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Abstract

Many ecological studies employ general models that can feature an arbitrary number of pop-

ulations. A critical requirement imposed on such models is clone consistency: If the individu-

als from two populations are indistinguishable, joining these populations into one shall not

affect the outcome of the model. Otherwise a model produces different outcomes for the

same scenario. Using functional analysis, we comprehensively characterize all clone-con-

sistent models: We prove that they are necessarily composed from basic building blocks,

namely linear combinations of parameters and abundances. These strong constraints

enable a straightforward validation of model consistency. Although clone consistency can

always be achieved with sufficient assumptions, we argue that it is important to explicitly

name and consider the assumptions made: They may not be justified or limit the applicability

of models and the generality of the results obtained with them. Moreover, our insights facili-

tate building new clone-consistent models, which we illustrate for a data-driven model of

microbial communities. Finally, our insights point to new relevant forms of general models

for theoretical ecology. Our framework thus provides a systematic way of comprehending

ecological models, which can guide a wide range of studies.

Author summary

Mathematical models of population dynamics are an important tool to advance our

understanding of ecosystems, which can be relevant for environmental, clinical, and

industrial applications. One sanity check for such models is to virtually split a popula-

tion into two with identical properties – allegorically, we paint half the individuals of

the population in a different color. As we do not change the ecological situation, the

outcome of the model should not change either; we call this feature clone consistency.

We investigated the mathematical properties of clone-consistent models and deduced

simple rules for their form. These rules allow to easily check clone consistency in exist-

ing models and ensure it when building new ones. The resulting framework can guide

researchers in building models for specific ecosystems and in investigating general

properties of ecosystems. We showcase our approach by applying it to models for bacte-

rial communities causing urinary-tract infections. We further discuss that clone incon-

sistency, which occurs in several prominent models, reflects strong, often implicit,

assumptions and it is important to check whether these are justified. Such assumptions
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may diminish the applicability of these models and the generality of results obtained

with them.

This is a PLOS Computational Biology Methods paper.

Introduction

Many theoretical and semi-empirical studies of ecological communities employ general mod-

els that are not specific to a given community, but can incorporate an arbitrary number of pop-

ulations with different properties [1–4]. In most such models, the equations governing each

population have the same form, and the species of a population only manifests in the values of

the associated parameters. These parameters may describe the properties of a single popula-

tion, the interaction of two populations, or higher-order interactions, i.e. effects involving

three or more populations [5, 6]. Interaction parameters are often chosen randomly [7–13] or

determined from experiment [14–17].

Developing such models is one of the challenges of modern ecology, in particular when

incorporating empirical data [18]. For example, recent advances in automating experiments

have enabled measuring interaction parameters for richer communities [16, 19–21], interac-

tions characterized by more than one observable [16], or higher-order interactions [15, 22].

These new experimental scenarios call for new ecological models that can incorporate the

respective data. Existing models are often not suitable here since there is no uniform answer as

to how multi-parameter or higher-order interactions should be measured [3, 6, 16, 20, 23].

Another driver of new modeling approaches is growing computational power [18, 24], which

allows to investigate increasingly general and complex models [12, 25].

To improve the modeling process, several collections of criteria capturing consistency

were suggested [26–34]. While many of these are specific to the ecological scenario consid-

ered, e.g., predation, the following invariance is a recurring theme [28–38]: If two popula-

tions have identical parameter values, they contain identical individuals (clones) within a

general model. Thus, the outcome of the model must only depend on the total abundance of

these two populations, and not on how the clones are assigned to them. We call this criterion

clone consistency. Similar criteria for models have been named invariance under relabeling [32]

or under identification/aggregation of identical species [29–31] as well as “common-sense”
condition [34, 36, 38]. Further, it is often required that joining two populations of identical

individuals does not affect diversity measures and other ecological observables [39–41]; this

concept was introduced under the name twin property [42]. In the analysis and modeling of

food webs, this issue is essentially circumvented by considering trophic species, which aggre-

gate species with identical predators or prey – a controversial approach [43–47]. Finally, if a

model is clone-consistent and clones actually exist, it can be simplified; this is called aggre-
gating or lumping [48, 49].

To provide an instructive example for clone inconsistency, we compare two simulations of

a predator–prey scenario using the same general model [51] (chosen here exclusively for its

simplicity):

_xj ¼ xj aj þ
X

i

bji log ðxiÞ

 !

; ð1Þ

where xj is the abundance of population j, and a and b are parameters governing the properties
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and interaction of the populations. In the first simulation (solid lines in Fig 1), we chose:

a ¼
0:3

� 0:3

 !

and b ¼
0:5 � 1:0

0:8 � 0:5

 !

: ð2Þ

Population 1 is the prey; Population 2 contains the predators. In the second simulation

(dashed lines in Fig 1), we split the predator population into two sub-populations (2 and 3)

with identical properties and half the initial abundance. Allegorically, we paint half the preda-

tors in a different color. In numbers:

a ¼

0:3

� 0:3

� 0:3

0

B
B
B
@

1

C
C
C
A

and b ¼

0:5 � 1:0 � 1:0

0:8 � 0:5 � 0:5

0:8 � 0:5 � 0:5

0

B
B
B
@

1

C
C
C
A
: ð3Þ

Although these two simulations describe the same situation, their outcomes differ strongly

(Fig 1): Not only does the amplitude of the predator and prey abundances change, but the type

of population dynamics changes from an oscillation to a simple convergence on a fixed point.

These incompatible results show that the model used in these simulations suffers from a funda-

mental inconsistency. In this work, we show that this is a consequence of the logarithm being

used in this way and not being additive, i.e., that log(y) + log(z) 6¼ log(y + z).

While splitting populations is an illustrative thought experiment, its implications reach far-

ther for at least three reasons: First, in actual modeling we can encounter the inverse situation,

i.e., two populations with identical properties. Second, if there are problems when two popula-

tions have absolutely identical properties, there will also be problems when they have similar

properties since models, like nature, are continuous. Third, problems can already arise if two

populations are similar in one aspect that is relevant to the model. In a variation of the above

Fig 1. Example of clone inconsistency: Two simulations of a simple predator–prey scenario using the same

general model (see text for details). Solid lines: simulation using one population for prey (blue, antelopes) and

predators (orange, lions) each. The initial abundances are x1(0) = 2 and x2(0) = 6 (animal heads in the top legend).

Dashed lines: same, but with two identical predator sub-populations (pink and ocher) with half the initial abundance;

the abundance shown for the predators is the sum over the two sub-populations. The simulations were run with

JiTCODE [51] using the DoPri5 method (S1 Code).

https://doi.org/10.1371/journal.pcbi.1008635.g001
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example, if the members of two populations of predators prey with a similar rate on a given

focal species, assigning individual predators to the other population should not disproportion-

ately affect the total predation rate – even when these predators reproduce at different rates.

Despite its simplicity, ensuring clone consistency directly can be tedious as it requires find-

ing a counter-example or performing a model-specific proof. For example, Morozov and Pet-

rovskii [33] spent several pages of calculations on checking a weaker criterion for a handful of

models. Several proposed models [3, 16, 50, 52–63] are not clone-consistent (see Implications
for details).

Here, we present a framework for checking and ensuring clone consistency in models. This

paper is structured as follows: In What models are clone-consistent?, we introduce basic con-

cepts and criteria on which we then build our framework employing methods from functional

analysis. We explain how to use this framework to systematically assess and build models. In

Case Study, we demonstrate the features of our framework by applying it to a recent model

for microbial communities. In Implications, we discuss the consequences of our results. In par-

ticular, we explain how specific assumptions may fix an apparent clone-inconsistency. Our

framework guides modellers by forcing them to make such assumptions explicit, which auto-

matically raises the question if they are justified. Moreover, we discuss how our framework

applies to all models involving multiple populations and its general implications for ecological

modeling studies. In Methods, we provide elaborations and proofs for the mathematically

inclined reader.

Results/Discussion

What models are clone-consistent?

In this section, we first define impact functions, which are fundamental ingredients of ecosys-

tem models that allow us to mathematically encode our consistency criteria. We then expose

the consequences of our consistency criteria – first for impact functions and then for entire

models. In particular, we present recipes for checking and building models.

Defining and constraining impact functions. Impact functions describe the impact of a

community on a species, on a resource, or on any other relevant feature of the ecosystem that

is captured in a model. Features and phenomena described by impact functions include:

• the effective growth rate of a given species,

• the remaining size of a niche,

• the rate of predation,

• the availability of a resource or, if the resource is a dynamical variable, its consumption and

production,

• reproductive services, e.g. pollination,

• the amount of crowding, and

• general interaction terms, e.g. the sum in the generalized Lotka–Volterra model [1].

The arguments of impact functions are the abundances of all populations in the ecosystem

x = (x1, x2, . . ., xn) and parameters a = (a1, a2, . . ., an) that quantify the impact of the popula-

tions. Often the impact of a population i is described by a single number. Yet our results

also hold for the more general case that m parameters per population are required, i.e.,

ai ¼ ðai1; ai2; . . . ; aimÞ 2 R
m

.
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A prominent example of an impact function is:

x; a 7!
Xn

i¼1

aixi; ð4Þ

where Y 7! Z denotes the function that maps Y to Z. This is employed for the interaction

term in the generalized Lotka–Volterra model [1] among others. In general, impact functions

can take many forms.

We require impact functions to fulfill the following basic criteria (illustrated in Fig 2; see

Methods, The functional algebra of impact functions for mathematical formulations):

I1 Commutativity: The properties and idiosyncrasies of a given population are exclusively

captured by its associated parameters, as opposed to dedicated mathematical terms in the

function. This is equivalent to pairs of abundances and parameters ((xi, ai)) being inter-

changeable as arguments of the impact function.

I2 When a population is absent, its associated parameters have no effect on the value of the

impact function.

I3 When each parameter associated with a given population is zero, that population’s abun-

dance has no effect on the value of the impact function.

I4 Clone consistency: If two (or more) populations have identical parameters, the value of the

impact function must only depend on their summed abundance and not on its distribution

among the two populations.

Note that this criterion is a special case of clone consistency as described in the introduc-

tion. Using impact functions complying with this criterion is therefore necessary for a

model to be clone-consistent, but not sufficient (we will address clone consistency on the

scope of the entire model later). Due to the narrower scope of this criterion, the populations

do not need to be identical in all respects, but only in the parameter(s) used by the respec-

tive impact function.

Fig 2. Criteria for impact functions exemplified for the grazing impact of animal populations. Each island represents a community. Each row and color represents

one population in the model, with animal heads representing individuals. Numbers on the left represent parameters governing the respective population (grazing rate in

the example), and head shapes indicate whether populations have identical properties as per these parameters. The similar sign (�) indicates that two communities are

equivalent as arguments of an impact function, i.e., they should yield the same result (total amount of grazing in the example).

https://doi.org/10.1371/journal.pcbi.1008635.g002
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Note that it is often reasonable to choose a considerable portion of parameters to be zero.

For example, if our impact function describes predation loss of a given focal species, we would

choose ai = 0 for all populations i that do not prey upon the focal species. In the following we

call a function impact function if and only if it satisfies these criteria.

The form of impact functions. While the criteria I1–I4 for impact functions are concep-

tually simple, it is not straightforward to test directly if a given function complies with them or

to devise a new function that does. To address this issue, we investigated the functional form

of impact functions and found a setO of basic impact functions, which can serve as building

blocks for ecosystem models.

These basic impact functions are linear combinations of abundances and (potentially trans-

formed) parameters, i.e., all functions of the form:

x; a 7!
Xn

i¼1

zðaiÞxi; ð5Þ

where z : R! R is an arbitrary parameter transformation with z(0) = 0. Often, z is the iden-

tity function (id), simplifying Eq 5 to Eq 4. Using methods from functional analysis, we mathe-

matically proved that any impact function can be built from these basic impact functions via

addition, multiplication, function composition, and similar operations (see Methods, The
functional algebra of impact functions). Conversely, everything built from those elements or

other impact functions is again an impact function. Formally, the general functional form of

impact functions is:

x; a 7! wðo1ðx; aÞ; . . . ;olðx; aÞÞ; ð6Þ

where ω1, . . ., ωl 2 O are basic impact functions as per Eq 5 and w : Rl ! R is an arbitrary

function combining their results, such as a product, sum, or a more complex function.

To illustrate the composition of impact functions from these building blocks, we consider

the case of a single population of flowering plants that may be both pollinated and grazed

upon by several insect populations [64] as a toy example (also see Fig 3, bottom). We use a

function ρgraz to describe the rate at which insects (and their larvae) graze on the plants:

rgrazðx; aÞ≔
Xn

i¼1

aixi; ð7Þ

where ai is the grazing rate of insect population i. The function ρgraz has the form of Eq 5 (with

z = id) and therefore it is a (basic) impact function. We use a function ρpoll to capture the rate

at which insects fertilize flowers:

rpollðx; bÞ ¼
1

1þ ð
Pn

i¼1
bixiÞ

� 1
; ð8Þ

where bi is the contribution to pollination provided by insect population i. A Holling type-II

response here ensures that the fertilization rate saturates at 1. Again, we can see that this is

an impact function as it is built via composing z 7! 1

1þz� 1 and the basic impact function

tðx; bÞ≔
Pn

i¼1
bixi. Finally, we combine the two impact functions to a function ϕ that

describes the relative change of the plant population due to insect influence:

�ðx; a; bÞ ¼ gmaxrpollðx; bÞ � rgrazðx; aÞ ¼
gmax

1þ ð
Pn

i¼1
bixiÞ

� 1
�
Xn

i¼1

aixi ð9Þ

where gmax is the growth rate of the plant population in the absence of death and with
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Fig 3. Recipes for building and validating models using our framework. In general xi denotes the abundance of population i, and ai, bi, ci, and di are parameters

describing its impact. The example for checking is based upon Eq 21 and tailored for covering relevant cases. The example for building extends the one from The
form of impact functions. For both examples, the biological background is discussed in more detail in the main text.

https://doi.org/10.1371/journal.pcbi.1008635.g003
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maximum fertilization. As ϕ is built from impact functions, it is an impact function itself. We

can also see directly that ϕ complies with the general form of an impact function (Eq 6) by

choosing wðy; zÞ≔ g
1þy� 1 � z, ω1 = τ, and ω2 = ρgraz. As a result, we can be certain that the

resulting model satisfies the fundamental consistency criteria. Similarly, the basic building

blocks we identified enable constructing consistent models of any other ecosystem.

Assessing and building models. Our treatment of impact functions allows us to ensure

clone consistency when modeling the effects of a community. To ensure clone consistency of

an entire population model, we additionally need to require clone consistency when modeling

the effects on the growth of a population. Specifically, we require that the total growth of two

populations of identical individuals must be the same as if those two populations were joined

in the model.

We consider models of the forms:

_xj ¼ Rj or xjðt þ 1Þ ¼ xjðtÞ þRj; ð10Þ

where the right-hand side Rj describes the change of abundance of population j due to the

internal dynamics of the ecosystem. For simplicity, we omit the dependencies of Rj and ignore

immigration and other external effects as well as dynamic variables that are not populations

(such as explicitly modelled resources); adding them to such a model is straightforward.

We proved that Rj must have the form (see Methods, Non-impact-function contribution to
abundance changes must be proportional):

Rj ¼ xj�ðx; aÞ; ð11Þ

where ϕ is an impact function. This means that all dependencies of Rj on x must either happen

within an impact function or in the form of a single factor xj. Intuitively, each individual multi-

plies with a rate that is the result of all impacts it experiences in the ecosystem (ϕ) – these

impacts include interactions between individuals of the same population, e.g. due to crowding.

This insight provides an easy way to verify if models comply with our consistency criteria.

We simply need to check if they have the form of Eq 11. To verify in turn if ϕ is an impact

function, we can look for terms of the form of Eq 5. For instance, a common formulation of

the generalized Lotka–Volterra model [1] can be rewritten as:

_xj ¼ gjxj cj � xj �
X

i6¼j

ajixi

 !

¼ gjxj cj �
X

i

ajixi

 !

; ð12Þ

with ajj = −1, which reflects that a population maximally competes with itself. With this, the

model is clearly built from a linear combination and a factor xj and we can thus be sure that

the model is clone-consistent. We can now have another look at our introductory example

(Eq 1): As the interaction term features logarithms of abundances, it does not comply with the

form of Eq 5. Thus, the model violates our consistency criteria and the observed clone incon-

sistency (Fig 1) is inevitable. We summarize the recipe for checking a model and provide a

more extensive example in the top of Fig 3.

This recipe can be inverted to build a clone-consistent model. In the example from The
form of impact functions, we can directly insert Eq 9 into Eq 11 and obtain a model for the

change of a plant population in light of pollination and grazing (see Fig 3 bottom). If we strin-

gently apply our framework here, the only thing that distinguishes plants and insects is that the

former have a grazing and pollination rate of zero.

Our framework can also be applied to experiments that do not assess the details of ecologi-

cal interactions (nutrients, toxins, etc.) but only aggregated, phenomenological interaction
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observables, such as the carrying capacity of a population in the presence of another. This is

typical for high-throughput experiments assessing the pair-wise interactions of microbial com-

munities [15, 16, 19–22]. Combining Eqs 10, 11, 6, and 5, we obtain a general ansatz for such a

model:

_xj ¼ xjw
Xn

i¼1

aji1xi;
Xn

i¼1

aji2xi; . . . ;
Xn

i¼1

ajimxi

 !

: ð13Þ

Here, we refrain from transforming the parameters (corresponding to z = id in Eq 5), since

this would not affect the final model. First we identify the number of basic impact functions m
as the number of interaction observables: Using fewer than m basic impact functions would

entail that interaction observables would go unused, i.e. available information on the system

would be ignored; more than m basic impact functions would make the model overly complex

given our limited knowledge of the system. The choice of the combining function χ depends

on the application, but we expect that a product of transformations of individual basic impact

functions is often appropriate. In this case our ansatz becomes:

_xj ¼ xj
Ym

k¼1

Zk

Xn

i¼1

ajikxi

 !

; ð14Þ

with some transformation functions ηk. With χ chosen, the parameters and functions (ajik and

ηk) can be determined using:

• the requirement that the model should reproduce key characteristics of the experimental sce-

narios, e.g., the carrying capacity of a population,

• ecological assumptions and facts about the scenario, e.g., that the predation rate should

increase with the abundance of predators, or

• assumptions of simplicity (Occam’s razor), e.g., that ηk should not be more complex than

necessary to fulfill the experimental and ecological constraints.

In New model, we provide an example for this approach.

Higher-order interactions. Our framework is readily extended to models describing sec-

ond- or higher-order interactions. For this, one simply has to consider parameters that are

associated with more than one population. Then, it is convenient to use other basic building

blocks (instead of Eq 5), for example for second-order interactions:

x; a 7!
Xn

i¼1

Xn

j¼1

zðaijÞxixj; ð15Þ

which is an impact function independent of whether aij is considered a parameter associated

with population i or with population j. Analogous building blocks exist for higher interaction

orders. Such building blocks are featured in existing models that capture higher-order interac-

tions [12, 13, 17].

Case study: Semi-empirical models for microbial communities

As an instructive example, we apply the impact-function framework to describe the dynamics

of a microbial community for which multiple ecological interaction observables were recently

measured experimentally. We first describe the experiment and the general modeling chal-

lenge. Then we show that an existing model is clone-inconsistent and discuss the specific
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reasons and implications of this. Finally, we show how our framework can be used to build a

new clone-consistent model.

A recent study (co-authored by one of us) used a high-throughput approach to systemati-

cally measure ecological interactions in microbial communities consisting of strains isolated

from polymicrobial urinary-tract infections (UTI) [16]. For each strain, the exponential

growth rate gj and the carrying capacity cj in isolation were measured (Fig 4, left). For conve-

nience, abundances of each strain j were normalized such that cj = 1. Furthermore, for each

strain k, a medium partially conditioned by that strain was produced (it contains a fraction v
of the supernatant). In each such partially conditioned medium, the conditioned growth rate

gjk and carrying capacity cjk of each strain j were measured to quantify how strain k affects

strain j (Fig 4, right). Creating a model from this dataset is particularly challenging since it

has to include two interaction observables: growth rate and carrying capacity in conditioned

medium.

For modeling this system, it is a plausible assumption that the abundance of a population

also represents its footprint, i.e. the nutrients, toxins, and other relevant substances produced

or depleted by that population. The basis for this simplifying assumption is that populations

are declining only due to dilution of the entire system, which has the same effect on the foot-

print. With this assumption, we can treat the medium partially conditioned by strain k as an

ecosystem where the abundance of that strain is fixed to the corresponding fraction of its car-

rying capacity (xk = vck = v).

The general form of an ordinary differential equation describing the (normalized) abun-

dance xj of population j in this system is _xj ¼ Rjðx; aÞ. Such models should reproduce the

observed growth rates and carrying capacities for all situations that were experimentally

investigated. For instance, in the absence of other strains, the initial exponential growth rate

of strain j in the model should be equal to its experimentally observed exponential growth

rate gj:

lim
xj!0

Rjð
~0; a;xj ¼ xjÞ

xj
¼
@Rj

@xj
ð~0; aÞ ¼ gj; ð16Þ

where the argument ð~0; a;xj ¼ xjÞ of Rj denotes that the abundance of population j is xj and

all other abundances are zero. Similarly, we can deduce three other such criteria, resulting in

Fig 4. Acquisition of data used in our case study. Measurement of growth characteristics (left) and pairwise interactions (right) of bacterial strains isolated from

urinary-tract infections [16]. Left: Each strain j was cultivated for 48 h in artificial urine. Solid bold letters represent individuals of the respective strain. The exponential

growth rate gj as well as the carrying capacity cj (named yield in the original study [16]) were experimentally determined via optical densities. Right: For each strain k, a

conditioned medium was produced by letting the strain grow for 48 h, mechanically removing the bacteria to obtain a supernatant, and mixing the result with fresh

medium in a ratio of v≔ 0.4. Outline letters (“footprints”) indicate to what extent the respective culture consists of supernatant. In each such medium, each strain j was

cultivated, and the conditioned growth rate gjk and carrying capacity cjk were determined as above.

https://doi.org/10.1371/journal.pcbi.1008635.g004
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one criterion per experimental observable:

carrying capacity: Rjð
~0; a;xj ¼ 1Þ ¼ 0; ð17Þ

conditioned growth rate:
@Rj

@xj
ð~0; a;xk ¼ vÞ ¼ gjk; ð18Þ

conditioned carrying capacity: Rjð
~0; a;xj ¼ cjk;xk ¼ vÞ ¼ 0: ð19Þ

Existing model. The original study [16] proposed a model for communities consisting of

such strains based on Verhulst’s logistic model for one population [65]:

_x ¼ xg 1 �
x
c

� �
; ð20Þ

where both the growth rate g and the carrying capacity c (normalized to 1 here) are modified

by interaction terms incorporating the experimentally obtained parameters:

_xj ¼ xjgj 1þ
X

i6¼j

ajixi

& ’

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
growth term

1 �
xj

d1þ
P

i6¼jbjixie

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
carrying-capacity term

;
ð21Þ

with dze≔ max(0, z), aji ≔
gji
gj
� 1, bji ≔

cji � 1 ifcji � 1

1

v cji � 1
� �

ifcji < 1

8
<

:
, and the remaining symbols

are as in Fig 4. Looking at this model through the lens provided by our framework, both the

carrying-capacity and the growth term should be impact functions, with a and b being the

parameters quantifying these impacts. However, it is clear that neither term is built from linear

combinations (with complete sums), matching the form of Eq 5. Thus the model must violate

at least one of our criteria. As it clearly satisfies Criteria I1–I4, it therefore must violate I4 and

be clone-inconsistent which can indeed be shown explicitly (S1 Appendix). We can complete

the sums with appropriate choices of ajj and bjj, and we can expand the solitary xj in the

numerator to:

xj ¼
X

i

djixi with dji ¼

(
1 if i ¼ j

0 if i 6¼ j
; ð22Þ

where the new parameter dji can be interpreted as quantifying the extent to which population i
occupies the niche of population j. However, this expansion implicitly assumes that the strains

have non-overlapping niches, which is not justified for this study, as it features many commu-

nities containing two strains of the same genus or even species. This interpretation of dji would

also ignore that the conditioned carrying capacities cji capture niche overlap. Following the

recipe from Fig 3 (top), Question 5 must be answered with no at this point.

The fixed points of this model are characterized by:

xj ¼ 1þ
X

i6¼j

bjixi , 0 ¼ 1þ
X

i

bjixi with bjj ¼ � 1: ð23Þ

Consequently, they are clone-consistent (also see S1 Appendix). Most conclusions of

the original study [16] are based on these fixed points and thus unaffected by the clone
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inconsistency of the model. However, clone inconsistency affects the transient dynamics (see

also S1 Appendix), which is relevant as these communities are subject to frequent dilutions

(due to bladder voiding) which can happen long before the system has equilibrated.

New model. We use our framework to construct a new population dynamics model for

this scenario. Since two experimental interaction observables are available, we make an ansatz

using two basic impact functions (see Assessing and building models). As one of the observables

and thus one of the impact functions captures the carrying capacity, we choose to multiply

(and not add) the impact functions to ensure that an impact function can single-handedly

reduce the growth to zero. Our ansatz is thus Eq 14 with m = 2:

_xj ¼ Rjðx; aÞ≔ xjrj

Xn

i¼1

rjixi

 !

Bj

Xn

i¼1

sjixi

 !

; ð24Þ

where aj1 ≔ rj and aj2 ≔ sj.
Inserting this ansatz into Eqs 16–19 and making a few choices that do not affect generality

already yields strong constraints on the functions ρj and Bj and on how the parameters rjk and

sjk relate to these and the experimental parameters gj, gjk and cjk, namely (see Methods, Deriving
a new model for UTI strains – the legwork):

Bjð0Þ ¼ 1; Bjð1Þ ¼ 0; sjk ¼
1 � cjk

v
; rjð0Þ ¼ gj; rðrjkvÞ ¼

gjk
Bð1 � cjkÞ

: ð25Þ

By further making simple choices for ρj and Bj within these constraints and accounting for

singularities and discontinuities (see Methods, Deriving a new model for UTI strains – the leg-
work), we arrive at the following model (with dze≔ max(0, z)):

_xj ¼ xj gj þ
Xn

i¼1

gji � gj
v

xi

& ’

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
growth term

� 1 �
Xn

i¼1

1 � cji
v

xi

& ’q& ’

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
carrying-capacity term

:
ð26Þ

Like the existing model (Eq 21), this can be understood as an expansion of Verhulst’s logistic

model with the following differences: First and foremost, the carrying-capacity term is simplified

to achieve clone consistency – interactions affecting the carrying capacity of population j are now

captured in a single sum. Second, the additional parameter q governs how abruptly the saturation

effect kicks in. Third, the dilution factor v is included consistently without case distinctions.

Fourth, as per the initial assumptions, populations cannot decline anymore (unless dilution is

added to the model). The particular form of this model illustrates how challenging it can be to

write down clone-consistent models from scratch without using the framework presented here.

We find that this model can explain observed species abundances and ecological stability in

a small experimental dataset (S1 Appendix) at least as well as the previous model (Eq 21).

Moreover, the fixed points of both models are the same under most conditions (S1 Appendix).

Implications

Specific implications: Clone-inconsistency points to implicit assumptions. While

many popular models, including most variants of the generalized Lotka–Volterra model [1],

comply with our criteria, others do not [50, 52: Eqs 9 and 10, 53, 54: Eqs 1.28–1.30 and 1.50,

55: Eqs 11 and 12, 56, 57, 58: Eq 5, 59: NFR model, 60, 16, 61, 62: Eq 3, 3: Figs 3b and c, 63:

UIM and IIM model]. However, as we will elaborate below, this does not mean that these mod-

els should be dismissed outright.
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Any model can be made clone-consistent by setting the right parameters to zero (Fig 3 and

Eq 22). For instance, suppose that u − xj quantifies the unoccupied portion of the niche of pop-

ulation j. We can extend this term to an impact function:

u � xj ¼ u �
X

i

ajixi; ð27Þ

with aii = 1 and aji = 0 for j 6¼ i. Here aji describes the extent to which population i occupies the

niche of population j. Thus, aji = 0 for j 6¼ i implies that population j exclusively occupies its

niche. Whether this assumption of an exclusive niche is justified depends on the specific appli-

cation. The strength of our framework is to systemically point to such (often implicit) assump-

tions and prompt an explicit justification or an improvement of the model if the assumptions

are not justified.

As an instructive example, consider a recently proposed unique-interactions model (UIM)

[63]. This model features three interaction terms. Two describe the influence of mutualistic or

exploitative interactions, respectively, on a focal population j as:

X

i

ajixi
hþ xi

; ð28Þ

where aji describes the strength of the respective interaction and h is the half-saturation con-

stant. These terms are not impact functions and thus clone-inconsistent. However, a key

assumption of this model is that mutualistic and exploitative interactions are unique for each

focal population, which is a legitimate approximation for the purposes of that work. Following

this assumption, each summand of Eq 28 represents a separate interaction mechanism, such as

a specific resource, service, or mode of predation, and only population i affects the focal popu-

lation j via this mechanism. In our framework, each summand can be expanded to an impact

function, with only one parameter different from zero. By contrast the third term in the UIM

model, which describes competitive interactions, is clone-consistent. For this term, unique

interactions are neither assumed nor would this be justified.

A similar case of assumptions justifying clone inconsistency arises if some features of popu-

lations cannot be feasibly encoded in numerical parameters, which we assumed as given so far.

For example, compatibility for sexual reproduction is tedious to capture in a parameter;

instead, it is often reasonable to assume that populations do not interbreed (i.e., contain spe-

cies as defined by Mayr). In this case, splitting a population in two equal parts also halves the

availability of partners for sexual reproduction. Thus, this availability should not be described

by a clone-consistent impact function. These examples illustrates how clone-inconsistent

terms can make sense in a model if properly justified.

Many of the aforementioned studies based on clone-inconsistent models primarily make

statements about the effects of model properties on population dynamics. If these findings are

based on strong assumptions, their generality, relevance, and applicability are considerably

diminished. Moreover, if these assumptions are implicit, this increases the risk that the study is

misinterpreted and misapplied by others. The framework presented here will help to avoid these

problems by forcing key assumptions of ecological models to be explicitly stated and justified.

Scope of the framework. Our approach extends to diverse types of models. In particular,

it is not restricted to models employing ordinary differential equations, but also applicable to

models with noise, time delays, or discrete time steps. Further, higher-order interactions are

covered by our framework. We mainly used impact functions to describe the impact of a com-

munity on a population. However, both the target and the source can be other entities, e.g. the

availability of a resource, the concentration of a toxin, or an aggregated observable such as the

albedo of foliage or the pH value of a growth medium. A common case is the impact of the
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community on a resource within a consumer–resource model [66, 67]. Going beyond model-

ing, impact functions that describe observables are closely linked to the requirement for eco-

logical observables – such as diversity – to be clone-consistent [39–41].

Notably, the framework presented here has conceptual parallels to pharmacological

approaches that are widely used as null models for the combined effect of two drugs [68, 69]: One

is Loewe additivity, which is based on arguments similar to clone consistency and is a suitable ref-

erence if the two drugs target the same component of the cell. The other is Bliss independence,
which violates clone consistency at first glance and is suitable if the two drugs affect different

components of the cell. In our framework, drugs that target the same cell component correspond

to using the same interaction mechanism and thus would be captured by the same basic impact

function. The effect of a complex drug cocktail could be captured by several Bliss-independent

basic impact functions, each of which comprises a series of Loewe-additive components.

General implications. While each instance of unjustified clone inconsistency reflects a

shortcoming of the model, general statements about the consequences of clone inconsistency

for the solutions of a model are most likely impossible. Clone inconsistency is tightly intertwined

with the fabric of the model, and thus we cannot study its effect in isolation. Moreover, there is

no reason to expect that clone-inconsistent models have any relevant commonalities, as they are

extremely diverse. For example, it makes a difference whether joining identical populations

increases or decreases some impact (that would be unchanged in a clone-consistent model). For

illustration, the diversity of clone-inconsistent models may be compared to that of all numbers

not divisible by seven. Similarly, it is likely not possible to draw general conclusions about the

dynamic behavior of the clone-consistent models – such as favoring or suppressing oscillatory

dynamics. While they are based on linear combinations, they can certainly be non-linear. Not

only can a non-linear function still be applied to the linear combination (e.g., χ in Eq 6), but any

existing non-linear model can be made clone-consistent by sufficiently strong assumptions. The

central question is whether these assumptions are biologically justified. However, insights can

be gained by interpreting each impact function as a mechanism of ecological interaction:

Many pure modeling studies use a model of the general form [12, 59, 62]:

_xj ¼ xj gj þ
Xn

i¼1

ZjiðxiÞ

 !

; ð29Þ

where gj is the unperturbed growth rate of population j. If all ηji are linear, this kind of model

uses a single basic impact function and requires no further assumptions. However, within our

framework, non-linear ηji can only be justified as follows: Each summand in Eq 29 corre-

sponds to one interaction mechanism by which population i uniquely affects population j. In

this case, each summand would be expanded to an impact function, where all parameters

except one are zero. This would result in a total of n basic impact functions. A notable implica-

tion is that models of the above form can either feature 1 or n basic impact functions (depend-

ing on whether ηji is linear), but they cannot capture the middle ground in between. As each

basic impact function can be associated with one interaction mechanism, this limitation is rel-

evant beyond the consistency issues addressed by our framework.

To fill this gap, our framework suggests an alternative form for general ecosystem models,

such as:

_xj ¼ xjgj
Ym

k¼1

Zk

Xn

i¼1

ajikxi

 !

; ð30Þ

where m is the number of impact functions (compare to Eq 14). Each factor in Eq 30 corre-

sponds to one interaction mechanism, which can involve multiple populations. To capture
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that most populations do not participate in most interaction mechanisms, we propose to sam-

ple the interaction coefficients (aijk) from a distribution containing many zeros. By narrowing

down or expanding the space of possible models taken into consideration, the alternative

form for general models above can inform studies employing random interaction parameters

[9–13], generalized modeling [25], or machine learning.

Conclusion

We introduced a framework for building ecosystem models using impact functions as building

blocks. This framework is aimed at ensuring the clone consistency of models and thus con-

strains the possible choices of models. While at first this may seem like at a burden, we antici-

pate that it will rather facilitate the modeling process by guiding ecologists when choosing

from the (still infinitely many) clone-consistent models. Our framework further prompts rele-

vant questions about the underlying assumptions of models. Specifically, the absence of impact

functions in a model exposes that it is clone-inconsistent, which may indicate a fundamental

problem. Alternatively, clone-inconsistency can reveal implicit assumptions at the heart of the

model, which need to be justified and may limit the model’s generality. Our framework also

informs the form of more general models by outlining the space of possible models for ecosys-

tems and enables new research directions in this field. Finally, our approach could be extended

to implement criteria for specific ecological scenarios such as predation [27–30, 33]. Overall,

the framework presented here provides a systematic way to understand models and can form

the backbone for a wide range of ecological modeling studies.

Methods: Mathematical backbone

Mathematical notation

• lowercase italic letters: numbers or parameter configurations (tuples of numbers);

• lowercase Greek letters: functions;

• boldface letters: vectors or similar;

• uppercase letters: sets of respective contents;

• n: the number of populations;

• m: the number of parameters per population;

• Rþ: the non-negative real numbers;

• X ¼ Rn
þ

: the space of all possible population abundances;

• A ¼ Rn�m
: the space of all possible parameter configurations of these populations;

• X × A: the domain of impact functions;

• x = (x1, . . ., xn) 2 X: an arbitrary first argument of an impact function (abundances), where

xi is the abundance of population i;

• a = (a1, . . ., an) 2 A: an arbitrary second argument of an impact function (parameters),

where ai 2 R
m

are the parameter values that describe population i;

• non-italic sans-serif letters: modifications of specific components of arguments of an impact

function (similar to named arguments in many programming languages). For example: ϕ(x,

a, x2 = y) denotes ϕ((x1, y, x3, . . ., xn), (a1, . . ., an)). Here the arguments of the function φ are
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x and a except for the abundance of the second population (x2) being changed to y.

• Y 7! Z: the function that maps Y to Z (anonymous function).

• Y ≔ Z: Y is defined as Z.

Proof: X generatesF requires additional notation that is mostly introduced in that subsection.

The functional algebra of impact functions

In this subsection, we describe our main mathematical result and connect it to the main text,

from encoding our criteria mathematically to translating the results back to application.

Expressed in equations, our criteria for impact functions are:

I1 Commutativity:

8 i 6¼ j : �ðx; aÞ ¼ �ðx; a;xi ¼ xj;xj ¼ xi;ai ¼ aj;aj ¼ aiÞ: ð31Þ

I2 When a population is absent, its associated parameters have no effect:

8 a1; b1 2 R
m : �ðx; a;x1 ¼ 0;a1 ¼ a1Þ ¼ �ðx; a;x1 ¼ 0;a1 ¼ b1Þ: ð32Þ

I3 When all parameters associated with a given population are zero, that population has no

impact:

8 x1; y1 2 Rþ : �ðx; a;x1 ¼ x1;a1 ¼ 0Þ ¼ �ðx; a;x1 ¼ y1;a1 ¼ 0Þ: ð33Þ

Note that the parameter value corresponding to no impact could be readily changed from

zero to any other value.

I4 Clone consistency:

8 z 2 ½� x1; x2� :

�ðx; a;a1 ¼ a2 ¼ bÞ ¼ �ðx; a;x1 ¼ x1 þ z;x2 ¼ x2 � z;a1 ¼ a2 ¼ bÞ:
ð34Þ

Note that through commutativity (I1), the other criteria apply to all populations or pairs of

populations of the impact function ϕ, respectively (and not just to populations 1 and 2). Clone

consistency (I4) of more than two populations is covered by applying the respective criterion

repeatedly.

In the terms of functional analysis, impact functions form a functional algebraF. This

means that each product or sum of two impact functions is again an impact function and that

each multiple of an impact function is an impact function. This algebra is also closed, which

means that the limit of uniformly converging sequences of impact functions is again an impact

function.

To easily build and detect impact functions, it is crucial to find a (small) set of impact func-

tions from which all impact functions can be build, i.e., a generating set of F. Our main mathe-

matical result is that X = Λ [ Γ is such a generating set, where Γ is the set of constant functions

and taking the limit of a uniformly converging sequence is considered amongst the generating

operations. Λ is the set of all linear combinations of powers of parameters and abundances,

i.e., functions of the form:

x; a 7!
Xn

i¼1

ap
ikxi ð35Þ

for some p 2 {1, . . .} and for some k 2 {1, . . ., m}.
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We will formally prove this in the next subsection (Proof: X generates F), but the essential

idea is this: Our criteria (I1–I4) require an impact function to have the same value on given

subsets of its domain. For X to be a generating set of F, it must reflect this: First, the func-

tions in X must be constant on each such subset, i.e., fulfill our criteria for impact functions.

Otherwise X would also generate functions that are not impact functions. (It is straightfor-

ward to show that the elements of X fulfill our criteria, however, in our proof this is a by-

product.) Second and more crucially, for each pair of points that are not in the same subset,

there must be a function in X that differs between these points (this is called separating
points). Otherwise some impact functions could not be generated by X. We show the

latter by using our criteria (I1–I4) to systematically transform arguments of impact func-

tions to a canonical form, in which populations are ordered by impact and maximally

lumped together.

In application, the fact that F is a closed functional algebra, i.e., that limits remain within it,

is relevant as it addresses the case of a (non-polynomial, continuous) function being applied to

the result of an entire impact function or the parameters. We can rewrite:

X1

p¼1

vp
Xn

i¼1

ap
i xi ¼

Xn

i¼1

X1

p¼1

vpa
p
i

 !

xi ¼
Xn

i¼1

zðaiÞxi; ð36Þ

with zðzÞ ¼
P1

p¼1
vpzp. This allows us to use building blocks of the form of Eq 5 instead of

Eq 35. We can also rewrite:

X1

q¼1

uq

Xn

i¼1

aixi

 !q

¼ w
Xn

i¼1

aixi

 !

; ð37Þ

with wðzÞ ¼
P1

q¼1
uqzq. This allows for “wrapping” functions around impact functions.

Proof: X generates F

We here state and prove our main mathematical result, namely:

Theorem 1. LetLk :¼ fx; a 7!
Pn

i¼1
ap
ikxijp 2 f1; . . .gg denote the set of linear combina-

tions of powers of values of the k-th parameter and abundances. Denote the set of all such func-
tions asL ¼

Sm
k¼1
Lk. Let X≔ Λ [ Γ, where Γ is the set of constant functions. LetC be the

generated set of X, i.e., the smallest closed functional algebra that contains X. ThenC = F, i.e.,
F contains all impact functions as characterized by criteria I1–I4.

To prove it, we apply Bishop’s Theorem [70, 71]. We here only need the reduction to the

special case of real-valued functions (as opposed to complex-valued functions):

Bishop’s Theorem. Let Z be a compact Hausdorff space. LetC be a closed unital subalgebra
of CðZ;RÞ. Let � 2 CðZ;RÞ. Suppose that ϕ|S is constant for each subset S 2 Z such that ψ|S is
constant for all ψ 2C. Then ϕ 2C.

The requirements of Bishop’s Theorem on C are fulfilled since Z can be any sufficiently

large compact subset of X × A and the inclusion of Γ ensures unitality. To show that the func-

tional algebra C contains all impact functions, we therefore need to show that for an arbitrary

impact function ϕ for any x; x̂ 2 X and a; â 2 A:

8c 2 C : cðx; aÞ ¼ cðx̂; âÞ ) �ðx; aÞ ¼ �ðx̂; âÞ; ð38Þ

or, in the language of functional analysis, C has to separate points, except when no impact

function separates those points. Since point-separations are unaffected by algebraic
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operations of functions and limits, C separates points, if and only if X does. Moreover, since

the functions from Γ are constant everywhere (and thus separate no points at all), this is

equivalent to Λ separating points. Finally, since for any i 6¼ j, the functions from Λi are con-

stant wherever the functions from Λj are not, it suffices to only consider one Λi, i.e., scalar

parameters (m = 1).

We prove that Λ separates points for m = 1 with three lemmas, for which we transform the

arguments to a canonical form (Definitions 1–4), in which populations are ordered by impact

and maximally lumped together. We first show that if all functions from Λ have the same

value for two arguments, these arguments have the same canonical form (Lemma 1). We then

employ our criteria to show that no impact function will differ for two arguments that have

the same canonical form (Lemma 2). Finally, we combine the first two lemmas to show that

if all functions from Λ have the same value for two arguments, so do all impact functions

(Lemma 3). Thus Λ separates points where it needs to (as per Eq 38).

Definition 1. Let x 2 X and a 2 A. Let A ¼ ða1; . . . ; asÞ be the ordered sequence of non-zero
values of a that correspond to a non-zero abundance, i.e.:

a1 < a2 < . . . < as and 8a 2 A : 9i 2 f1; . . . ; ng : a ¼ ai 6¼ 0 ^ xi > 0: ð39Þ

As the a are unique and ordered, we will directly use them like indices to avoid additional

levels of indexing. One can think of them as equivalence classes of parameters.

Definition 2. Let x 2 X and a 2 A. For a given a, let Ia be the set of indices where this parame-
ter value is assumed and the corresponding abundance is not zero, i.e., the maximal set I such
that ai ¼ a and xi> 0 for all i 2 Ia. Consequentially, Ib ≔ fg for b =2A.

Definition 3. Let x 2 X and a 2 A. Denote the sums of abundances for one absolute parame-
ter value as za ≔

P
i2Ia

xi .

Lemma 1. Suppose x; x̂ 2 X and a; â 2 A are such that:

8p 2 f1; . . .g :
Xn

i¼1

ap
i xi ¼

Xn

i¼1

âp
i x̂i: ð40Þ

Then:

8a 2 A [ Â : za ¼
X

i2Ia

xi ¼
X

i2Îa

x̂i ≕ ẑa: ð41Þ

We show Eq 41 by induction over A [ Â in descending order of absolute value. We first

note that the lemma trivially holds for all a 2 fg. In the following we show that, if the

lemma holds for all b with jbj > a > 0, it also holds for a and � a. (If one of Ia [ Î a and

I� a [ Î � a is empty, this does not affect this part of the proof.) To this end, we first show that

the linear combinations must also be equal when only considering coefficients c with jcj � a

(for all p):

X

jcj�a

X

i2Ic

ap
i xi ¼

X

d

X

i2Id

ap
i xi �

X

jbj>a

X

i2Ib

ap
i xi ¼

D 2
Xn

i¼1

ap
i xi �

X

jbj>a

bp
X

i2Ib

xi

¼
Eqs 40;41

Xn

i¼1

âp
i x̂i �

X

jbj>a

bp
X

i2Îb

x̂i ¼
D 2
X

d

X

i2Î d

âp
i x̂i �

X

jbj>a

X

i2Îb

âp
i x̂ i ¼

X

jcj�a

X

i2Î c

âp
i x̂ i

ð42Þ
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If za þ z� a 6¼ 0 and ẑa þ ẑ � a 6¼ 0 the above equality will be dominated by ap for p!1,

which gives us:

1 ¼
Eq 42 lim

p!1
p even

X

jcj�a

X

i2Ic

ap
i xi

X

jcj�a

X

i2Î c

âp
i x̂i

¼ lim
p!1
p even

X

i2Ia[I� a

ap
i xi

X

i2Î a[Î � a

âp
i x̂i

¼
D 2 lim

p!1
p even

X

i2Ia

apxi þ
X

i2I� a

ð� aÞ
pxi

X

i2Î a

apx̂i þ
X

i2Î � a

ð� aÞ
px̂i

¼ lim
p!1
p even

ap
X

i2Ia

xi þ
X

i2I� a

xi

 !

ap
X

i2Î a

x̂i þ
X

i2Î � a

x̂i

0

@

1

A

¼

X

i2Ia

xi þ
X

i2I� a

xi
X

i2Î a

x̂i þ
X

i2Î � a

x̂i

¼
D 3 za þ z� a

ẑa þ ẑ � a

) za þ z� a ¼ ẑa þ ẑ � a

ð43Þ

If exactly one of za þ z� a and ẑa þ ẑ � a were zero, the above limit would evaluate as either 0

or1 instead of 1; hence this cannot be. If both are zero, Eq 43 holds without further ado.

Analogously, we obtain:

1 ¼ lim
p!1
p odd

X

i2Ia

apxi þ
X

i2I� a

ð� aÞ
pxi

X

i2Îa

apx̂i þ
X

i2Î � a

ð� aÞ
px̂i

¼

X

i2Ia

xi �
X

i2I� a

xi
X

i2Îa

x̂i �
X

i2Î � a

x̂i

¼
za � z� a
ẑa � ẑ � a

) za � z� a ¼ ẑa � ẑ � a ð44Þ

By adding and subtracting Eqs 43 and 44, respectively, we arrive at za ¼ ẑ � a and za ¼ ẑ � a.
Definition 4 Define the canonical form of x 2 X and a 2 A as:

~x ≔ ðza1
; za2

; . . . ; zas ; 0; . . . ; 0
|fflfflfflffl{zfflfflfflffl}
n� s zeros

Þ; ~a ≔ ða1; a2; . . . ; as; 0; . . . ; 0
|fflfflfflffl{zfflfflfflffl}
n� s zeros

Þ:
ð45Þ

Lemma 2 Let x 2 X and a 2 A and ϕ be an impact function. Then �ðx; aÞ ¼ �ð~x; ~aÞ.
We first transform blocks of arguments to the canonical form (with some zero arguments

added if necessary) step by step, and show that the value of an impact function is not affected

by these transformations. The first kind of block we consider are blocks of equal non-zero

parameters and corresponding non-zero abundances, i.e., Ia ¼: fi1; . . . ; ivg for some a. Then,

for some �x; �a:

ð46Þ

If a parameter ai or abundance xi, respectively, is zero, we transform the single-index

block {i} to zero (for some �x; �a):

�ð�x; �a;xi ¼ �xi;ai ¼ 0Þ ¼
I3

�ð�x; �a;xi ¼ 0;ai ¼ 0Þ; ð47Þ

�ð�x; �a;xi ¼ 0;ai ¼ �aiÞ ¼
I2

�ð�x; �a;xi ¼ 0;ai ¼ 0Þ: ð48Þ
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Second, after all blocks are transformed, we swap abundances and parameters in parallel to

match the order in the canonical form. This does not affect the value of the impact function ϕ
as it is commutative (I1).

Lemma 3 Suppose x; x̂ 2 X and a; â 2 A are such that:

8p 2 f1; . . .g :
Xn

i¼1

ap
i xi ¼

Xn

i¼1

âp
i x̂i: ð49Þ

Let ϕ be an impact function. Then �ðx; aÞ ¼ �ðx̂; âÞ.
To prove this, we only need to note how the canonical forms ~x and ~a only depend on the

parameters values a corresponding to non-zero total abundance za and these abundances.

Those in turn are equal per Lemma 1. Thus:

�ðx; aÞ ¼L 2
�ð~x; ~aÞ ¼L 1

�ð~̂x ; ~̂aÞ ¼L 2
�ðx̂; âÞ: ð50Þ

Non-impact-function contribution to abundance changes must be

proportional

Here, we show that Rj as defined in Eq 10 must have the form Rj ¼ xj�jðx; aÞ, where ϕj is an

impact function. To keep the notation simple, we assume that Rj features no delay, noise,

explicit time dependency, or similar, and thus Rj : X � A! R.

We require every impact of population other than j to be comprised in an impact function ψj.

We can write Rj in the form:

Rj ¼ bjðxj;cjðx; aÞÞ; ð51Þ

with bj : R� R! R. If, similar to Criterion I4, we consider the case of two populations j and k
with identical properties and abundances y and z, their total growth must be the same as if all

individuals were assigned to one population:

Rjðxj ¼ yÞ þRkðxk ¼ zÞ ¼ Rjðxj ¼ yþ zÞ þRkðxk ¼ 0Þ ¼ Rjðxj ¼ yþ zÞ; ð52Þ

where Rkðxk ¼ 0Þ reflects that an extinct population does not grow. Using the properties of

impact functions and that j and k are identical, we can conclude from this that:

bjðy;wÞ þ bjðz;wÞ ¼ bjðyþ z;wÞ; ð53Þ

with w = ψj(x, a, xj = y + z, xk = 0), i.e., βj is additive in its first argument. Under these condi-

tions, this allows to conclude that βj is homogeneous (or proportional) in its first argument,

i.e., βj(x, v) = xβj(1, v) for any v 2 R. Thus the right-hand side has the form:

Rj ¼ xjb̂ jðcjðx; aÞÞ ¼ xj�jðx; aÞ; ð54Þ

with b̂ jðvÞ≔ bjð1; vÞ and some impact function �j ¼ b̂ j � cj.

Deriving a new model for UTI strains—The legwork

We here elaborate the details of creating a new model for the case described in Case Study.

Inserting our ansatz (Eq 24) into our first requirement (Eq 17), we obtain:

0 ¼ Rjð
~0; a;xj ¼ 1Þ ¼ rjðrjjÞBjðsjjÞ: ð55Þ
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Assuming that the two factors do not “take turns” in being zero for different j, this means

that either ρj(rjj) = 0 or Bj(sjj) = 0. Without loss of generality, we assume that the latter applies,

thus assigning Bj the role of quantifying the carrying capacity. Furthermore, we choose Bj(0) = 1.

These are normalization choices, as they can be compensated by including a respective factor in

Bj or ρj respectively. Using this and expanding Eq 19, we obtain:

0 ¼ Rjð
~0; a;xj ¼ cjk;xk ¼ vÞ ¼ cjk rjðrjjcjk þ rjkvÞ Bjðcjk þ sjkvÞ: ð56Þ

Assuming that Bj is again responsible for the product being zero and it has only one root,

namely 1, we arrive at: cjk + sjk v = 1, and thus: sjk ¼
1� cjk
v . Note that since sjj = 1, this is consis-

tent with our choice of cjj = 1 − v (see S1 Appendix).

Using the above, we can expand Eqs 16 and 18:

gj ¼
@Rj

@xj
ð~0; aÞ ¼ rjð0ÞBjð0Þ ¼ rjð0Þ; ð57Þ

gjk ¼
@Rj

@xj
ð~0; a;xk ¼ vÞ ¼ rðrjkvÞBðvsjkÞ ) rðrjkvÞ ¼

gjk
BðsjkvÞ

¼
gjk

Bð1 � cjkÞ
: ð58Þ

We choose the arguably simplest function to fulfill the criteria for ρ, namely ρj(z) ≔ gj + z.

This has the consequence:

rjk ¼
1

v
gjk

Bð1 � cjkÞ
� gj

 !

: ð59Þ

A group of functions fulfilling the criteria for B is: Bj(z) ≔ 1 − dzeq with q> 0 and dze≔
max(0, z). Here, the free parameter q controls how early and smoothly the saturation effect of

a occupied niche kicks in. Note that this choice results in terms similar to what was named

hyperlogistic [72].

Finally, like the original study [16], we constrain the growth and capacity term to be non-

negative to avoid the occasional implausible result. For example, we do not allow negative

growth because we equate the abundance of a population with its footprint, which cannot be

undone, and we lack the data to capture cell death. Putting everything together, we arrive at

the model:

_xj ¼ xj gj þ
Xn

i¼1

1

v
gji

1 � d1 � cjie
q � gj

 !

xi

& ’

� 1 �
Xn

i¼1

1 � cji
v

xi

& ’q& ’

: ð60Þ

A problem with this model is that for 0< xk< 1, we have:

limcjk!0 _xj ¼ limcjk!0Rjðx; aÞ ¼ 1 . Now, cjk = 0 means that there is no growth of strain j in the

medium conditioned by strain k and thus we already have a problem with experimentally

determining gjk. Thus, one might argue that the actual point of the singularity requires a dedi-

cated case distinction anyway. However, limcjk!0 _xj ¼ 1: also means that _xj becomes arbi-

trarily large for small cjk. A way to address this problem is to consider the case q!1, or more

specifically:

dBjðzÞe ¼

(
1 if z < 1

0 if z � 1
: ð61Þ
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In this case, the term B(1 − cjk) in Eq 58 can be assumed to be 1 (otherwise, we would have the

aforementioned problem of not being able to experimentally determine gjk). This eliminates

the singularity, but also renders the model not continuously differentiable.

In our simulations, we therefore make a trade-off between complying with Eq 18 and the

numerical benefits of a continuously differentiable model by setting q = 10 and approximating

B(1 − cjk)� limp!1 B(1 − cjk) = 1 in Eq 58, thus arriving at:

_xj ¼ xj gj þ
Xn

i¼1

gji � gj
v

xi

& ’

� 1 �
Xn

i¼1

1 � cji
v

xi

& ’10& ’

: ð62Þ

Supporting information

S1 Appendix. Further analysis of UTI models.
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S1 Code. Code for the simulations for Fig 1 and S1 Appendix in a tarball.
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