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Background and Objective. Trigonella foenum-graecum Linn., also called fenugreek, is a popular medicinal plant cultivated all over
the globe. Fenugreek seeds are known for their many medicinal properties. We present our findings on the effect of a 70% aqueous
methanolic fenugreek seed extract (Tfg.Cr) on isolated GI smooth muscles (rabbit jejunum and rat ileum) and the effect of extract
and its constituent diosgenin on acetylcholinesterase (AChE) enzyme. Results. When tested on the baseline of isolated tissues,
Tfg.Cr was devoid of any activity (stimulant or relaxant) till 10 mg/ml. This is an interesting finding, keeping in mind that the
fenugreek seeds are used to alleviate constipation and diarrhoea. When Tfg.Cr was tried for any potential AChE inhibitory
activity, it did show an inhibitory effect in increasing concentrations (47-380 pg/ml). This inhibitory effect was comparable to
the effect produced by a standard AChE inhibitor physostigmine. One of the known fenugreek constituents, diosgenin, was
also tested, and it also showed an AChE inhibitory effect in a concentration-dependent manner (11-190 yg/ml). Interaction
between diosgenin and AChE was further investigated by molecular docking and molecular dynamics simulations for 100 ns,
which showed that diosgenin interacted with the active-site gorge of AChE through hydrophobic, pi-pi stacking, and hydrogen
bonds with various amino acids of the AChE enzyme. Conclusion. The results show that the fenugreek extract does not possess
any GI stimulant or relaxant activity even though it is used traditionally in GI motility disorders. The extract and diosgenin
could inhibit the AChE enzyme pointing towards their benefit to enhance the memory.

1. Introduction

Trigonella foenum-graecum Linn. (family: Fabaceae or
Leguminosae), or “fenugreek” as commonly known in
English, is a widely used medicinal plant. In Urdu or Hindi,
it is called “methi.” An annual herb [1, 2], fenugreek is orig-

inally from southeast Europe (the Mediterranean region)
and West Asia [3, 4], but today, it is cultivated in many areas
of the globe, including South Asia [2], Northern Africa, and
even in North America [3]. It is a known and often con-
sumed condiment all over the world [3]. In terms of its tra-
ditional use, the whole plant, leaves, and seeds are employed
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for medicinal benefits [1, 2]. The active medicinal com-
pounds and the most potent activity are concentrated in
the oblong, yellow to yellowish brown seeds [3, 4].

For centuries, fenugreek has popularly been used by
herbalists and traditional healers of China and South Asia
in several medical conditions, specifically for gastrointesti-
nal (GI) and neurological issues. The seeds are consumed
as is or processed (boiled or roasted) for their benefit in
dyspepsia, colic, flatulence, diarrhoea, dysentery, anorexia
[1, 2, 4], gastritis, constipation [4], chronic cough, and
bronchitis [2, 3]. It is also used as a stimulant and tonic
of the central nervous system (CNS) [1] and is known
to enhance memory [5]. There are also claims for its
activity in the treatment of all kinds of skin infections
and inflammatory conditions (leg ulcers, wounds, abscess,
cellulitis, boils, and carbuncles), myalgia, arthritis, kidney,
and liver problems [1-4] and as a galactagogue [1, 6].
Despite the popularity of fenugreek, most of these above-
mentioned claims await verification and scientific proof
[4]. Some of the studies done on fenugreek report that it
has galactagogue [7, 8], anti-inflammatory [9, 10], antidia-
betic [10], anticholesterolemic [11, 12], antihypertensive,
kidney and liver protective [13], androgenic/anabolic
[14], antibacterial, and anticancer [15] properties. All these
medicinal uses and properties show how popular and ben-
eficial this herb is in such a broad spectrum of disease
conditions.

Many of the benefits of this plant are linked to the che-
micals that have been isolated from it. Fenugreek is known
to contain steroidal saponins like diosgenin, tigogenin, trigo-
genin, and fenugreekine; alkaloids like choline and trigonel-
line; amino acids like histidine, arginine, tryptophan, and
lysine; and vitamins like nicotinic acid [1, 2, 4, 16]. The ste-
roidal saponins are responsible for most of the medicinal
benefits of fenugreek [3].

As noted above, several experimental and clinical stud-
ies on fenugreek scientifically elucidate its traditional uses.
But still, a lot more work needs to be done to discover the
many hidden benefits of this herb. This was the idea
behind undertaking this endeavour. A 70% aqueous meth-
anolic crude extract was prepared. This extract was tested
pharmacologically on gastrointestinal (GI) smooth muscle
preparations from rabbits and rats to see if there is any
smooth muscle tone modulatory activity in the GI system,
a potential acetylcholine- (ACh-) like effect that would
lead us to believe in its memory-enhancing effects too. A
substance acting like ACh can potentially have both GI
stimulant and memory-enhancing effects due to an action
similar to ACh on the cholinergic receptors in the GI tract
and CNS. The extract was also tested for activity against
the acetylcholinesterase (AChE) enzyme in vitro. This is
because fenugreek is used to enhance the memory.
Although the extract did not exhibit any effect on GI
smooth muscle preparations, it did show an inhibitory
effect on the AChE enzyme. The AChE inhibitory activity
was traced back to its known chemical ingredient, dios-
genin (Figure 1). Interaction between diosgenin and AChE
was further investigated by molecular docking and molec-
ular dynamics simulations for 100 ns.
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FiGURE 1: The chemical structure of fenugreek active constituent, a
steroidal sapogenin, diosgenin (European Pharmacopoeia (EP)
Reference Standard, structure taken from website of source of the
chemical: https://www.sigmaaldrich.com).

2. Methodology

2.1. Animals. Care was taken to avoid any suffering to the
animals used in this study. Experiments were performed eth-
ically in strict accordance with lab animal handling specifica-
tions of European Community guidelines, EEC Directive 86/
609/EEC. Local rabbits (either sex, around 1kg) and
Sprague-Dawley rats (either sex, 170-200 g) were used in this
project. These were kept in the animal quarter at the Aga
Khan University. The air was pathogen-free, and the tem-
perature was controlled at around 23°C. The rabbits and rats
had free access to water, although the food was withheld a
day before the experiments. Food given to the animals was
made of the following: fiber, table salt, white flour, sweet-
ener, Nutri-vet L, potassium metabisulfite, grease, seafood,
and powdered milk.

2.2. Chemicals. Standard chemicals and reagents were
obtained from Sigma Company, USA. These included ace-
tylcholine (ACh), acetylthiocholine (ATCh), 5,5-dithiobis
(2-nitro), benzoic acid (DTNB), diosgenin, electric eel AChE
(type VI-S), histamine, nicotine, and physostigmine. The
solutions and dilutions of these were made on the day of
the experiment. To make Tyrode’s physiological salt solu-
tion, chemicals were purchased from Sigma, USA, and
Merck, Germany. Tyrode’s was constituted as follows
(mM): 2.68 KCl, 136.90 NaCl, 1.05 MgCl,, 11.90 NaHCO,,
0.42 NaH,PO,, 1.80 CaCl,, and 5.55 glucose.

2.3. Fenugreek Seeds and the Process of Extract Making.
Fenugreek seeds (around a kg) were acquired from a sup-
plier in Karachi, Pakistan. This was botanically identified
by Mr. S. Ahmad. A specimen was kept in the herbarium
of Natural Products Research Unit, Aga Khan University,
for identification and cataloguing (# TF-SE-05-04-59). For
making the crude extract, methodology described previously
[17] was used (Figure 2). Briefly, seeds were washed with
water and then lightly mashed. The seeds were then kept
dipped for 3 days in a couple of litres of 70% aqueous meth-
anol at 23°C. After the 3 days, the seeds and methanol were
passed through a fabric filter. Later, the plant material was
immersed again in a new batch of aqueous methanol for
72 hours, twice. Finally, filtrates were filtered using
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FIGURE 2: Schematic representation of the plant material (fenugreek seeds) and the crude extract preparation. All pictures in the scheme
were taken from 3D models, Online Sources, Microsoft PowerPoint 2019.

Whatman-qualitative grade-1 filters. A rotary evaporator
(Rotavapor, BUCHI Labortechnik AG, Switzerland) was
used to obtain a crude extract, labelled as Tfg.Cr. We kept
this extract stored at -4°C until use.

2.4. Experiments on Isolated Smooth Muscle
Tissue Preparations

2.4.1. Isolated Rabbit Jejunum. We have described and
worked with isolated intestinal smooth muscles before.
Detailed descriptions can be found in our previous commu-
nication [17]. Portions of the jejunum (around 2 cm long)
were obtained from rabbits. These were hung in tissue baths
with a thread. The tissue baths were filled with the physio-
logic salt solution, aerated with a mixture of 95% O, and
5% CO, at physiologic temperature. All changes in contrac-
tility were noted isotonically using Harvard equipment
(oscillographs and force transducers). The tissues were left
to stabilize for half an hour. The advantage of using rabbit
jejunum is its ability to contract spontaneously
(Figure 3(a)). This permits to test the spasmolytic and spas-
mogenic potential of a drug being investigated. The spasmo-
Iytic effect is calculated as the % change in contractility of the
tissue, while the spasmogenic effect is quantified while com-
paring with the action of a standard spasmogenic agent like
ACh 10 uM and nicotine 10 uM (Figure 3(a)).

2.4.2. Isolated Rat Ileum. We have previously described the
use of isolated smooth muscle preparations [17]. Small intes-
tinal sections of the ileum (about 2 cm long) were obtained
from rats. These pieces of the tissue were hung in baths as
described above. Changes in contractility of the tissue were
captured isotonically using Harvard equipment. The tension
kept on the tissue was 1 g. Unlike rabbit jejunum, rat ileum
does not exhibit baseline contractions; instead, it has a flat
baseline (Figure 3(b)). The tissue was left to normalize for
half an hour, following which repeated contractions were
obtained from standard drugs like ACh 10uM and hista-
mine 10 uM (Figure 3(b)). Drugs were permitted to stay in
contact with tissue for around 20s while a gap of 3min
was given between concentrations of ligands.

2.5. Enzyme Assay for AChE Inhibition. AChE inhibitory
activity of the extract and diosgenin was determined via
the standard spectrophotometric method [18]. Certain mod-
ifications to the process were introduced, as described before
[17]. Electric eel AChE (type VI-S) was utilized as an
enzyme source, while ATCh iodide worked as the substrate.
Ellman’s reagent (DTNB) behaved as the chromogenic
marker for determining enzyme inhibitory activity. For the
working enzyme solution, sodium phosphate buffer
(I mM) was used. Enzyme concentrates were made and kept
at -70°C; the substances under study were diluted on the test
day.

The enzyme inhibitory tests were done in 96-well micro-
titer plates. Briefly, sodium phosphate buffer (140 ul and
0.1mM at pH8.0), Tfg.Cr extract (20 ul and diluted in 5%
ethanol), and AChE (20 ul) were dissolved and kept for
15min at 25°C. Then, DTNB (10 pl) was added. The interac-
tion of chemicals initiated with the addition of 10ul of
ATCh (0.71 mM). Breakdown of ATCh was quantified by
determining synthesis of 5-thio-2-nitrobenzoate anion (yel-
low in color, formed due to interaction of DTNB and thio-
choline) using SpectraMax microplate spectrophotometer
(Molecular Devices, USA). The test for the substances under
study was performed at least thrice. The preliminary differ-
ence was calculated as the difference in optical density/min
and used in the following determination. The test reaction
contained test samples, while the control lacked test sub-
stance. For comparison, the standard AChE inhibitor was
physostigmine.

2.6. Molecular Docking and Dynamics Simulation

2.6.1. Molecular Docking Protocol. The ligand diosgenin, a
phytosteroid sapogenin (Figure 1), was considered with flex-
ibility of a defined ligand-specific torsion tree. Torpedo cali-
fornica acetylcholinesterase (TcAChE) structure retrieved
from Protein data bank accession I1.D. 7B2W was down-
loaded, protonated, and minimized prior to docking. Auto-
Dock docking setup for TcAChE was asserted as rigid, and
the grid spacing was applied onto the whole 3-dimensional
protein structure to explore the putative binding sites.



4
1 min
10 1M 10 uM o 3o 30 1do
Nic ACh —— Tfg.Cr (mg/ml) —

(a)

BioMed Research International

1 min

el

A A - - - -
10 uyM 10 uM 1.0 3.0 5.0 10.0

Hist ACh F———Tfg.Cr (mg/ml)—

(®)

FIGURE 3: Tracings showing the effect of fenugreek crude extract (Tfg.Cr) on isolated intestinal tissue preparations. (a) Activity of Tfg.Cr on
resting spontaneous contractions of rabbit jejunum tissues in comparison to standard drugs like acetylcholine (ACh) and nicotine (Nic). (b)
Activity of Tfg.Cr on resting baseline of isolated rat ileum tissues in comparison to standard drugs like acetylcholine (ACh) and histamine

(Hist).

Auto-Dock algorithm having precalculated maps of each
atom of the ligand with the pre-defined electrostatic poten-
tial was utilized. The autogrid algorithm implemented in
Auto-Dock predicts the binding energy via the ligand con-
formation and contribution of each atom of a specified ele-
ment with the specified grid point in the vicinity of the
receptor. The grid box is generated around the active site
of the TcAChE enzyme, allowing the docking software to
look for all possible interactions between the ligands and
the receptor. Other configurational settings were set as the
default. Auto-Dock examined the intact 3D structure of
AChE and ligand diosgenin in the prescribed grid spacing
to search the space for docking. 2D and 3D molecular inter-
actions of the protein-ligand complex was visualized to
interpret the binding mode.

2.6.2. Molecular Dynamics Simulation Setup. The investi-
gated docked AChE-diosgenin complex was further expe-
dited to spurt molecular dynamics (MD) production run
via the Desmond simulation package. MD simulations of
the AChE-diosgenin docked complex were accomplished
to reveal the capability of the diosgenin inhibition in the ace-
tylcholinesterase. Receptor topology was generated, and the
SPC water model with the specified periodic boundary con-
ditions at a distance of 1.0 nm was set to create an aqueous
environment. Furthermore, the solvated receptor charges
were neutralized by the addition of required Na* or Cl” ions.
Subsequently, the default value of pressure and temperature
was maintained as per the Parrinello-Rahman algorithm and
Nose-Hoover temperature coupling method. The NPT
ensemble was used for minimization and relaxation. The
100ns production MD simulation run was executed with
the interval record of 100 ps. Furthermore, simulated trajec-
tories were analyzed and visualized via simulation interac-
tion diagram (SID) module implemented in Desmond
Schrodinger package to record the protein deviation, fluctu-
ation, compactness, and hydrogen bond contacts with their
occupancies, while ligand root means square deviation
(RMSD), the radius of gyration (rGyr), torsional angle,
molecular surface area (MolSA), solvent accessible surface
area (SASA), and polar surface area (PSA) were also calcu-
lated during the production run of MD simulated time.

2.7. Result Representation. Data are shown as mean+
standard error of the mean (SEM; “n” is observations) and
the effective concentration producing 50% inhibition

(ECs,) with 95% confidence intervals (CI). The graphs were
constructed and analyzed utilizing the GraphPad program
(GraphPad, USA). Statistical comparisons were made via
two-way analysis of variance (ANOVA), and unpaired Stu-
dent’s t-test (p<0.05) was taken as statistically different
(GraphPad program).

3. Results and Discussion

This project was aimed at looking into some of the pharma-
cological activities of fenugreek seed extract. Fenugreek
seeds are traditionally used in multiple GI conditions [1, 2,
4] while also regarded as useful as a CNS tonic to enhance
memory [1, 5].

3.1. Effect of Tfg.Cr on Isolated Smooth Muscle Tissue
Preparations. The 70% aqueous methanolic extract was
investigated on the isolated rabbit and rat GI smooth muscle
tissue preparations. The reason for selecting these tissue
preparations was that rabbit jejunum, once isolated in a tis-
sue bath under controlled conditions, elicits spontaneous
contractions, and it is ideal for testing for potential GI
spasmolytic agents [19, 20]. However, spasmogenic effects
can also be investigated on rabbit jejunum. Tfg.Cr (0.1-
10mg/ml) did not exhibit a response when evaluated on
spontaneous contractions of rabbit jejunum tissue prepara-
tions (n=3; Figure 3(a)). There was neither a stimulant
nor a relaxant effect seen with the extract (Figure 3(a)). This
could be due to a number of reasons. The simplest reason
could be that the plant extract just does not have any GI-
active components which is why it did not exhibit any activ-
ity in this preparation. Other reasons are discussed below. In
comparison to the extract, standard GI stimulants like ACh
(10 uM) and nicotine (10 M) both elicited an immediate
stimulant effect on the resting spontaneous contractions
(Figure 3(a)). The rat ileum, on the contrary, maintains a flat
baseline and is ideal for screening spasmogenic activity [21].
When tried on this tissue, Tfg.Cr (0.1-10 mg/ml), similar to
how it acted in rabbit jejunum, did not exhibit any effect
(n=3; Figure 3(b)). There was neither a stimulant nor a
relaxant effect seen from Tfg.Cr (Figure 3(b)). On the con-
trary, standard gut spasmogenics like ACh (10 M) and his-
tamine (10uM) both exhibited a sharp spasmogenic
response on the baseline of rat ileum tissues (Figure 3(b)).
These results are worth mentioning, keeping in mind that
fenugreek seeds are used traditionally in constipation
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(spasmogenics help in constipation to increase the muscular
tone) and diarrhoea (spasmolytics help to relax muscular
tone in diarrhoea). The traditional use was an indication that
the seed extract should have either spasmolytic or spasmo-
genic or even both activities, as we have shown so often from
our studies [17]. The seeds are also known to contain choline,
a quaternary ammonium compound that forms ACh in the
body [22]. ACh is a major neurotransmitter in the biological
systems as a modulator of GI motility and memory [22]. As
to why we did not see any muscular tone modulatory effect
of the extract in the isolated preparations, it could be that
multiple chemical components in the seed extract balanced
out a final effect due to their presence or maybe the GI-
active component did not concentrate out in the 70% aque-
ous methanolic solvent that we used. There could even be a
species-specific effect. We have shown, in the past, that plant
extracts exhibit different effects in tissues from different spe-
cies [21, 23, 24]. Whatever the reason may be, although neg-
ative, these findings help rule out several different variables
for any future studies other researchers might decide to per-
form to further investigate the GI effects of this very popu-
larly used herb.

3.2. Effect of Tfg.Cr and Diosgenin on Enzyme Assay for
ACHE Inhibition. Another reason for using the isolated tis-
sue preparations was to see if the extract can show an
ACh-like spasmogenic effect. This is because ACh is a GI
stimulant and a major neurotransmitter implicated in the
pathophysiology of Alzheimer’s disease [25]. Chemicals with
an ACh-like effect can help patients with memory disorders
like Alzheimer’s [22]. We have reported several ACh-like GI
stimulant extracts with additional AChE inhibitory pharma-
cology [20, 26]. But as discussed, the extract did not exhibit
any effect on the isolated tissues. Although when tested
against the in vitro AChE enzyme assay, Tfg.Cr, in increas-
ing concentrations (47-380 ug/ml), inhibited the ACh-
degrading enzyme AChE (Figure 4). The EC,, for this effect
was 196.0 ug/ml (152.6-251.9, n = 4). Tfg.Cr showed a max-
imum of 48.8+1.3% (n=4) inhibition of the enzyme
(Figure 4). This inhibitory effect was like the effect exhibited
by physostigmine, a standard AChE inhibitor, that showed
its inhibitory effect with EC, of 0.04 ug/ml (0.04-0.04, 3
observations; data not shown). This action of fenugreek
aligns with its folkloric consumption to enhance memory
[1, 5]. AChE inhibitors are the mainstay of therapy for Alz-
heimer’s disease, and currently, three out of the four clini-
cally used Alzheimer’s medications are AChE inhibitors
[27]. One study in the literature [28] reports the AChE
inhibitory effect of fenugreek but that study used an ethano-
lic standardized extract compared to our methanolic crude
extract. This shows the widespread presence of AChE inhib-
itory constituents in fenugreek seeds. Recently, a couple of
in vivo studies reported the positive effect of fenugreek on
memory [29] and cognition [30].

To determine the responsible compound for this AChE
inhibitory action, we tested diosgenin (Figure 1), a steroidal
sapogenin reported in fenugreek [1, 2, 4]. Diosgenin, in
increasing concentrations (11-190 ug/ml), inhibited the
AChE enzyme (Figure 4). This activity of diosgenin was sig-
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FIGURE 4: Curves showing the response of fenugreek crude extract
(Tfg.Cr) and diosgenin on the in vitro enzyme assay for
acetylcholinesterase (AChE) inhibition. Data presented are mean
+ SEM, four observations; the two curves are statistically different
(p <0.001), two-way ANOVA.

nificantly more potent than that of the extract (p <0.001,
two-way ANOVA). The EC,, of the suppressive action of
diosgenin was 27.9 ug/ml (24.9-31.1, n=4). Diosgenin
showed a maximum of 53.0+0.4% (n=4) inhibition of
the AChE enzyme (Figure 4). The maximum inhibition of
the AChE enzyme by diosgenin was significantly different
from that of the crude extract (p <0.01, unpaired t-test).
We have earlier reported this AChE inhibitory effect of dios-
genin [31], so in that sense, this finding regarding diosgenin
is not novel. However, this shows that diosgenin is likely
behind the AChE inhibitory effect observed with Tfg.Cr.

3.3.  Molecular Docking Interpretation of Diosgenin
Interactions with TcAChE. A molecular modelling study
was executed to interpret the binding mode analysis of dios-
genin into the possible binding cavity of the TcAChE recep-
tor 7B2W. The docking output with putative interaction site
with the highest AG binding energy threshold of —10.7 kcal/
mol was observed among all the ranked poses based on the
estimated interaction energy. The top ranked conformation
of diosgenin according to the highest AG binding energy
was elected for molecular investigation. Auto-Dock Vina
top most ranked pose output revealed that diosgenin estab-
lished hydrogen-mediated, hydrophobic, and pi-pi stacking
contacts with the aromatic amino acid residues of TcAChE
of the peripheral anionic site (Tyr70, Tyrl2l, Trp279,
and Tyr334), an anionic subsite (Phe330), catalytic site
(Phe331), and acyl pocket residues (Phe288 and Phe290) as
illustrated in Figure 5. PAS anionic site and anionic subsite
residues have been previously reported for the CNS activity.
These amino acids Tyr70, Tyr121, Trp279, Phe288, Phe290,
Phe331, and Tyr334 which directly involve in mediating
hydrophobic interactions were discovered in case of dios-
genin which were reported for CNS activity in literature.
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F1GURE 5: Postdocking analysis of Torpedo californica acetylcholinesterase with diosgenin. The green color represents ligand, while brown

represents protein atoms.

3.4. MD Analysis. Molecular dynamic simulation data anal-
ysis is the basic quantitative evaluation parameter to analyze
the stability, instability, deviations, fluctuations, compact-
ness, and molecular interaction contact analysis of the pro-
tein and ligand via conformational geometries and
dynamic vibrations and motions.

3.4.1. AChE-Diosgenin Complex Deviation and Fluctuation.
RMSD was used to record the dislocation of the atoms pres-
ent within the protein and ligand during MD simulated time
with the initially generated frame of the pre-MD production
run. RMSD plot analyzed for the protein backbone carbon-
alpha atoms and the heavy atoms of the ligand during
100ns of MD executed production runs. RMSD plot of
TcAChE receptor 7B2W-diosgenin complex as depicted in
Figure 6(a) demonstrated that AChE receptor deviations
were noted within the range of 1.2 A to 1.75A during the
100 ns of the trajectories record. In contrast, more deviations
were observed between 65 ns and 75 ns with the deviation of
+2A. In the case of ligand fitting, RMSD with the heavy
atoms of diosgenin in the 7B2W receptor showed more dis-
tortions in the initial 5 to 25 ns of the production run within
the range of 1.6 A to 6.4 A. In comparison, the stability was
almost attained after 25ns to 100 ns near to +4 A. A slight
or minor deviation was noted at 65ns as the same noted in
the protein RMSD. Lig fit Prot plot revealed that ligand
had been slightly diffused away from its binding pocket.
Root mean square fluctuation of the protein-ligand complex
of 537 amino acid residues was also analyzed during 100 ns
of MD run. The influence of residue fluctuations was also
noted for this 7B2W-diosgenin complex with Tyr70,
Trp84, Trp279, and Phe288-Tyr334. Significant fluctuation
at Tyr70 amino acid residue within the PAS region was

observed. Minor fluctuations were observed with the other
interacting PAS and an anionic subsite residue. The low
deviation via RMSD and less fluctuation via RMSF results
suggested that TcAChE, when complexed with the dios-
genin, showed stability with the respective protein and its
binding cavity.

3.4.2. Protein-Ligand Interaction Contact Analyses. The sta-
bility of the TcAChE-diosgenin was estimated via a
protein-ligand contact histogram plot to check the overall
protein-ligand contacts with the active-site residues in terms
of interaction fraction pattern. These protein-ligand contacts
were also inspected on the simulated trajectories of 100 ns of
the production run. The interaction patterns follow H-
bonds, hydrophobic, ionic, and water bridging-mediated
interactions. H-bonding interactions play a crucial role in
drug designing, but in this contrast, hydrogen bonding
occurred as 0.74% with Asp72 and <0.1% with the Tyr121
and Tyr334. Hydrophobic contacts were established with
Tyr70, Phe75, Trp279, Phe331, and Tyr334 while 0.55%
hydrophobic contact with Trp279 and 0.3% and 0.35% frac-
tion contact with Phe331 and Tyr334 were noted. Trp84,
Tyrl21, and Tyr334 possessed weak hydrogen bonding
interactions. Asp72 showed maximum H-bond occupancy
throughout the simulation, but in the last 25ns, MD run.
Its contact with diosgenin was diminished and converge into
the water-mediated bridging interactions. At the same time,
other residues which are mediating interactions with negligi-
ble hydrogen bond occupancies were observed negligible as
implemented in Figure 7. 2D protein-ligand interaction pat-
tern was also checked for further explanation as depicted in
Figure 8. It is also evident by the 2D protein-ligand contact
diagram, which was also showing that hydroxyl moiety of
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the diosgenin-mediated H-bond with Asp72 persists to 74%
during simulation while the water-bridge interaction with
the Tyr121 persisted 44%.

A timeline representation of the above-mentioned
receptor-ligand histogram was further analyzed to check
the total number of interaction or molecular contacts in each
trajectory record frame of all amino acid residues of the
TcAChE, further clarified by the timeline exhibit of active-
site residues of the TcAChE-diosgenin complex. The top
panel of the timeline representation, as depicted in
Figure 9(a), demonstrated the total number of exhibited

molecular contacts in each trajectory record frame.
Throughout the 100ns of the production run, almost 05
intermolecular contacts persisted while the increase in
molecular contacts was noted at 30 and 80 ns. During this
phase of the MD run, it showed variation in establishing
any molecular interactions that raised from 5 to 9. Further-
more, we noted which amino acid residues mediated inter-
molecular contacts in each trajectory throughout the
simulation, as mentioned in Figure 9(b). Asp72, Tyrl21,
Trp279, Phe331, and Phe334, the peripheral active-site gorge
residues, interacted throughout the simulation, while Tyr70,
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Phe75, Gly80, Ser81, Trp84, Leu282, Asp285, Ser286 inter-
acted very few or showed inconsistent molecular interaction
as indicated by light orange color, which means a single con-
tact obtained during simulation. Subsequently, Asp72
showed a dark band of orange color, showing that it inter-
acted in high occupancy with more molecular contacts
throughout the simulation, which validates that the crucial
active-site amino acid residues have more interactions with
diosgenin. It verified that approximately all probable posi-
tional geometries were achieved during this highly occupied
H-bonds as described in the aforementioned histogram plot.
Despite Asp72, Tyrl2l, Trp279, Phe331, and Phe334
showed variation sometimes single or more contacts
throughout the simulation, these molecular contacts showed
inconsistency during 100ns of MD production run each
frame trajectory record.

3.4.3. Detailed Analyses of the Diosgenin Properties
throughout the Simulation. The ligand properties were stud-
ied carefully to understand the conformational repositions
utilizing the reference of pre-MD production data. For this
purpose, all atoms of the diosgenin used for the detailed
analysis such as RMSD, compactness or extendedness,

MolSA determination via 1.4A probe radius, SASA, the
PSA were estimated as shown in Figure 10, and the torsional
angle profile of the rotatable bonds present in the diosgenin
was also critically analyzed as explained in Figure 11.

The RMSD of the ligand showed stability throughout the
simulation, while minor fluctuations were seen at 50-55ns
after reaching the equilibrium position after 5 ns. The ligand
RMSD lay around 0.25A to 0.8 A, while RMSD attained
around 0.6A during the whole simulation shown in
Figure 10(a). The rGyr was also measured by which the
compactness of the ligand was analyzed. The rGyr of the
diosgenin slightly fluctuated to 40 ns simulation, later slowly
attained equilibrium. The ligand showed an rGyr range of
about 4.6 A to 4.8 A, and the equilibria attained around +
47 A (Figure 10(b)). Another property MolSA was also
determined with a 1.4A probe radius. MolSA of ligand
seemed stable during simulation, although there was a little
less variation in 45 ns and 85 ns trajectory records. The range
of MolSA is around 380A* to 388A% and the equilibrium
achieved around 385A2 is visualized in Figure 10(c). The
SASA by H,O solvent was also noted. The SASA denoted
that the raised value from 80 to 320 A” until 20 ns simulation
and then afterward became persistent until the end of the
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during simulation. (b) The bar plot demonstrating the probable
density of the torsions present in the ligand.

simulation with the range of 20042 (Figure 10(d)). The PSA
was also estimated for diosgenin molecules influenced by the
polar O, and N atoms. The PSA was in the range of 50A>-
60A” throughout the simulation, but there were visible fluc-
tuations occurred at 46 ns to 65ns simulation period, while
the equilibrium attained around 56A® inspected in
Figure 10(e). The above-mentioned studied ligand proper-
ties show that there were some fluctuations in the initial or
intermediate recorded trajectory frames, which gradually
achieved equilibrium till the completion of the simulation,
which demonstrated the stability of diosgenin in the active
site of the gorge region TcAChE.

Dial plot illustrated that the torsion angle variations per-
sisted throughout the whole MD production runs. The bar
plot emphasized the dial plots by indicating the probable
density of the torsions via utilizing each rotatable bond pres-
ent in the ligand, as depicted in Figure 11. It showed that the
torsional angle of the rotatable bond lay between 160 to 180
degrees of angular rotation, while the occupancy showed at
170 degrees of angular rotation. Histogram and torsion
interactions may reflect conformational strain that ligand
faces to sustain a protein-bound conformation.

3.5. Pre- and Post-MD Binding Mode Analysis of TcAChE-
Diosgenin Complex. Molecular docking and post-MD results
revealed that diosgenin penetrated in the active-site gorge
region of TcAChE and showed almost similar molecular
interactions in the static and dynamic mode. The peripheral
anionic site aromatic residues Trp279 and Tyr334 showed
hydrophobic or pi-pi stacking contacts with diosgenin in
both pre- and post-MD stages. Subsequently, new molecular
interactions were also observed and mediated hydrogen
bond during 100ns MD run with the hydroxyl moiety of
diosgenin via Asp72 with the distances of 1.68A and
2.84 A and Ser81 with the distances of 2.93 A. The OH group
interacted with Asp72- and Ser81-mediated H-bonding
interactions could be the reason for enhancing the binding
affinity of diosgenin in TcAChE.

4. Conclusion

These results show that although fenugreek is so popularly
used traditionally in GI disorders, it exhibited neither a stim-
ulant nor a relaxant effect on the GI smooth muscles. This is
an important finding as it rules out several variables and
gives valid information to other researchers to try either a
different solvent system for the extraction or different ani-
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mal species to investigate any potential GI effects of this
herb. Isolated smooth muscle preparations not only help to
elucidate GI effects but also help look for ACh-like effects,
which are also relevant in Alzheimer’s disease pharmacol-
ogy. Although it did not affect the isolated tissues, the extract
did exhibit an inhibitory effect on the AChE enzyme assay,
providing a rationale for its traditional consumption in
memory loss. Diosgenin, a known chemical component of
fenugreek, also showed a much more potent inhibitory effect
on the AChE enzyme assay, indicating that it must be the
responsible compound in fenugreek for this effect. After
applying in silico approaches, we concluded that diosgenin
permeated the active-site gorge of TcAChE and displayed
substantially identical molecular interactions in the static
and dynamic states obtained from molecular docking and
post-MD findings.
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