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Anthracyclines are a major component of chemotherapies used in many pediatric and
adult malignancies. Anthracycline-associated cardiotoxicity (ACT) is a dose-dependent
adverse effect that has substantial impact on morbidity and mortality. Therefore, the
identification of genetic variants associated with increased risk of ACT has the potential
for significant clinical impact to improve patient care. The goal of this review is to
summarize the current evidence supporting genetic variants associated with ACT,
identify gaps and limitations in current knowledge, and propose future directions for
incorporating genetics into clinical practice for patients treated with anthracyclines. We
will discuss mechanisms of ACT that could be illuminated by genetics and discuss
clinical applications for the cardiologist/cardio-oncologist.
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INTRODUCTION

Anthracyclines are among the most frequently used agents for treating cancer. They serve as the
cornerstone for chemotherapy regimens commonly used to treat hematological and solid organ
malignancies. Despite their efficacy, their utility is limited by a dose-dependent cardiomyopathy,
also known as anthracycline-associated cardiotoxicity (ACT). ACT is commonly detected by
imaging studies and may present as anthracycline-associated heart failure. It is estimated that one
in ten children exposed to cumulative anthracycline doses >300 mg/m2 develop anthracycline-
induced heart failure (1), and childhood cancer survivors are at a 5–10-fold increased risk of cardiac
dysfunction compared to the general population (1, 2). Despite established risk factors such as
older age and pre-existing cardiovascular comorbidities, there remains significant inter-individual
variability in the development of cardiac toxicity. Some patients tolerate high doses without adverse
effects, whereas others develop ACT at relatively low doses. The variable predisposition to ACT
between patients suggests that genetic susceptibility may play a role in the development of ACT.
Candidate genes with potential contributions to ACT pathophysiology have traditionally been
nominated based on mechanistic studies in preclinical models, such as zebrafish and mice. While
these models can provide valuable mechanistic data in the setting of in vivo treatment, conservation
of the pathway and/or specific genetic variant of interest across species remains an important
consideration in translating observations to human patients. Cell lines derived directly from human
tissues, such as patient-derived human induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs), offer a unique opportunity to identify genetic variation that may contribute to ACT
risk in specific patients. Both animal models and hiPSC-CMs provide mechanistic information that
is often complementary to discovery – omics studies in patients.
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This review will address the current knowledge of specific
genetic associations with ACT, current practice of genetic testing
and interpretation in the cardiology clinic and the potential
management implications of genetic testing, particularly related
to overlap between ACT and other cardiomyopathies.

GENOMIC VARIANTS ASSOCIATED
WITH ANTHRACYCLINE ASSOCIATED
CARDIOTOXICITY

Efforts to identify genetic variants associated with ACT have
been conducted in several studies in pediatric and adult cohorts.
Candidate gene approaches and genome wide association studies
(GWAS) have yielded several single nucleotide polymorphisms
(SNPs) of potential interest. In general, genetic studies in this
patient population have been limited by their small sample size
and the lack of consensus for clinical or echocardiographic
diagnosis of ACT.

Surveillance protocols to detect ACT, as well as the definition
of ACT, have not been standardized across studies. As a
result, the incidence and timeline of diagnosis of ACT varies
considerably in the literature. Clinically, ACT has been identified
as new onset heart failure/cardiomyopathy in patients who were
treated with anthracyclines. Left ventricular ejection fraction
(LVEF) is commonly used in the detection of ACT, but
echocardiography surveillance protocols vary considerably from
one center to another, and asymptomatic cardiomyopathy is
likely underdiagnosed. In addition, LVEF is influenced by
preload, afterload and adrenergic state, leading to subjectivity and
interpretive variation. A consensus definition of ACT lead by the
American Society of Echocardiography (ASE) and the European
Association of Cardiovascular Imaging (EACVI) defines ACT as
a decrease in the LVEF >10% to an absolute value of <53% (3).

GENES ASSOCIATED WITH
ANTHRACYCLINE-ASSOCIATED
CARDIOTOXICITY ACCORDING TO
PRESUMED PATHOPHYSIOLOGIC
MECHANISM

Several genetic modifiers have been identified as potentially
contributing to ACT, which we will review here according to their
proposed pathophysiologic mechanism (summarized in Table 1).

DNA Damage
DNA topoisomerase I (Top1) and II (Top2) relieve tension
in overwound DNA by introducing a single or double-stand
DNA break. Anthracyclines target the Top2-cleaved DNA
complex, causing accumulation of double-strand DNA breaks
(15) ultimately leading to apoptosis. Cardiomyocyte-specific
deletion of Top2b protected mice from the development
of doxorubicin-induced progressive heart failure (16).
Furthermore, disruption of Top2-beta using clustered regularly
interspaced short palindromic repeats and associated protein 9

(CRISPR/Cas9) significantly reduced the sensitivity of hiPSC-
CMs to doxorubicin-induced double stranded DNA breaks and
cell death (17).

Retinoic Acid Receptor Gamma
Although specific genetic variants in Top2-beta have not been
identified as associated with anthracycline cardiotoxicity in
patients, supporting findings have emerged related to retinoic
acid receptor gamma (RARG), which binds to the Top2-
beta promoter and participates in DNA damage-associated cell
death. RARG binds to DNA regulatory sequences called retinoic
acid receptor elements (RAREs) and has been implicated in
the development of anthracycline cardiomyopathy in a mouse
model (16). Aminkeng et al. performed a GWAS in 280
pediatric patients treated for childhood cancer and identified SNP
rs2229774 in RARG to be associated with ACT [odds ratio (OR)
4.7, P = 5.9× 10−8] (4).

Anthracycline Transportation and
Metabolism
Solute Carrier
The solute carrier (SLC) super family of membrane proteins have
been described to function as drug transporters for anthracyclines
(18–20). Visscher et al. (6) observed consistent association of two
variants of the SLC transport protein SLC28A3 (rs7853758 and
rs885004) with resistance to ACT in several pediatric cohorts
(P = 1.8 × 10−5; OR: 0.35). The association between rs7853758
and ACT was also observed in the Dutch-EKZ cohort (5, 21).
The hypothesis is that the proteins encoded by these genes could
transport anthracyclines into the cell leading to increased toxicity,
whereas reduced function will be protective. The SLC22A17
variants rs4982753 and rs4149178 were also identified to be
associated with ACT (6).

UGT1A6
Variants in UDP-glucuronosyltransferase family 1A6
(rs17863783, V209 V) have been associated with ACT in
pediatric cohorts (5, 6). UGT1A6 plays a role in drug
detoxification through the glucuronidation pathway (22).
Although doxorubicin and daunorubicin are not themselves
glucuronidated, certain downstream metabolites undergo
glucuronidation (23). It can therefore by hypothesized that
altered UGT1A6-mediated glucuronidation of anthracycline
metabolites might lead to accumulation of toxic anthracycline
metabolites in patients carrying UGT1A6∗4, resulting in an
increased risk of ACT.

Carbonyl Reductase 3
The alcohol metabolite of doxorubicin, doxorubicinol, is thought
to be the primary mediator of the cardiotoxic effects of
this agent. Carbonyl reductase (CBR) converts doxorubicin to
doxorubicinol, leading to its accumulation in cardiomyocytes
and a subsequent increase in cellular injury and death (7, 24,
25). These metabolites form a reservoir in cardiomyocytes and
impair contractility through inhibition of Ca2+ and Na+/K+
pump activity (26). Myocardial accumulation of these metabolites
has been associated with subsequent cardiomyopathy (27). CBRs
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TABLE 1 | Summary of studies investigating the role of genetic modifiers implicated in anthracycline-associated cardiotoxicity.

Genes with SNP SNP effect Replication Authors Year Cohort Case Control Study population Definition of cardiotoxicity Anthracycline
used

DNA damage

RARG rs2229774 Predisposing Replicated in
similar cohorts

Aminkeng
et al. (4)

2015 280
96
80

32
22
19

248
74
61

Pediatric
ALL, AML, HL, NHL,
osteosarcoma,
rhabdomyosarcoma, Ewing
sarcoma, hepatoblastoma,
neuroblastoma, Wilms tumor

(i) LVEF < 45%
(ii) Dilation of LV-end-diastolic
dimension > 117%.

Doxorubicin,
daunorubicin,
epirubicin

Anthracycline transportation and metabolism

SLC28A3
rs78537585

Protective Replicated in
two different
cohorts

Visscher
et al. (5)

2012 156
188
96

38
40
43

118
148
53

Pediatric
ALL, AML, other leukemia, HL, NHL
osteosarcoma,
rhabdomyosarcoma, Ewing
sarcoma, other sarcoma, Wilms
tumor, hepatoblastoma,
neuroblastoma, carcinoma

1. FS < 26%
2. Signs and symptoms indicating
need for cardiac compromise
intervention based on CTCAEv3

Doxorubicin,
daunorubicin

UGT1A6
rs17863783

Predisposing Replicated in
same analysis

Visscher
et al. (6)

2013 177 46 131 Pediatric
ALL, AML, HL, NHL osteosarcoma,
rhabdomyosarcoma, Ewing
sarcoma, other sarcoma, Wilms
tumor, hepatoblastoma,
neuroblastoma, carcinoma, germ
cell tumor

1. FS < 26%
2. Signs/symptoms of cardiac
compromise indicating need for
intervention based on CTCAEv3

Doxorubicin,
daunorubicin

SULT2B1
rs10426377

Predisposing

CBR3 rs1056892 Predisposing No replication
performed

Blanco
et al. (7)

2012 487 170 317 Pediatric
HL, NHL, bone tumors, soft tissue
sarcoma, ALL, AML, other

1. Signs/symptoms of cardiac
compromise based on AHA criteria
2. Echo evidence of LV dysfunction
(LVEF < 40%; FS < 28%)

Not specified

ABCC1 rs3743527,
rs246221,
rs3743527

Predisposing No replication
performed

Semsei
et al. (8)

2012 234 – – Pediatric
ALL

Change in LV FS Daunorubicin,
doxorubicin/not
reported

ABCC2 rs8187710 Predisposing No replication
performed

Armenian
et al. (9)

2013 255 77 178 Pediatric and Adult
Leukemia, myeloma, lymphoma
status post-hematopoietic cell
transplantation

Sign/symptoms of cardiac
compromise indicating need for
intervention based on AHA criteria

Not specified

(Continued)
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TABLE 1 | (Continued)

Genes with SNP SNP effect Replication Authors Year Cohort Case Control Study population Definition of cardiotoxicity Anthracycline
used

Antioxidant mechanisms:

HAS3 rs2232228 Predisposing Replicated in
an independent
set of 76
patients

Wang et al.
(10)

2014 287 93 194 Pediatric and Adult
HL, NHL bone tumors, soft tissue
sarcoma, ALL, AML, other

AHA criteria for cardiac
compromise:
1. Symptoms/signs of cardiac
compromise
2. Echo evidence of LV dysfunction
(LVEF # 40% and/or FS # 28%)

Not specified

GSTM1 null
genotype

Predisposing No replication
performed

Singh et al.
(11)

2020 75 92 Pediatric
ALL, AML, HL, NHL, bone tumors,
kidney tumor, sarcoma,
neuroblastoma

LVEF < 40% and/or FS < 28% Not specified

NOS3 rs1799983 Protective No replication Krajinovic
et al. (12)

2016 251 – – Pediatric
ALL

Reduction in FS and EF Doxorubicin

ABCC5 rs7627754 Predisposing Replicated in
44 ALL patients

RAC2 rs1305833 Predisposing No replication
performed

Armenian
et al. (9)

2013 255 77 178 Pediatric and Adult
Leukemia, myeloma, lymphoma
status post-hematopoietic cell
transplantation

Sign/symptoms of cardiac
compromise indicating need for
intervention based on AHA criteria

Not specified

Sarcomere dysfunction

CELF4 rs1786814 Predisposing Replicated in
an independent
set of patients

Wang et al.
(13)

2016 331
54

112 54 219
0

Pediatric
HL, NHL, sarcoma, AML, ALL, and
others replication HL, NHL,
sarcoma, AML, ALL, and others

1. Signs/symptoms of cardiac
compromise based on AHA criteria
2. Absence of symptoms/signs with
echo evidence of LV dysfunction
(EF # 40% and/or FS # 28%)

Not reported

TTNtv Predisposing Preclinical
replication
performed

Garcia-
Pavia et al.
(14)

2019 213 – – Adult
Breast cancer, AML, other solid
tumor

Reduction in EF Not reported
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catalyze cardiotoxic alcohol metabolites and are considered to
be major anthracycline metabolizing enzymes. The role of CBRs
were investigated by Blanco et al. (7) in pediatric cancer survivors.
They found that individuals with CBR3 V244M homozygous G
genotype (CBR3:GG) had an increased risk for cardiomyopathy
associated with low to moderate dose anthracyclines (1–
250 mg/m2). This is thought to be due to upregulated CBR3
expression mediated by nuclear transcription factor Nrf2, leading
to increased synthesis of cardiotoxic anthracycline alcohol
metabolites. However, involvement of these enzymes has not
been as clearly established in other studies of ACT (4, 5, 9).

ABCC1, ABCC2, and ABCC5
ATP binding cassette (ABC) proteins are membrane-bound
transporters involved in the clearance of anthracycline from the
cell using energy derived from ATP hydrolysis (28). ABCC1 is
highly expressed in the human heart. In mice, its expression
is upregulated in the heart following exposure to doxorubicin
(29). In a pediatric cohort with acute lymphoblastic leukemia,
patients with SNP rs3743527 TT in ABCC1 had decreased
LV fractional shortening at follow-up (8). The combination of
either the TT or TC genotype was associated with decreased
LV fractional shortening as well. Armenian et al. identified
ABCC2 SNP rs8187710 to be associated with a 4.3-fold risk of
ACT in a retrospective study of a mixed adult and pediatric
cohort of patient receiving anthracycline prior to hematopoietic
cell transplant (9). ABCC5 has been implicated in ACT with
a TT genotype at SNP rs7627754 associated with reduced
ejection fraction and fractional shorting in pediatric patients
with ALL (12).

Sulfotransferase Family Cytosolic Member 2B1
Sulfotransferase family cytosolic member 2B1 (SULT2B1) is an
enzyme that increases drug solubility in water and promotes renal
excretion by conjugation of the sulfate group. A possible ACT
association (P = 0.054) of the rs10426377 variant in SULT2B1
was reported by Visscher et al. (6). Interestingly, this sensitizing
effect was noticed in men but not in women (6). It is possible
that the SULT2B1 variant affects anthracycline catabolism and
subsequent renal excretion, although additional data will be
needed to determine the clinical significance of SULT2B1.

Antioxidant Mechanisms
Oxidative stress has also been implicated in the mechanism
of ACT. Cardiomyocytes are particularly vulnerable to ROS
induced cellular damage. Anthracyclines are thought to form
ROS through dysfunction of the mitochondrial electron transport
chain and iron accumulation (30) and by dysregulation of
cardiomyocyte autophagy (31).

Hyaluronan Synthase 3
Hyaluronan synthase 3 (HAS3) enzymes synthesize hyaluronan,
a glycosaminoglycan which is found in the extracellular matrix
and has a role in tissue remodeling post injury. In addition to
hyaluronan’s tissue remodeling properties, it may also decrease
reactive oxygen species–induced cardiac injury. Wang et al
demonstrated in a pediatric cohort of cancer survivors that

patients with the AA genotype in SNP rs2232228 of HAS3 who
were exposed to high doses of anthracyclines (>250 mg/m2) were
at 8.9-fold greater risk of developing ACT compared with those
with the GG genotype (10).

GSTM1
Glutathione S-transferases (GST) represent a class of phase II
detoxification enzymes that catalyze reduced glutathione and
eventually lead to its elimination from the body (32). GST are
also scavengers of free radicals, preventing oxidative damage.
GSTM1 expression varies by race and ethnicity, with the GSTM1
null genotype identified more frequently in east Asians (70–
79%) and less frequently in Europeans (5%) (33–35). In pediatric
cancer survivors, Miranda et al. demonstrated an association
between the GSTM1 null genotype and the risk of developing
cardiomyopathy (11). Similarly, GSTP1 has been reported to be
associated with ACT in two small studies (36, 37).

Nitric Oxide Synthase 3
Anthracyclines can bind to nitric oxide synthase 3 (NOS3)
leading to the inhibition of its activity. In a mouse model,
NOS3−/− mice demonstrated less cardiotoxicity following
doxorubicin exposure, whereas mice overexpressing wild type
NOS3 exhibited more cardiotoxicity (38). Krajinovic et al.
identified a NOS3 variant rs1799983 to be cardioprotective in a
cohort of pediatric ALL patient exposed to doxorubicin (12).

NADPH Multienzymes Complex
Anthracyclines are lipophilic molecules which diffuse passively
across cell membranes and into the mitochondria. During
anthracycline reduction, a superoxide anion is formed.
Polymorphism in NADPH oxidase subunits have been associated
with the production of ROS. A SNP (rs13058338) in RAC2,
which encodes a Rho-GTPase that regulates NADPH oxidase,
has been associated with susceptibility to ACT (OR = 2.8,
P < 0.01) (9). In a report by Wojnowski et al., NADPH oxidase
(NOX2) knockout mice were protected against anthracycline
induced heart failure (39).

Alternative Splicing of TNNT2/Sarcomere
Dysfunction
CELF4
The cytosine-uridine-guanine repeat binding protein (CUGBP)
family are splicing regulators that control developmentally
regulated tissue-specific splicing events. CELF4 is an RNA protein
involved in pre-mRNA splicing, known to mediate the splicing
of the gene TNNT2 that encodes cardiac troponin T, which has
an essential role in Ca2+ signaling in the heart. Wang et al.
conducted a GWAS in childhood cancer survivors with and
without cardiomyopathy and identified an association of CELF4
SNP rs1786814 with susceptibility to ACT. In patients with an A
allele (GA and AA genotypes), cardiomyopathy was infrequent
and not dose related. However, among those patients exposed
to > 300 mg/m2 of doxorubicin or equivalent, the rs1786814 GG
genotype conferred a 10.2-fold increased risk of cardiomyopathy
(95% CI: 3.8 to 27.3; P < 0.001) (13).
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Impaired Iron Metabolism
Hemochromatosis
Hemochromatosis (HFE) encodes a major histocompatibility
complex MHC class 1–like protein that binds to transferrin. This
protein regulates the production of hepcidin, a key regulator of
the entry of iron into the circulation. Noting that dexrazoxane,
an iron chelator, had a cardioprotective effect on patients
receiving doxorubicin, Miranda et al. hypothesized that the gene
responsible for human HFE could play a role in susceptibility to
ACT. Indeed, HFE-deficient mice exhibited greater sensitivity to
doxorubicin, with increased serum CK and mortality following
chronic doxorubicin treatment (40). In a pediatric cohort
where 10% carried the HFE SNP rs1800562 (p.C282Y) and the
heterozygous rs1800562 (p.C282Y) genotype, the presence of
these variants correlated with an increase in Troponin T and a
reduction in fractional shortening at 2-year follow-up (41).

GENE–ENVIRONMENT INTERACTION

The interaction between environmental factors (such as the
anthracycline dose) and underlying genetic variation may affect
the phenotypic expression of ACT. To date, most studies have
not been designed to address this question in detail.

GENETIC OVERLAP BETWEEN
ANTHRACYCLINE-ASSOCIATED
CARDIOTOXICITY AND OTHER
CARDIOMYOCYTES

Overlap in genetic variants between DCM and ACT represents
a particularly interesting avenue of investigation (Figure 1).
Garcia-Pavia et al. (14) demonstrated an increased prevalence of
DCM-associated gene variants in the ACT patient population,
where 12.2% of patients with ACT were found to have a
cardiomyopathy variant. Titin-truncating variants (TTNtv) were
identified in 16 of 213 ACT cases (7.5%) and were associated
with more heart failure, hospitalizations, and atrial fibrillation,
as occurs in patients with DCM caused by TTNtv (42, 43).
Other genes associated with DCM such as BAG3, LMNA, and
MYH7 have been poorly characterized in patients with ACT
(14). As highlighted by the findings of Garcia-Pavia et al. (14),
genetic modifiers of ACT overlapping with DCM genes may
represent a distinct risk profile in addition to genes specific
to ACT pathophysiology, a concept that will be important to
consider as genetic testing is integrated into the clinical care of
cardio-oncology patients.

TYPE OF GENETIC TESTING

Different types of genetic test are available to analyze changes
in genes. At present, commercially available genetic tests do not
include most of the genetic modifiers associated with ACT. Here
we will focus on molecular testing that might be relevant to ACT
gene testing in the future.

Gene Panel Testing
Commercially available gene panels are able to identify specific
genetic variants. The number and type of genes offered for
sequencing are different between panels. The yield of a panel
differs based on the number of genes within a panel, as was
demonstrated by Pugh et al. (44). While evaluating 766 patients
with DCM, a large gene panel of 47 genes identified an underlying
culprit gene in 37% of patients, whereas the yield was less
than 10% with a smaller gene panel (44). Broader gene panels
have an advantage in evaluating a genetically and clinically
heterogeneous disease, but this comes with the expense of a high
rate of variants of uncertain significance (VUS). This has been
challenged by recent data from Murphy et al. (45), where the
most actionable variant in their cohort of patients with inherited
cardiac conditions was detected in smaller gene panels. This
suggests that larger gene panels may offer little extra sensitivity
with a higher burden of VUS (45).

Whole-Exome Sequencing
With the considerable decrease in cost, the clinical use of whole-
exome sequencing has increased. Whole-exome sequencing can
help identify novel variants that are not known to be involved
in the pathogenesis of a disease (46). Importantly, whole-exome
sequencing does not include most non-coding regions (intergenic
areas and introns); however, these regions can be involved in
the regulation of gene expression leading to disease pathogenesis
(47). In the future, whole-genome sequencing may enable
the characterization of coding and non-coding variation with
minimal loss of sensitivity for pathogenic variants and increased
opportunity to identify gene-gene or polygenic interactions that
influence a patient’s risk of developing ACT, as has been done for
other cardiovascular diseases (48, 49).

INTERPRETING GENETIC TEST
REPORTS

American College of Medical Genetics
and Genomics Guidelines
Differences in interpretation are present between laboratories as
well as between clinicians. The American College of Medical
Genetics and Genomics (ACMG) published a set of guidelines
to provide consistent terminology. Using a four-tiered system,
somatic sequence variations are categorized based on their
clinical significance as being pathogenic, likely pathogenic, a
VUS, likely benign or benign (50).

Variants of Uncertain Significance:
Determining Significance
Genetic testing is frequently inconclusive. This could be
attributed to the absence of a pathological variant or the
presence of a benign variant. Determining the pathogenesis of a
variant using the ACMG criteria is important. At present, it is
advised to treat variants in a binary fashion. Pathogenic variants
and likely pathogenic variants are regarded as positive results.
Benign variants and likely benign variants are considered to be
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FIGURE 1 | A Venn diagram of overlapping genes implicated in ACT and other types of cardiomyopathies.

negative results. VUSs that have not definitively been classified
as pathogenic or benign are open to reclassification as new
data become available. VUSs represent a challenge in genetic
test interpretation, and this is especially true for ACT where
most findings remain investigational. This further demonstrates
the need for additional studies with larger sample size. Human
induced pluripotent stem cell-derived cardiomyocytes (hiPSC-
CMs) may be particularly useful in functional characterization
of VUS (51).

GENETIC TESTING RESULTS AND
POTENTIAL APPLICATIONS TO PATIENT
MANAGEMENT

There is no consensus on the clinical application of genetic testing
in the management of patients receiving anthracyclines. With
growing data to support genetic predisposition as a key factor in
ACT, one might envision future risk assessment tools based on
both genetic testing and clinical risk factors. For example, patients
with the RARG rs2229774 risk variant and the UGT1A6∗4
rs17863783 risk variant may be considered at increased risk of
ACT beyond what would be estimated from clinical risk factors
alone. This could prompt closer cardiovascular follow-up and
echocardiographic imaging during and post-treatment, as well as
more aggressive risk factor management.

At present, genetic evaluation has no clinical application
in ACT evaluation, unless there is a family history of
cardiomyopathy or sudden cardiac death that warrants further
investigation. As more data emerge regarding genetic risk factors
for ACT, clinicians could consider personalized approaches to
cardioprotection as follows:

Dexrazoxane
Dexrazoxane is an iron chelator that protects against oxidative
stress. Several RCTs demonstrated the dexrazoxane is effective
in preventing anthracycline cardiomyopathy and heart failure,
although concern persists among many oncologists regarding
mitigation of anthracycline antitumor efficacy and a possible
increased risk of secondary malignancies, which has led to
restriction of FDA approval for this agent.

Liposomal Encapsulated Anthracyclines
The liposomal formulation of anthracyclines is thought to
result in decreased drug delivery to cardiomyocytes, leading
to decreased cardiotoxicity. Liposomal doxorubicin was found
to have similar efficacy and survival outcomes as regular
doxorubicin but with lower risk of ACT and congestive heart
failure (52). However, the number of studies is small, and data
on long-term follow-up are lacking.

Primary Cardioprotective Agents
Several small RCTs have assessed the efficacy of neurohormonal
blockade (beta blockers, ACEI, and ARBs) in preventing ACT
(53). Although most suggest a modest attenuation of LVEF
decline, these studies have largely been underpowered to detect
differences in clinical heart failure. While routine use of
neurohormonal blockade for primary cardioprotection is not
supported by the current data, there may be some benefit in the
setting of high-risk genetic variants and clinical features.

Alternative Chemotherapy Regimens
In a patient with genetic variants that are expected to be high-
risk for ACT, particularly if high doses of anthracyclines are
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anticipated, it may be reasonable to consider an alternative, less
cardiotoxic chemotherapy regimen.

POTENTIAL USES OF GENETIC TESTING
IN PATIENTS WHO DEVELOP
ANTHRACYCLINE ASSOCIATED
CARDIOTOXICITY

In patients with established ACT, treatment is similar to that
recommended by standard heart failure management guidelines.
The use of neurohormonal blockade as the cornerstone of
management is consistent with data demonstrating cardiac
reverse remodeling and improved survival in heart failure in
general. There has been interest in identifying which patients
respond favorably to neurohormonal blockade. Outside the
context of ACT, differences in individual response to beta-
blockers are thought to be due to genetic polymorphisms
in the gene encoding the beta-adrenergic receptor. In the
WOSCOPS trial and MERIT-HF trial (54), these polymorphisms
were not associated with a change in morbidity or mortality.
Similarly, genes encoding angiotensin II and the associated
receptors demonstrated polymorphisms associated with
different response to therapy. For instance, a homozygous
DD genotype for the ACE gene with a polymorphism of
AGTR1 might cause higher levels of renin–angiotensin–
aldosterone system activation, resulting in worse prognosis
despite treatment with ACEI (55) and lower survival (56).
The routine use of genetic testing for gene polymorphisms
lacks clinical validation at present, but individualized
medical therapy holds promise to improve outcomes in
patient with ACT.

LIMITATIONS OF THE AVAILABLE DATA

Most genetic studies of ACT have attempted to identify candidate
genes and/or genetic modifiers by evaluating the cumulative
burden of gene variants to determine which genes were
overrepresented for genetic variation in a cohort of patients
with ACT. This approach differs from that used for other
inherited cardiac diseases in clinical practice, such as DCM,
where the evidence for pathogenicity includes the evaluation
of individuals SNPs based on prior reported associations for
the SNP or location of SNPs in gene mutation “hotspots”. To
achieve this level of evidence for individual SNPs in ACT will
require utilization of genome editing tools such as CRISPR as
well as patient-derived in vitro models such as hiPSC-CM, as
well as accumulating evidence for genetic variants in ACT in
clinical practice.

Furthermore, in other types of cardiomyopathy, the evaluation
of variant pathogenicity is directed toward a monogenic variant
that is otherwise absent (or of very low frequency) in the general
population. However, reported variants associated with ACT
have typically been common in the general population, with an
allele frequency reaching up to 6% (e.g., ABCC2). These genetic
modifiers may contribute to the risk of cardiomyopathy, but they

likely have a low penetrance for disease in the general population
and may require an environmental interaction (such as exposure
to anthracycline) as a second hit to produce the clinical ACT
phenotype. The uncertainty surrounding genetic testing will
necessitate close collaboration with genetic counselors who can
help navigate the implications of testing results as genetics is
integrated into the cardio-oncology clinic.

FUTURE DIRECTIONS

There continue to be several limitations to the use of genetics
in routine clinical care. Above all, the identification of disease
causing variants remains challenging. Some genetic variants
might be necessary but not sufficient to predispose to ACT, and
how these variants interact with other unidentified genetic factors
remains to be explored. More studies are needed to identify
high risk genetic variants with clinical validation. Recent data
suggest that patient derived hiPSC-CM may provide a platform
for validation of genes/variants identified through GWAS and
to clarify the associated molecular mechanisms predisposing to
cardiotoxicity. Ultimately, this approach may allow for tailored
doses of chemotherapeutics based on patient genotype (57).

There has also been an increasing interest in understanding
the role of complementary approaches, such as epigenetics,
proteomics, and metabolomics in the development of
cardiomyopathy. An integrated-omics approach has the
potential to improve our understanding of ACT. Artificial
intelligence methods could be applied to large populations to
further improve the diagnosis, prognosis, and treatment of ACT.
With improved understanding of genetic predisposition for
ACT, a risk assessment model that incorporates genetics and
conventional clinical risk factors may be better suited to classify
an individual patient’s risk.

CONCLUSION

Anthracycline-induced cardiomyopathy is a complex adverse
drug reaction that is associated with morbidity, mortality, and
increased social and economic burden for patients, their families,
and the healthcare system. Recent advances in the field of
genetics have led to an improved understanding of ACT, although
significant limitations to clinical applicability remain.
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