in nature (Dolgin et al. 2007; Seidel et al. 2008; Gaertner
et al. 2012; Chelo et al. 2013a; Gimond et al. 2013). Vexingly,
the conundrum that outcrossing in C. elegans appears to be
quite rare in nature but is not particularly difficult tomaintain
in the laboratory remains unresolved (Chasnov and Chow
2002; Stewart and Phillips 2002; Anderson et al. 2010). A
complex balance between different forms of selection oper-
ating at different levels may explain the maintenance of par-
tial selfing under a variety of conditions, some of which have
been explored with EE, including: the evolution of sexual
conflict between males and hermaphrodites (Chasnov
2013; Carvalho et al. 2014; Palopoli et al. 2015), the alloca-
tion of resources toward self-spermatogenesis or oogenesis in
hermaphrodites (Anderson et al. 2010; Murray and Cutter
2011; Poullet et al. 2016), rapid adaptation to specialized

environments (Morran et al. 2009a; Masri et al. 2013;
Slowinski et al. 2016), and/or unresolved inbreeding depres-
sion (Chelo et al. 2013a). The topic of evolution of breeding
modes will surely keep Caenorhabditis EE researchers occu-
pied for many years to come.

Evolution in variable environments

The difference in trait values displayed by a single genotype
across multiple environments is known as phenotypic plastic-
ity, long thought to be a key element in structuring both the
response to selection in variable environments, and in the
evolution of developmental and physiological systems (Via
et al. 1995; Ghalambor et al. 2007). Upon encountering a
new environment, population survival will depend on plastic
genotypes closely matching the “optimum” phenotype (Price
et al. 2003; Chevin et al. 2010). But, because the opti-
mum phenotype can be matched by existing genotypes, the
strength of directional selection is weakened and adaptation
possibly hampered. Even if plasticity obviates the need for
short-term adaptation, there may still be opportunity for se-
lection of genotypes that improve performance in the novel
environment, particularly if there is a cost associated with
maintaining the developmental and physiological programs
underlying phenotypes that are only rarely expressed. Initial
plasticity in this case will facilitate long-term adaptation by
allowing time for the “genetic assimilation” of the optimum
phenotype in the novel environment by novel mutational or
segregation/recombination input. The study of Sikkink et al.
(2014b) in C. remanei has provided convincing evidence
for such genetic assimilation, in line with classic work in
Drosophila (Waddington 1953). Sikkink and colleagues
adapted large, polymorphic populations to environments
generating high levels of temperature and oxidative stress
and observed rapid and fairly independent responses to se-
lection alongside diminished plasticity when evolved popu-
lations were returned to their ancestral environments. The
role that stochastic trait variation may play in genetic assim-
ilation and in the evolution of trait “robustness” is currently
untested (Felix and Barkoulas 2015). However, several
C. elegans studies have found significant heritability for sto-
chastic traits that could be under selection (Braendle and
Felix 2008; Braendle et al. 2010; Duveau and Felix 2012).

A particularly fascinating form of plasticity results from
the transmission of environmental effects experienced by a
parent to the phenotype expressed by the offspring, i.e.,
transgenerational plasticity. When developing individuals
do not have the possibility to assess the environment they
will face at the time of reproduction, phenotypic plasticity
has little opportunity to be selected. Instead, and as long as
there is an environmental correlation between generations, it
is expected that mothers will provision, or cue, their offspring
accordingly. Maternal effects could thus be especially impor-
tant for adaptation to fluctuating environments. Dey et al.
(2016) explicitly evaluated this idea by exposing C. elegans
populations to either regularly or irregularly fluctuating
normoxia–anoxia larval hatching environments. They observed
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the evolution of anticipatory maternal effects such that
hermaphrodites were able to shift glycogen provisioning
to developing embryos to achieve levels appropriate for the
environment experienced by their broods in the next genera-
tion. Contrary to theoretical predictions (Proulx and Teotónio
2017), however, populations experiencing irregularly fluctuat-
ing environments failed to evolve an anticipatory response
in the form of maternal “bet-hedging,” in which mothers ran-
domize offspring phenotypes. Instead, evolution of longer-
term (.2 generations) transgenerational effects may have
been selected and promoted adaptation to fluctuating environ-
ments. Whether such long-term transgenerational effects are
necessarily adaptive is still controversial (Wolf et al. 1998;
Badyaev and Uller 2009; Uller et al. 2013; Burgess and
Marshall 2014). Within C. elegans, it is increasingly appar-
ent, however, that heritable nongenetic carry-over effects
can persist for long periods—up to 30 generations or more
(Katz et al. 2009; Burton et al. 2011; Luteijn et al. 2012;
Shirayama et al. 2012; Ashe et al. 2013; Rankin 2015).

Besides variable abiotic environments, interactions be-
tween host organisms and their pathogens and/or parasites
are expected to generate strong fluctuating selection. Of
special interest is the extent to which host–pathogen relation-
ships are genotype-specific, and the ways in which evolution
with coevolving pathogens (or hosts) differs from evolution
in the presence of nonevolving pathogens (or hosts) (Box
3 and Figure 6). Two studies exemplify advances in our un-
derstanding of host–pathogen coevolutionwith C. elegans EE.
In one, Schulte and colleagues allowed 20 replicate popula-
tions of C. elegans to coevolve with the bacterial pathogen
Bacillus thuringiensis (Bt) for 48 generations (Schulte et al.
2010). As controls, 10 replicates of the Bt pathogen, and
20 replicate populations of C. elegans were allowed to evolve
in parallel in the absence of the other. As expected, the
coevolved pathogen evolved increased virulence and the
coevolved host evolved increased resistance when com-
pared to the non-coevolved controls. Also as expected, the
coevolved traits came with a fitness cost: several life-history
traits (presumably correlated with relative fitness) decreased
in the coevolved host and pathogen populations compared to
the non-coevolved controls.

Genetic diversitywas quantified for three toxingenes in the
pathogen, and nine unlinked microsatellite loci in the host
(Schulte et al. 2010). Results for the pathogen were clear:
coevolution led to an increased rate of evolution, reduced
diversity within populations, and greater diversity between
populations (see also Masri et al. 2015). Results for the host
were less clear-cut, with different loci exhibiting different
patterns of evolution, although the overall rate of evolution
was greater in the coevolved host than in the control. Coevo-
lution led to an apparently increased rate of recombination in
the pathogen but not in the host.

In one of the most influential coevolution experiments to
date, Morran and colleagues allowed experimental popula-
tions of C. elegans with varying degrees of outcrossing to
coevolve with the bacterial pathogen Serratia marcescens

(Morran et al. 2011). As briefly discussed above, the fre-
quency of outcrossing increased in populations in which the
pathogen was allowed to coevolve with the host, whereas
populations of obligate selfers went extinct. Conversely,
males were lost in populations in which the evolving
C. elegans were exposed to non-coevolving pathogens.
Similar results were observed in the pathogen, wherein
coevolving populations evolved significantly greater infec-
tivity than did populations evolving in the presence of a
non-coevolving host. The results of these experiments are
in concordance with predictions of the Red Queen hypoth-
esis for the evolution of outcrossing (Jaenike 1978). How-
ever, the potential remains that Hill-Robertson effects
resulting from fluctuating directional selection imposed
by the pathogen rather than fluctuating epistatic selection
resulting from negative frequency-dependent selection—the
signature of the Red Queen (Barton 1995)—led to the advan-
tage of outcrossing. More generally, it is unclear the extent to
which sexual selection reverses, or reinforces, natural selection
during coevolution, as different sexes can have different re-
sistance and tolerance to pathogens (Masri et al. 2013).

How the composition of microbial communities can gener-
ate variable and fluctuating selection is, at present, unknown,
and much work is needed in order to characterize these
communities and their potential effects on Caenorhabditis.
Are they constant during individual lifetime? Do they have
high turnover rates when populations are challenged with
novel environments? Two recent studies, by Dirksen et al.
(2016) and Samuel et al. (2016), provided the first system-
atic sampling of the bacterial microbiota associated with
field-collected C. elegans. Samuel and colleagues cultured
C. elegans on .500 different bacterial isolates; there were
consistent effects of bacterial taxon on nematode demogra-
phy, and on multiple indicators of physiological stress.
Dirksen et al. (2016) sampled themicrobiomes associatedwith
C. elegans and the congeneric C. briggsae and C. remanei, and
reported consistent differences between the microbiotas of
C. remanei and those of C. elegans and C. briggsae. Further,
they found that populations of C. elegans initiated with a cock-
tail of 14 bacterial taxa consistently retained only a subset of
taxa, but that the specific subset retained were specific to both
(host) genotype and developmental stage.

Future directions and conclusions

While Caenorhabditis EE has begun to touch on many aspects
of population and quantitative genetics, its potential use in
addressing questions related to evolution in structured pop-
ulations remains largely untapped. An exception is the study
of Gloria-Soria and Azevedo (2008) that showed that muta-
tions at the npr-1 locus could lead to differences in dispersal
rates and themaintenance of polymorphism driven by behav-
ioral characteristics. Another exception is the recent study of
Greene et al. (2016), showing that mutations at the srx-43
locus could lead to density-dependent selection. But few
studies have used the systematic manipulation of migration
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rates to examine, say, the influence of local adaptation on
rates of genomic change, or the evolution of dispersal traits
(Friedenberg 2003). Indeed, a stack of Petri dishes, each
containing its own population, would seem to be the perfect
representation of S. Wright’s original idealization of a collec-
tion of demes (Wright 1969).

Adding population structure to existing approaches would
provide a nice complement of spatial variation in selection to
previous studies that have largely concentrated on temporal
variation in selection. As more environmental variables are
added, investigationof transgenerational inheritancewill also
become increasingly important in Caenorhabditis EE studies,
since experience of previous generations can clearly influence
a wide variety of physiological and life history responses
(Miska and Ferguson-Smith 2016). Caution is warranted to

ensure that any work building upon our knowledge of trans-
generational carry-over effects be conducted in a rigorous
population genetic framework, as there is already a set of
theory that deals with the genetics and selection for intergen-
erational interactions (e.g., Lande and Price 1989; Lande and
Kirkpatrick 1990; Slatkin 2009; Furrow and Feldman 2014;
Proulx and Teotónio 2017). Part of the surprise from studies
conducted to date, however, is that some of these effects
appear to be extremely persistent, and, therefore, have the
potential to obscure effects that would ordinarily be attrib-
uted to genetic changes.

In many cases, simply observing trait changes over time is
sufficient for addressing the question at hand. Nevertheless,
one of the strong appeals of using such well-developedmodel
systems as Caenorhabditis for EE is the potential to identify

Box 3 Host–pathogen coevolution experiments

Signature features of coevolution are that the fitness effects of alleles in one (host or pathogen) species may depend on
genotype frequencies in theother species, and that theeffects of alleles in coevolvedhostpopulations conferhigh(er)fitness
in the presence of the coevolved pathogen genotype. A straightforward prediction is that some salient property(s) of
coevolvedhosts andpathogenswill differ fromhosts evolved in thepresenceofnon-coevolvingpathogens, andvice versa, if
coevolution has played an important role in the evolution of either partner. To unambiguously demonstrate such a
difference, hosts must be evolved in the presence of coevolving pathogens, and in the presence of non-coevolving
pathogens, and, similarly, pathogens must be evolved in the presence of coevolving hosts and with non-coevolving hosts
(Figure 6), and the relevant properties compared among these groups and with the nonevolved ancestors. A compre-
hensive experiment would have five treatment groups: (1) Pathogens evolving to the laboratory environment in the
absence of hosts (this would not be possible with an obligate parasite such as a virus); (2) pathogens evolving with
nonevolving hosts (this can be easily done by serially passaging pathogens onto populations of naive hosts); (3) hosts
evolving in the absence of pathogens (as in 1); (4) hosts evolving with nonevolving pathogens (as in 2); and (5)
coevolving hosts and pathogens. Nonevolved cryopreserved ancestral pathogens, and hosts, would constitute the baseline
control for such an experiment.

Caenorhabditis provide a uniquely powerful model system with which to experimentally investigate coevolution
because they are so readily cryopreserved. C. elegans can host a wide spectrum of bacteria, fungi, protozoa, and viruses,
as well as combinations thereof (e.g., Dirksen et al. 2016). Moreover, unlike dipterans, which fly, and plants, which attract
pollinators and herbivores that fly, nematodes carrying pathogens can be safely contained with a minimum of effort and
expense. Those factors have made C. elegans a popular model system for characterizing the genetic basis of pathogen
resistance and avoidance. Many studies have focused on specific mutants on the N2 background (e.g., Mahajan-Miklos
et al. 1999; Aballay and Ausubel 2001; Garsin et al. 2003; Troemel et al. 2006), but a number of studies have employed
standard quantitative genetic line-cross analysis between N2 and the Hawaiian strain CB4856 to dissect the genetic basis
of pathogen-related traits (Reddy et al. 2009; Andersen et al. 2014; Glater et al. 2014; Nakad et al. 2016). The latter have
revealed significant genetic variation for a variety of pathogen-related traits (e.g., olfactory behavior, oxygen avoidance,
longevity, and innate immunity), often revealing genes that explain a significant fraction of the genetic variation. Most
investigations of host–pathogen interactions involving C. elegans have understandably focused on host traits, but there is
also a significant body of work focusing on pathogen or parasite traits (e.g., Tan et al. 1999; Sifri et al. 2003; Huber et al.
2004; White et al. 2016).

Theoretical characterizations of the genetics of host–pathogen relationships have focused on interactions between
small numbers of host genes and pathogen genes (Frank 1994; Parker 1994; Agrawal and Lively 2002), so empirical
investigations of the genetics of host susceptibility to infection have understandably focused on identifying genes of large
effect. However, the prevalence of variation among host genotypes in pathogen susceptibility suggests that pathogen
susceptibility may behave more like a classical polygenic trait than a Mendelian trait. Of note, Etienne et al. (2015)
quantified themutational input of genetic variation for susceptibility to the bacterial pathogen Pseudomonas aeruginosa in
C. elegans and found that, indeed, mutational variance for susceptibility to P. aeruginosa accumulated at a rate similar to
typical quantitative traits.
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the underlying genetic changes responsible for an evolution-
ary response—a goal quite apart from that of traditional mu-
tagenesis studies. In this age of genomics, many candidate
polymorphisms with potentially minor or rare contributions
to a phenotype would be expected to emerge when millions
of such polymorphisms are examined simultaneously. This
can make it quite difficult to distinguish natural selection
on individual loci from background levels of genetic drift
across the whole genome. One of the primary advantages
of C. elegans and its relatives over other metazoan models
for EE is that it is reasonable to use very large population
sizes, and, thus, to capture (and characterize) more such
variants. Current studies frequently utilize thousands of indi-
viduals within a single population. Future experiments per-
formed using liquid culture of Caenorhabditis or novel rearing
approaches should allow populations to be maintained at
sizes in the millions or more, making EE more typical of
natural populations. While still perhaps not at yeast or bac-
teria population sizes, moving in this direction—especially in
sexual species—has the potential to qualitatively change the
way that experiments are conducted.

Once putative genetic changes have been identified, ap-
plication of new genetic transformation methods will allow
functional hypotheses to be more readily tested, especially
outside of C. elegans. Perhapsmore interestingly, the ability to
make identical allelic substitutions in different genetic back-
grounds opens up a new world of potential experiments.
Chief among these will be the ability to more precisely test
for epistatic effects between loci within different genetic
backgrounds. One can readily imagine using CRISPR to ma-
nipulate the genetic backgrounds of different base popula-
tions that serve as the basis of later evolutionary experiments
(Dickinson and Goldstein 2016). How dependent are evolu-
tionary outcomes on initial genetic background? How are
compensatory changes structured across different classes of

mutations? What is the role of structural variation in deter-
mining the response to selection? These are a few of the kinds
of questions that are now tractable with precision genomic
editing.

Clearly, there are major gaps to be filled by future work
aimed at identifying and characterizing the genetic and phe-
notypic bases of adaptation and by “translational” studies to
connect such results to evolution in nature. Although func-
tional genetic information for Caenorhabditis is still largely
lacking (Petersen et al. 2015), some genetic factors mediat-
ing C. elegans’ tolerance to various forms of environmental
challenges likely to be encountered by natural populations,
such as pathogen exposure, or osmotic, thermal, and oxygen
stress, have started to be dissected (e.g., Lithgow et al. 1995;
Lamitina et al. 2004; Frazier and Roth 2009; Reddy et al.
2009; LaRue and Padilla 2011; Andersen et al. 2014). Appli-
cation of EE techniques wherein populations are exposed to
such conditions would appear to hold great promise for
uncovering the patterns, population genetic requirements,
and genetic bases of adaptive responses (e.g., Sikkink et al.
2014b, 2015; Dey et al. 2016).

Finally, the fundamental problem of evolution is the prob-
lemof the phenotype. One advantage ofCaenorhabditis is that
these nematodes are relatively easy to manipulate via a vari-
ety of methods, allowing high-throughput, high-precision
phenotyping to be applied (Husson et al. 2013; Andersen
et al. 2015). The potential of these approaches, e.g., micro-
fluidics (McCormick et al. 2011; Yan et al. 2014; Gupta
and Rezai 2016), has not really begun to be utilized for EE.
Similarly, the physical transparency of Caenorhabditis allows
their cellular and developmental structure and function to be
examined with exquisite detail in an EE context (Braendle
et al. 2010; Farhadifar et al. 2015; Poullet et al. 2016). This
opens the possibility creating a new and rigorous evolution-
ary cell and developmental biology, with Caenorhabditis as a
central player (Braendle et al. 2011; Phillips and Bowerman
2015). The role that EE might play in such an effort is cur-
rently undefined.

Caenorhabditis species have come of age as models for EE.
EE with these nematodes have provided significant insights
into the origin and evolution of reproductive modes, adapta-
tion to changing environments and into mutation rates, their
genomic context and fitness effects. Use of Caenorhabditis
allows unprecedented control over the properties of standing
variation, population sizes, transgenerational effects, and de-
gree of sexuality for a metazoan. Coupled with our extensive
understanding of their genetics, and their cellular and devel-
opmental biology, future EE studies with Caenorhabditis
promise to unravel many of the outstanding problems of evo-
lutionary biology.
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