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Comprehensive genomic and epigenomic analysis
in cancer of unknown primary guides molecularly-
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The benefit of molecularly-informed therapies in cancer of unknown primary (CUP) is

unclear. Here, we use comprehensive molecular characterization by whole genome/exome,

transcriptome and methylome analysis in 70 CUP patients to reveal substantial mutational

heterogeneity with TP53,MUC16, KRAS, LRP1B and CSMD3 being the most frequently mutated

known cancer-related genes. The most common fusion partner is FGFR2, the most common

focal homozygous deletion affects CDKN2A. 56/70 (80%) patients receive genomics-based

treatment recommendations which are applied in 20/56 (36%) cases. Transcriptome and

methylome data provide evidence for the underlying entity in 62/70 (89%) cases. Germline

analysis reveals five (likely) pathogenic mutations in five patients. Recommended off-label

therapies translate into a mean PFS ratio of 3.6 with a median PFS1 of 2.9 months (17

patients) and a median PFS2 of 7.8 months (20 patients). Our data emphasize the clinical

value of molecular analysis and underline the need for innovative, mechanism-based clinical

trials.
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Cancer of unknown primary site (CUP) is defined as
metastatic cancer without detection of a tumor of origin
and accounts for 2–4% of all malignancies. Treatment

options are limited and in the majority of cases insufficient1,2.
Routine diagnostic measures contain blood analyses, histo-
pathology including immunohistochemistry as well as imaging of
thorax, abdomen, and pelvis. Even though the prognosis is
unfavorable in the majority of cases, ~15% of patients can be
categorized into more favorable subsets that benefit from treat-
ment similar to therapies administered to patients with corre-
sponding primary tumors and metastatic spread. Therefore,
identification of those favorable CUP subtypes is important for
efficient treatment3. Currently, CUP subtype identification is
mainly based on disease localization and a systematic, in-depth
immunohistochemical assessment, but considerable research
efforts aim at improving its accuracy or applicability to more
patients by new technologies. RNA expression profiling has been
reported to identify the tissue of origin in 80–90% of cases4–7.
Epigenetic profiling using DNA methylation signatures has been
reported to predict the tissue of origin in almost 90% of cases8.
Nevertheless, to date there is no clear evidence from prospective
randomized trials that site-specific therapy based on these new
approaches leads to improved patient outcome9,10.

Broad, mainly panel-based, molecular analyses of patients with
CUP revealed profound genetic heterogeneity with most frequent
alterations in common cancer-related genes like TP53, KRAS,
CDKN2A, and SMAD411–13. In many cases genetic alterations
were identified14 that potentially can be addressed
therapeutically15. Still, the clinical benefit of molecularly guided
treatment in CUP remains unclear.

Here we describe a cohort of 70 CUP patients characterized by
comprehensive molecular profiling within the MASTER program
of the National Center for Tumor Diseases and the German
Cancer Consortium (NCT/DKTK) combining whole-exome/
genome sequencing, transcriptome and methylome analysis in a
clinical workflow to identify therapeutic targets. Based on deep
insights into the highly individual molecular landscape of the
disease, molecular tumor board recommendations led to
genomics-guided treatment in 20 patients.

Results
Patients. Seventy CUP patients were included of whom 61 met
the criteria defined by the ESMO clinical practice guideline3. In
the remaining nine cases documentation of necessary initial
imaging procedures was lacking (such as CT scans of thorax,
abdomen and pelvis). Median age was 46 years (range 18 to 73).
27/70 (39%) patients were male, 43/70 (61%) were female.
Median follow-up time was 25.9 months. Median overall survival
(OS) was 22.1 months. 38 patients died during the observation
period. Documentation of previous therapies and tumor burden
was available for 69 patients. The median number of systemic
therapies prior to sample submission for these 69 patients was 1
(range 1–7). Detailed patient characteristics are depicted in
Table 1 and Supplementary Data 1 and 2.

Somatic molecular characteristics. We performed whole-exome
sequencing (WES; 41/70, 59%) or whole-genome sequencing
(WGS; 29/70, 41%) of tumor DNA and control (germline) DNA
derived from peripheral blood. RNA sequencing was performed
in 55/70 (79%) cases. Within the coding sequence, 0 to 1418 non-
silent point mutations (SNVs, median= 42.5) and 0 to 39 small
insertions/deletions (indels, median= 3) were identified per
sample (Fig. 1). Three samples had a significantly higher tumor
mutational burden (TMB) than all others (≥10 mutations per
megabase, Fig. 1). Two-thirds (n= 46) of all samples had

alterations (SNVs, indels and fusions) occurring in genes, which
were mutated in more than 10% of all samples. Those included
nine genes: TP53, TTN, MUC16, ABCA13, COL6A3, KRAS,
LRP1B, XIRP2 and CSMD3, of which five (TP53, MUC16, KRAS,
LRP1B and CSMD3) are known to be highly relevant in cancer16.
Three samples (4%) in our cohort harbored a mutation in the
CDKN2A gene, comprising one stop-gain SNV, one nonsynon-
ymous SNV and one frameshift deletion. Genes most commonly
affected by SNVs were TP53 (n= 24), TTN (n= 19), MUC16
(n= 10), ABCA13 (n= 9), COL6A3, CSMD3, LRP1B, XIRP2
(n= 8 each), KIAA1109, KRAS, OBSCN (n= 7 each), CSMD1,
DNAH12, NEB, PCLO and PTPRF (n= 6 each). Genes most
commonly affected by indels were ARID1A (n= 3), APC,

Table 1 Patient characteristics.

Characteristics No. of patients

All 70 (100%)
Sex

Male 27 (39%)
Female 43 (61%)

Age
≤29 8 (11%)
30–39 10 (14%)
40–49 31 (44%)
50–59 15 (21%)
60+ 6 (9%)

Tissue molecular testing method
WGS 29 (41%)
WES 41 (59%)
RNAseq 55 (79%)
Methylome 55 (79%)

Histologic diagnosis
Adenocarcinoma 43 (61%)
Squamous cell carcinoma 9 (13%)
Neuroendocrine tumor 5 (7%)
Melanoma 3 (4%)
Poorly differentiated carcinoma 3 (4%)
Undifferentiated carcinoma 3 (4%)
Carcinoma, not otherwise specified 2 (3%)
Moderately differentiated carcinoma 1 (1%)
Sarcoma 1 (1%)

Number of metastatic sites
1 24 (34%)
2 20 (29%)
3 12 (17%)
4 11 (16%)
5 or more 2 (3%)

Location of disease
Liver 39 (56%)
Lymph nodes 36 (51%)
Bones 21 (30%)
Lung 15 (21%)
Peritoneum 14 (20%)
Other 25 (36%)

MTB recommendations
Therapies recommended 56 (80%)
Therapies applied 20 (29%)

Number of previous systemic therapies
0 10 (14%)
1 26 (37%)
2 17 (24%)
3 5 (7%)
4 or more 11 (16%)

Cohort description including sex and age distribution, method of molecular analysis and
summation of (applied) tumor board recommendations. Number of previous therapies counted
until sample submission. Percentages may not total 100 due to rounding.
WGS whole-genome sequencing, WES whole-exome sequencing, MTB molecular tumor board.
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DNAH7, ESRRA, LMTK2 and ZNF107 (n= 2 each). Based on
RNA sequencing, we detected 0 to 61 (median= 10, mean= 15)
gene fusions of high confidence per patient, many of which were
of unclear relevance. In 17 patients we detected fusions with
predictive or diagnostic relevance (Supplementary Data 3). The
genes that were most commonly involved in these fusions were
FGFR2 (6 patients), EML4-ALK (3 patients), BRAF (3 patients)
and EWSR1-WT1 (2 patients). In four cases the FGFR2 fusion
was intrachromosomal and included inversions (n= 3, twice with
BICC1), translocations (n= 2) and a deletion (n= 1). All samples
tested for microsatellite instability (MSI) were microsatellite sta-
bile (MSS, n= 69). Analysis of somatic copy number aberrations

(sCNA) could be reliably performed in 51 samples (27 WGS and
24 WES). We identified diverse tumor ploidies ranging from two
to six (2: n= 31; 3: n= 6; 4: n= 11; 6: n= 3), as well as complex
copy number profiles. Furthermore, we found gain and loss
events involving single arms or entire chromosomes occurring in
multiple samples (Supplementary Fig. 1). In at least 40% of the
samples, we detected (i) gains in chromosomes 8q, 1q and 7 (with
peaks in loci 8q24.21, 1q42.2, 7q11.21 and presence in 65%, 63%
and 55% of samples, respectively) and (ii) losses in chromosomes
6q, 17p, 3p and 8p (with peaks in loci 6q26, 17p13.1, 3p14.2, 8p12
and 8p23.2 and presence in 46%, 46%, 44%, 41% and 41% of
samples, respectively). Notably, locus 17p13.1 includes TP53. The
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most common focal copy number aberrations identified in WGS
samples included: (i) amplification involving a fragment of
8q24.21 and affecting MYC (n= 4), (ii) homozygous deletion
involving a fragment of 22q12.2 affecting TTC28 (n= 7)—which
inhibits tumor cell growth by interacting with TP5317, and (iii)
deletion involving a fragment of 9p21.3 directly affecting tumor
suppressor CDKN2A (n= 7; homozygous deletion in six samples,
and deletion of one copy in one sample). Homologous recom-
bination deficiency (HRD) could be assessed in 51/70 patients by
calculating a score (sum of LOH-HRD and LST). The score was
high (>20) in twelve, intermediate (in range 11–20) in 19 and low
(≤10) in 20 patients. Additionally, we used two WGS-based
methods, HRDetect and CHORD, which produced a software-
specific HRD probability score. The probability was >0.99 and
>0.93, respectively, in two patients (CUP-45 and CUP-08). Both
of them were the highest-scoring WGS samples of the first
method (sum of LOH-HRD and LST), which was independent
from sequencing type (Supplementary Fig. 2). Analysis of the
sequencing data for reads of viral origin revealed three tumors,
which were positive for human papillomavirus type 16 and
another one, which was positive for human papillomavirus type
18 (Supplementary Table 1). Integration of viral DNA into the
host genome was detected in three cases inside/near the genes
HOXA2, MIER1, SLC35D1, and TENM4. Mutational signature
analysis revealed signatures associated with impaired homologous
recombination (AC3) in seventeen, with UV exposure (AC7) in
twelve, with tobacco smoking (AC4) in nine, and with alkylating
agent exposure (AC11) in five samples. These signatures were
dominant in thirteen, three, four, and zero samples, respectively
(Supplementary Fig. 3). Mutations of TP53 (27 SNVs, one fra-
meshift insertion) and KRAS (seven SNVs) were significantly
enriched within the cohort (MutSigCV v.1.4, q < 0.15) with a
median allele frequency of 0.42 for TP53 and 0.48 for KRAS18. In
all but one TP53-mutated samples, sCNA were identified com-
prising loss of heterozygosity (LOH) and/or deletion (for more
details see Supplementary Results).

Germline analysis. Assessment of germline variants in all 70
patients revealed five pathogenic or likely pathogenic variants
(Supplementary Data 4) in five patients (7%) in the genes CHEK2,
BRCA1, CDKN2A, NBN and ERCC3. Genetic counseling was
recommended for the index patients and for their relatives. The
mean age at onset of the five patients with pathogenic or likely
pathogenic variants was significantly lower than the age at onset of
the other 65 patients (29.7 vs. 45.5 years, p= 0.001). In addition to
the recommendation for genetic counseling, three variants likely
associated with an autosomal dominant cancer disposition

supported a treatment recommendation, twice for PARP inhibi-
tion (BRCA1, CHEK2) and once for CDK4/6 inhibition
(CDKN2A). None of the patients with documented previous
tumors (five patients) had a (likely) pathogenic germline muta-
tion. Moreover, loss-of-heterozygosity (LOH) occurred only in
one of the patients with a pathogenic variant (CDKN2A, CUP-64).

Entity prediction using methylome and transcriptome data.
We retrospectively performed entity predictions using methy-
lome- and transcriptome-based similarity analysis. For this pur-
pose, we first used methylome and transcriptome data from 33
different TCGA cohorts. We set up a validation cohort using 100
consecutive MASTER patients enrolled between 12/2020 and 06/
2021 (Supplementary Data 5) consisting only of entities that are
part of TCGA to ensure comparability with other tissue-of-origin
classifiers, which were usually trained on TCGA data and can
therefore only reliably predict entities that are part of TCGA.
Transcriptome data was available for 72 patients of the validation
cohort (Supplementary Data 6), methylome data for 77 (Sup-
plementary Data 7). We compared the accuracy of our results
(expression comparison TCGA 41/72, 57%; methylome com-
parison TCGA 52/77, 68%) with two other published methods,
cancerSCOPE19 and CUP-AI-Dx20, both of which had similar
accuracy as our entity prediction when using TCGA as a refer-
ence cohort (cancerSCOPE highest score 40/72, 56%; cancer-
SCOPE consensus 35/72, 49%; CUP-AI-Dx 39/72, 54%). When
comparing TCGA cohorts with our CUP cohort, classification
based on methylome comparison was possible in 55/70 cases
(79%). The remaining cases had a tumor cell content of 30% or
less or did not have enough DNA material available for analysis.
Classification based on transcriptome was possible in 55/70 cases
(79%) as well, but not in the very same 55 patients classified by
methylome analysis. The remaining cases had low RNA quality or
did not have RNA material available for analysis. In 62/70 cases
(89%) entity prediction was possible by at least one of the
methods. In 48/70 cases (69%) entity prediction was possible by
both methylome and transcriptome analysis. In only 20/48 (42%)
the same entity was predicted by both methods, causing us to
consider additional data like indicative molecular alterations and
histology (Supplementary Data 8). To address this problem, we
performed a similarity analysis by comparing the transcriptome
data of the entire MASTER cohort across histologies (reference
cohort consisting of 1890 samples from 1814 patients, Supple-
mentary Data 9) with our CUP cohort. This approach showed the
best accuracy when tested on our validation cohort (56/72, 78%,
Supplementary Data 6) and enabled us to have a comparison to
rare tumor entities, which were enrolled in MASTER but are not

Fig. 1 Molecular alteration landscape and TMB of CUP patient cohort. Complex characteristics are presented for each patient sample (x-axis). The bar
plot on top shows the sum of non-silent somatic single-nucleotide variants (SNVs) and coding small insertions/deletions (indels) in exonic sequences per
1 Mb of the coding sequence of the genome. Three samples above 10 mut/Mb threshold (black bars) had a very high mutational burden and were excluded
from the pool of mutations considered for the thresholding of genes in the bottom part of the figure. Directly below, the annotation shows: (i) the
sequencing type performed, (ii) histology, (iii) HPV infection status, (iv) homologous recombination deficiency (HRD) scores (LOH-HRD+ LST), which
were defined as high (>20), intermediate (in range 11–20) or low (≤10) together with HRD annotation from HRDetect (p > 0.7) and CHORD (p ≥ 0.5), (v)
presence of mutation (SNV, indel and fusion of high confidence) in genes related to HRD75 (Supplementary Data 18), (vi) the presence and dominance
status of mutational signatures AC3, AC4 and AC7. The panel underneath shows the percentage (on a continuous color scale from white to orange) of
affected genomic fragments by the most frequent copy number events, including amplifications of chromosomes 1q, 7, 8q and deletions of chromosomes
3p, 6q, 8p, and 17p. The genomic coordinates of minimum overlapping fragments with sCNAs occurring at highest frequencies are: 1: 231909967-
231965044, 7: 61969019-62050023, 8:128229683-128247675, 8:128340019-128351894, 8:128351920-129149936 for amplifications, and 3:60450070-
60453492, 6:162542556-162630329, 8:3094996-3159994, 8:3570000-3590017, 8:3630011-3660004, 8:32400042-32409988, 8:33915011-
33989984, 17:9010240-9010378 for deletions. The bottom panel presents the most frequently observed non-silent SNVs (blue), indels (red), fusions of
high confidence (green) and focal homozygous deletions (pink; only in genes related to cancer16). Only genes mutated in 4 or more patients (while
excluding samples with more than 10 mutations/megabase from counting) appear in the plot. Genes in black font color are listed in the Cosmic Cancer
Gene Consensus16, genes in gray font color are not. Source data are provided as a Source Data file.
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part of TCGA. When plotted graphically (Fig. 2a–d), some TCGA
entities showed distinctive clusters, some did overlap with other
entities. Cholangiocarcinoma (CHOL) and pancreatic adeno-
carcinoma (PAAD) are two examples of entities that were hard to
distinguish while at the same time occurring quite often as pre-
dictions in our CUP cohort. CUP samples were close to many

entities that did not necessarily cluster distinctively. For example,
none of the CUPs were close to pheochromocytoma and para-
ganglioma (PCPG), which cluster separately from most other
entities, but many CUPs were close to gastrointestinal tumors.
Taken together, our multi-omics approach led to a higher per-
centage of predictions but at the same time it did not clarify the
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diagnosis in a subgroup of patients (concurring and discrepant
results presented in Venn diagrams, Fig. 2e, f). It highlights the
need for an integrated classifier taking into account both
methylation and transcriptomic data (detailed information on
entity predictions in Supplementary Data 8).

Diagnostic interpretation of molecular profiling. We detected
several rare genetic alterations of diagnostic interest (Supple-
mentary Data 8). We found an IDH1 p.R132C mutation (CUP-
68) and an IDH2 p.R172G mutation (CUP-19), which have been
reported to occur in a subtype of cholangiocarcinoma21,22. Both
offer a rationale for treatment with IDH inhibitors. In CUP-03 we
detected a KIT p.V560D mutation and transcriptomic profiling
matched with thymic carcinomas. Although KIT mutations occur
in different entities, they have been described to occur in thymic
carcinomas23 and can be addressed therapeutically by several
generations of tyrosine kinase inhibitors.

Additionally, we were able to identify several oncogenic gene
fusions of interest (Supplementary Data 3). In six patients, we
detected a gene fusion involving FGFR2, which always occurred at
the same splice-site of the FGFR2 gene (Fig. 3a). These fusions are
typical for a subgroup of cholangiocarcinoma24. Usually, the
intact kinase domain of FGFR2 is fused with a gene, which
provides a dimerization/oligomerization domain that facilitates
constitutive activation of downstream RAS/MAPK and PI3K/
AKT pathways. Moreover, they can be addressed therapeutically
using FGFR inhibitors25. EML4-ALK fusions were detected in the
tumors of three patients (3/70; CUP-02, CUP-20, CUP-11) and
could be confirmed by immunohistochemistry in all cases. At the
same time CUP-33 was reported to have a previously detected
EML4-ALK fusion that could not be found in our analysis, most
likely due to low quality of the biopsy sample. EML4-ALK fusions
are characteristic for a subtype of non-small-cell lung cancer
(NSCLC) and can be addressed therapeutically using ALK
inhibitors26. We detected two EWSR1-WT1 fusions (CUP-15,
CUP-42), which are typical for desmoplastic small round cell
tumors27. Two patients diagnosed with melanoma of unknown
primary by histologic analysis (CUP-34 and CUP-64) harbored
two BRAF fusions each, of which CUP-34 also had a BRAF
V600E mutation.

CUP-14 had an ARHGAP26-CLDN18 fusion, which has been
described in gastric signet-ring cell carcinoma28. A previously
undescribed MXI1-NUTM1 fusion was detected and confirmed
by routine diagnostics in CUP-04 (Fig. 3b). NUTM1 fusions
define NUT midline carcinomas29 and usually involve BRD3 or
BRD4 as fusion partners. In CUP-08 we detected an EZR-ERBB4
fusion, which has been described only once in KRAS wild type
invasive mucinous lung adenocarcinoma30. Furthermore, we
identified an ITSN1-BRAF fusion in CUP-70 that has not been
described yet. However, without additional information the

fusion event can’t be linked to a certain entity since BRAF
fusions play a role in various tumor entities31.

In total, 20/70 (29%) patients harbored rare genetic alterations
that could be linked to specific entities. Not all of them correlated
with entity prediction results based on transcriptome profiling
and these alterations alone did not necessarily justify diagnostic
reclassification. Still, together with omics-based entity predictions
they offer meaningful information of diagnostic value and can be
useful for further treatment decisions.

Genomics-based treatment recommendations. A dedicated
molecular tumor board (MTB) recommended personalized
therapy options based on information from DNA and RNA
sequencing for 56/70 (80%) patients in our cohort. Median
turnaround time from sample submission to MTB was
2.3 months (range 0.7–7.0 months). In four cases without
recommendation (4/70) the tumor cell content of the respective
biopsy was not sufficient for analysis, in six cases (6/70) the
respective patients died before the tumor board could convene, in
two cases (2/70) the sample quality was not sufficient for analysis
and in the remaining two cases (2/70) no targetable mutations
were found. Two patients received a second MTB recommenda-
tion (MTBR) based on a follow-up biopsy after progression of
disease occurred while being treated with molecularly guided
therapy (pazopanib, CUP-42; cetuximab+ carboplatin+
paclitaxel, CUP-70). In total, 58 MTBRs were issued. The first 56
MTBRs contained 142 drug recommendations, which were
grouped into eight different baskets (tyrosine kinases, PI3K-AKT-
mTOR, RAF-MEK-ERK, developmental pathways, DNA damage
response, cell cycle regulation, immune evasion and others) by
the type of pathway a recommended drug interacts with32. Tyr-
osine kinases were the most common basket used for recom-
mendations (47/164, Fig. 4a and Supplementary Data 10). All
drug recommendations were sorted into groups by the NCT/
DKTK evidence level they were based on as described by Leich-
senring and colleages33 (Level 1A/B/C, 11/142, 8%; Level 2A/B/C,
89/142, 63%; Level 3, 31/142, 22%; Level 4: 11/142, 8%).
18 samples had a mutational burden of at least 100 non-silent
SNVs and coding indels, which was defined as hypermutation by
the MTB and used as a potential rationale for immune checkpoint
inhibitor recommendations (immune evasion basket).

Genomics-based systemic treatment. Twenty (20/56, 36%)
patients were treated in accordance with MTBRs using 30
applied drugs or drug combinations (Fig. 5 and Supplementary
Data 11). Treatments were given off-label at the discretion of the
treating oncologist. Recommendations based on the immune
evasion basket were most likely to be applied (Fig. 4b). The
distribution of NCT/DKTK evidence levels of the first clinically
applied recommendations showed a similar distribution as the

Fig. 2 Methylome and transcriptome-based clustering. a tSNE plot based on the 5000 most variant CpG sites across the TCGA pan-cancer cohort
(n= 8024, 33 different cancer entities in 32 entity baskets). The tSNE analysis was jointly performed on the complete TCGA and MASTER CUP samples
(n= 55) to ensure comparability within the landscape. This subplot shows TCGA samples only. While many TCGA entities show distinctive clusters, some
do overlap with other entities. b This subplot illustrates all MASTER CUP patients (black) on top of the TCGA sample landscape (gray). CUP samples were
close to many entities that did not necessarily cluster distinctively (e.g., gastrointestinal tumors). c Transcriptome-based tSNE clustering of 33 different
cancer entities in 32 baskets using TCGA data without CUP patients (n= 1809). d Transcriptome-based tSNE clustering of MASTER CUP patients (black,
n= 55) among the background of TCGA-based clusters (gray). As with the methylome-based clustering, a notable fraction of the samples are found in the
diffusely structured center of the tSNE clustering. e Venn diagram depicting concurring results between methylome-based CUP entity predictions
(comparison to TCGA) and transcriptome-based entity predictions (comparison both to TCGA and MASTER; each depicted in separate groups). 48
patients of the CUP cohort had predictions based on all three methods and were therefore eligible for comparison (Supplementary Data 8). f Venn diagram
depicting concurring results between both transcriptome-based CUP entity predictions (TCGA and MASTER comparison). 55 patients of the CUP cohort
had transcriptome-based predictions (Supplementary Data 8). Source data are provided as a Source Data file.
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one of all drug recommendations (Level 1, 2/20, 10%; Level 2,
15/20, 75%; Level 3, 1/20, 5%; Level 4, 2/20, 10%). To evaluate
clinical benefit, we calculated the ratio (PFSr) of the
progression-free survival time associated with the first applied
therapy recommended by MASTER (PFS2) and the progression-
free survival associated with the last prior systemic therapy
(PFS1). Three (3/20, 15%) patients did not progress during their
last systemic therapy before they received a recommended
therapy. Therefore, neither PFS1 nor PFSr could be determined
for them, but recommended therapies translated into a PFS2 of
6.0, 10.0 and 11.1 months, respectively. Mean PFSr for the other
17 patients was 3.6. Median PFSr was 2.3 with a range from 0.2
to 16.4. Median PFS1 was 2.9 months (n= 17) and median PFS2
was 7.8 months (n= 20, Supplementary Fig. 4). In one patient
the PFS defining event was death, in the others it was pro-
gressive disease. To improve concordance with physician-
perceived clinical benefit, we calculated the modified PFS2/
PFS1 ratio (mPFSr) as described by Mock, Heilig and
colleagues34, which resulted in a mean mPFSr of 5.0 (median
mPFSr= 2.7; range 0.2 to 12.0; Table 2).

13/17 treated patients had a mean PFSr > 1.3, which was
considered as clinical benefit since this value has been frequently
used as a measure for positive clinical outcome in precision
oncology trials35–37. Four of them received treatment with
immune checkpoint inhibitors, three with ALK inhibitors, three
with multikinase inhibitors, one with trastuzumab, one with
vismodegib and one with olaparib plus gemcitabine (Supplemen-
tary Data 12). Three patients had a PFS2 > 1 year, namely CUP-
57 (26.5 months, trastuzumab), CUP-18 (23.3 months, nivolu-
mab) and CUP-08 (12.2 months, olaparib plus gemcitabine).

Observed responses were complete response (CR, 1/30, 3%),
partial response (PR, 9/30, 30%), stable disease (SD, 8/30, 27%),
mixed response (MR, 3/30, 10%) and progressive disease (PD, 9/
30, 30%). Of 20 patients who received the recommended targeted
therapies, 12 (60%) had stable disease ≥6 months or achieved
objective remissions (PR/CR). PR was achieved with the following
treatments: crizotinib, CUP-02; olaparib+ gemcitabine, CUP-08;
pazopanib, CUP-15; nivolumab, CUP-18/CUP-25/CUP-49; bica-
lutamide+ leuprorelin+ nab-paclitaxel, CUP-57; trastuzumab,
CUP-57; nintedanib+ docetaxel, CUP-62.

Fig. 3 Fusions of high confidence. Exon structures in transcriptome sequencing data are shown. a Fusions involving FGFR2 found in six patients. Fusion
partners were CLIP1, NOL4, WAC, SORBS1 and twice BICC1. b Fusion involving NUTM1 found in one patient. MXI1 has not been described previously as a
fusion partner for NUTM1, but NUTM1 fusions do define NUT midline carcinomas. Therefore, we identify MXI1 as a new possible fusion partner in NUT
midline carcinoma. Source data are provided as a Source Data file.
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Four patients were started on monotherapy or bridging
therapies and switched to combination therapy later on (CUP-
21, CUP-39, CUP-51, and CUP-57; Supplementary Results).
Notably, CUP-51 was started on nivolumab and showed MR so
that the subsequent treatment was escalated to a combination of
nivolumab and ipilimumab, which led to CR with no reported
progression until the end of the observation period (PFS2
9.8 months).

Five patients who received an MTBR were treated with at least
one subsequent treatment afterwards, three of them received
therapies based on two or more MTBRs, the other two (CUP-38,
CUP-70) received chemotherapies. CUP-69 had PD within three
months after treatment initiation with the first MTBR (olaparib,
PFS2 3.6 months) and was subsequently treated with chemother-
apy again (FOLFOX, PFS3 2.9 months). After further progres-
sion, a second MTBR was applied (cabozantinib, PFS4

9.4 months). CUP-20 received crizotinib (PFS2 5.9 months)
and after progression alectinib (PFS3 6.0 months). CUP-02
received treatment with the ALK inhibitors crizotinib (PFS2
5.6 months), ceritinib (PFS3 10.2 months), alectinib (PFS4:
3.2 months) and brigatinib plus chemotherapy (PFS5 1.7 months)
in accordance with the patients’ MTBR.

For patients that did not receive a recommended treatment, we
calculated the ratio of the first treatment applied after the MTB
(PFSb; median= 3.8 months, n= 12) and the last prior systemic
treatment (PFSa; median= 4.8 months, n= 11), which resulted
in a mean PFSr of 0.67 (median PFSr= 0.71, range 0.1 to 1.0,
n= 11; Supplementary Data 13). Median overall survival of the
36 patients without application of recommended treatments was
significantly shorter than of the 20 patients that received a
recommended therapy (18.3 months vs. 34.8 months, p= 0.022).
Same was true for median PFS2 and PFSb (7.8 months vs.
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3.8 months, p < 0.0001). Two patients with PFSb had stable
disease ≥6 months or achieved objective remissions (PR/CR;
Supplementary Fig. 4). Since our study was not randomized, these
results are not controlled for possible confounding factors.
Within MASTER, reasons for non-implementation of MTBRs
included lack of availability or reimbursement of recommended
treatments, deterioration of a patient’s general condition and
death before treatment application38. Further data are provided in
Supplementary Data 13 and 14.

The median number of prior systemic palliative therapies that
patients with an applied MTBR had received was three (range
1−7). Eleven had already been treated with targeted therapies
indicating that clinical benefit may be achieved even in heavily
pretreated patients.

Discussion
In addition to known recurrent mutations in CUP, our com-
prehensive WGS/WES approach detected a variety of rare genetic

alterations, which were relevant for molecularly targeted treat-
ment decisions. This suggests that comprehensive molecular
analysis is particularly well-suited for this heterogeneous disease.

On the genomic level, we observed frequent mutations in well-
known cancer-related genes such as TP53, MUC16 and KRAS.
The majority of these common alterations has previously been
described in studies using gene panel sequencing. When using a
50 gene panel, Löffler and colleagues described TP53, KRAS,
CDKN2A, and SMAD4 as the most frequently mutated genes and
CDKN2A as the most frequently deleted gene in CUP11. Varghese
and colleagues reported a variety of targetable alterations in 45/
150 CUP patients using MSK-IMPACT, a deep-coverage hybri-
dization capture-based assay encompassing 341 (later expanded
to 410) cancer-associated genes accompanied by WES in 13
cases14. The most commonly mutated genes were TP53, KRAS,
CDKN2A, KEAP1, and SMARCA4 and 15/150 patients received
targeted therapies14. These common mutations are involved in a
variety of cell processes and do not offer a clear rationale for
targeted therapies available at the moment.

Fig. 5 Clinical course of 20 patients with molecularly guided therapy. a Each bar represents one patient in the study starting from date of diagnosis. PFS
of the last systemic therapy before molecular analysis (PFS1, green) and the first applied molecularly guided therapy (PFS2, blue) are plotted inside those
bars. Continued response at the end of the observation period is marked with an arrow. The CUP-69 bar has been shortened by 60 months for visibility
(true length 146 months). For CUP-15, CUP-25 and CUP-70 neither PFSr nor mPFSr could be calculated. b Sankey plot depicting best response associated
with the last systemic therapy before genomic and transcriptomic analysis (BR1, n= 20) in comparison with best response associated with the first applied
molecularly guided therapy (BR2, n= 20). Source data are provided as a Source Data file.
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Furthermore, we and others report a substantial amount of
pathogenic germline mutations amongst CUP patients39–42.
These can have a direct impact on the patient and their families.
Therefore, germline testing should be considered, especially for
young patients with CUP or patients with previous malignancies.

On the transcriptomic level, we detected a variety of ther-
apeutically relevant gene fusions. In addition, we classified tumors
based on transcriptomic and epigenetic information, which was
complemented by specific disease-defining alterations and by
presence of certain dominant mutational signatures. Nevertheless,
only a third of the entity predictions based on methylome and
transcriptome did match, which may be explained by tumor cell
content, RNA quality, differences between TCGA and the
MASTER cohort composition, as well as differences in the
methods used. The question whether site-specific therapies are
beneficial for CUP patients is still a matter of ongoing debate.
Using a 92-gene RT-PCR cancer classification assay, Hainsworth
and colleagues reported that site-specific therapy leads to sig-
nificantly improved survival when clinically more responsive
tumor types were predicted9. In contrast, Hayashi and colleagues
reported that site-specific treatment based on microarray profil-
ing did not result in a significant improvement in 1-year survival
compared with empirical paclitaxel and carboplatin, although
prediction of the original site seemed to be of prognostic value43.
Similarly, a meta-analysis by Rassy et al. showed no significant
survival benefit with site-specific in comparison to empiric che-
motherapy. At the same time the heterogeneity across the avail-
able data demonstrates that further well-designed trials are
needed10 and that a reliable classification method for the attri-
bution of a CUP case to a specific tumor entity is still to be
developed. Moran and colleagues used microarray DNA methy-
lation signatures (EPICUP) to predict a primary cancer of origin
in 188 (87%) of 216 CUP patients. In this study, patients with
EPICUP diagnoses who received a tumor type-specific therapy
showed improved overall survival compared with that in patients
who received empiric therapy8. Prospective validation of this
epigenetic approach is still missing.

In our study, we used epigenetic and transcriptomic analyses
together with evaluation of disease-specific mutations to identify
the tissue of origin. On the one hand this increased the total
number of patients for whom an entity prediction was possible,
on the other hand it led to contradictory results in a majority of
patients that had several layers of information available. In these
cases, it is not clear which data is to be trusted more. Probably,
several factors contribute to prediction errors by one or the other
method: First, the composition of the MASTER CUP cohort and

the TCGA reference cohort differ in several aspects, including
metastatic status and represented entity subtypes. Second, dif-
ferences in the sample preparation protocols between MASTER
and TCGA may introduce technical biases, confounding the
algorithms of the classifiers. And third, some entities are hard to
distinguish using epigenetic/transcriptomic information. For
example, the classifiers frequently produced discrepant results
concerning hepatic metastases of pancreatic (PAAD) or cho-
langiocellular (CHOL) carcinoma, which were classified incon-
sistently as one of PAAD, CHOL or LIHC (liver hepatocellular
carcinoma). It is unclear whether the missing success of pro-
spective trials using site-specific treatment is due to limited
accuracy in identifying the tissue of origin or due to limited
relevance of the site of origin for clinical outcome in the majority
of CUP patients. In our cohort, MTB recommendations were not
influenced by our methylome- and transcriptome-based entity
prediction since it was not available at the time of the MTB.
Future trials might benefit from a well-designed integrated clas-
sifier taking into account both methylation and transcriptomic
data. As previously shown in pancreatic cancer and other hard-
to-treat entities, comprehensive molecular profiling also offers the
opportunity to detect rare or previously unknown therapeutic
targets44,45. Therefore, in the light of continuously improving
options regarding molecular diagnostics and targeted therapies,
genomics-based treatment might be the more promising
approach.

Our study had several potential limitations. First, our patient
population was younger than one would expect for a repre-
sentative CUP cohort, which can at least be partially explained by
the NCT/DKTK MASTER inclusion criteria. Second, our cohort
was treated with a wide range of different therapies prior to
molecular analysis. Third, our study was not a randomized
clinical trial but a prospective observational study. However, the
mean PFS2/PFS1 ratio in our cohort was 3.6. 13/17 treated
patients (77%) for which a PFS ratio could be determined
achieved a ratio higher than 1.3, the originally proposed threshold
for assessment of clinical benefit in previous studies like MOS-
CATO 0135. The median overall survival in our cohort was sig-
nificantly longer when compared to published data, which may be
partially attributed to the young patient age in our cohort.
Nevertheless, our results provide evidence that a considerable part
of CUP patients may benefit from comprehensive molecular
analysis. Although there are case reports about successful use of
checkpoint inhibitors in CUP patients46, immunotherapy in CUP
has not been clinically implemented yet, unless microsatellite
instability or DNA mismatch repair (MMR) deficiency have been
detected. Our results underline that immunotherapeutic approa-
ches can be efficient in a much larger proportion of CUP patients.
Furthermore, we observed a meaningful proportion of CUP
patients benefiting from molecularly stratified treatments. Two
prospective randomized phase II trials testing novel strategies
versus empirical chemotherapy are currently ongoing (CUPISCO,
NCT03498521 and CheCUP, NCT04131621).

In conclusion, our findings indicate that comprehensive
molecular analysis of CUP patients can be highly beneficial even
at late stages or following several rounds of prior treatment.

We provide valuable insight into the heterogenic genomic,
transcriptomic and epigenetic landscape of CUP and show
potentially actionable alterations in a large proportion of patients.
Further prospective clinical studies to assess the impact of
genomics-based personalized cancer therapy are warranted.

Methods
Clinical and statistical analysis. The study included 70 patients who were
enrolled in the National Center for Tumor Diseases and German Cancer Con-
sortium (NCT/DKTK) Molecularly Aided Stratification for Tumor Eradication

Table 2 Clinical outcome.

Value n

PFS1
Median (range) 2.9 (1.0–10.0) months 17

PFS2
Median (range) 7.8 (1.6–26.5) months 20

PFSr
Median (range) 2.3 (0.2−16.4) 17
Mean 3.6 17

mPFSr
Median (range) 2.7 (0.2−12.0) 17
Mean 5.0 17

Overview including PFS1, PFS2, PFSr, mPFSr, depicting respective median and mean values. For
three patients, PFS1 could not be determined since there was no progression reported. Modified
PFS ratio (mPFSr), prePFS and postPFS were calculated as described by Mock et al.34

PFS1 progression-free survival time 1 (last systemic treatment prior to application of a
recommended therapy), PFS2 progression-free survival time 2 (recommended therapy), PFSr
PFS ratio.
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Research (MASTER) precision oncology program between May 2013 and July 2018
with follow-up until June 201932,47. All 70 patients had a CUP diagnosis according
to their referring oncologists. Clinical data for cohort selection, description and
analysis was obtained from the National Center for Tumor Diseases (NCT) Hei-
delberg and Dresden, as well as from six other comprehensive cancer centers
(CCCs) of the German Cancer Consortium (DKTK). The DKTK network includes
ten CCCs at eight sites (Berlin, Dresden, Essen/Düsseldorf, Frankfurt/Mainz,
Freiburg, Heidelberg, Munich, Tübingen). Demographic data, histopathological
diagnosis, location of metastases at the time of enrollment, fulfillment of the ESMO
CUP diagnostic criteria, systemic therapies and staging information, genomic
information available at the time of the molecular tumor board (MTB), recom-
mendations of the MTB and application of recommended therapies were assessed
and documented in a centrally managed electronic data capture system
(ONKOSTAR). MTB recommendations were based on the information obtained
from DNA and RNA sequencing. Therapeutic options steadily improved over time.
Every tumor board recommendation contains several drugs or drug combinations
with different priorities assigned. For our analysis, we included only the first three
priorities since there was no drug with a lower priority clinically applied. In some
cases, there were fewer than three drugs recommended. All drug recommendations
were issued with an NCT/DKTK evidence level reflecting the origin of the infor-
mation that the respective recommendation was based on33. Overall survival (OS)
was defined as the time from the date of diagnosis to the date of death or last
follow-up. Progression-free survival (PFS) was defined as the time from the date of
systemic therapy initiation to the date of death, progressive disease or last follow-
up. Median OS, PFS and follow-up time were estimated using the Kaplan–Meier
method, and a log-rank test was used to compare OS and PFS among patient
subgroups. PFS of the first applied treatment recommended by the MTB (PFS2)
was compared to the PFS of the last prior systemic treatment (PFS1) in each
individual patient. If more than one recommended therapy was applied, PFS3 and
following were calculated. PFS defining events were progressive disease or death,
determined by a medical oncologist via review and assessment of the corre-
sponding medical documents. The progression-free survival time ratios (PFSr)
between PFS2 and PFS1 were calculated. Modified progression-free survival time
ratios (mPFSr) were calculated following the proposal of Mock and colleagues34.
For patients that did not receive a recommended treatment, we calculated the ratio
of the first treatment applied after the MTB (PFSb) and the last prior systemic
treatment (PFSa).

NCT/DKTK MASTER. NCT/DKTK MASTER is a prospective, continuously
recruiting, multicenter observational study that provides a standardized diagnostic
workflow, which enables molecularly informed decisions for further therapy.
Treatment recommendations are made in cooperation with treating oncologists
following interdisciplinary discussion in a molecular tumor board. MASTER
includes adults with advanced cancer across all entities who are younger than 51
years and patients with rare tumors, including rare subtypes of more common
entities, regardless of age. Patients must have exhausted curative treatment options
and be in good general condition (Eastern Cooperative Oncology Group perfor-
mance status of 0 or 1)38. Patients with cancers of unknown primary were included
regardless of age due to its rarity.

Patients provided written informed consent for banking of tumor and control
tissue, molecular analysis including germline analysis, and the collection of clinical
data under a protocol (S-206/2011) approved by the Ethics Committee of the
Medical Faculty of Heidelberg University. The study was conducted in accordance
with the Declaration of Helsinki. Patients did not receive participant compensation.
Molecularly informed therapies were not part of MASTER but given off-label at the
discretion of and by the treating oncologist who obtained informed consent for
each therapy. German regulations for off-label treatment allow individual
treatment decisions after obtaining informed consent and no IRB approval is
required. Costs for off-label drugs can be reimbursed by German health insurances
if the patient has a severe disease, if there is no other treatment option available and
if there is reasonable hope for treatment success based on available scientific or
clinical data.

Entity prediction validation cohort. We used 100 consecutive MASTER patients
enrolled between 12/2020 and 06/2021 (Supplementary Data 5) consisting only of
entities that are part of TCGA as a cohort to validate all entity prediction methods
and measured their accuracy before using them for CUP entity predictions.
Transcriptome data was available for 72 patients of the validation cohort (Sup-
plementary Data 6) methylome data for 77 (Supplementary Data 7).

Next-generation sequencing and bioinformatic processing
Sample preparation and sequencing. DNA from fresh frozen tumor tissue was
isolated using the Allprep DNA/RNA/miRNA Universal Kit (Qiagen) or QIAamp
DNA mini (QIAGEN). DNA from formalin fixed paraffin embedded tissue was
isolated using the GeneRead DNA FFPE Kit (QIAGEN). DNA from peripheral
blood was isolated using QIAamp DNA Blood Mini (Qiagen) or QIASymphony
DSP DNA Mini Kit (Qiagen). The isolation process was followed by quality control
and quantification using a Qubit 2.0 Fluorometer (Invitrogen) and a TapeStation
2200 system (Agilent). Libraries for whole-genome sequencing were prepared with

the Illumina TruSeq Nano (100 ng genomic DNA as input). Both tumor and
control (germline) samples were sequenced on 2 lanes Illumina HiSeq X Ten
(Supplementary Data 15). Libraries for whole-exome sequencing were prepared
with the Agilent SureSelect All Exon Kit v5 or v5+UTRs (200 ng input). The
libraries were sequenced on Illumina HiSeq 2000, HiSeq 2500 or HiSeq 4000
(Supplementary Data 15). Samples were processed centrally by the NCT Molecular
Precision Oncology Program Sample Processing Laboratory (SPL) and sequenced
by the DKFZ Genomics and Proteomics Core Facility (GPCF). Further information
and exceptions are listed in Supplementary Data 8.

Nucleotide sequence alignment. DNA sequencing reads were mapped to the
assembly comprising human genome (1000 Genomes Phase 2 of the Genome
Reference Consortium; version hs37d5) and a genome of Enterobacteria phage
phiX174 using BWA mem (version 0.7.15) with -T0 parameter as the one different
from the default. BAM files were sorted with bamsort (biobambam package, ver-
sion 0.0.148), and duplicates were marked with markdup (Sambamba package,
version 0.6.5)48. Sequencing quality statistics are summarized in Supplementary
Data 15.

Calling of single-nucleotide variants and small insertions and deletions
Somatic. Somatic SNVs were detected from matched tumor/normal sample pairs
by an in-house analysis pipeline based on SAMtools mpileup and bcftools and
using heuristic filtering as previously described49–51. In short, initial SNV calls
were detected in the tumor BAM by SAMtools (version 0.1.19) mpileup, which
considered only reads with minimum mapping quality of 30 (-q 30), and
BCFtools, which reported all positions containing at least one high-quality non-
reference base (-vcgN -p 2.0). Afterwards these positions were checked in the
control sample using mpileup. SNVs were then annotated with ANNOVAR
(version November 2014) using GENCODE (release 19). Downstream filtering
discarded variants with low support of the alternative allele, occurring in tandem
repeats and other read-attracting regions, having PCR strand bias (WGS only),
having sequencing strand bias, and having significant bias in the PV4 field of the
mpileup output. SNVs with low confidence score were discarded. Somatic SNVs
annotated as missense, stopgain, stoploss, or splicing (two base pairs next to an
exon boundary) were defined as non-silent. Short indels were detected by Pla-
typus (version 0.8.1) for matched tumor/normal sample pairs52. Only ones that
had Platypus filter flag PASS or passed custom filters allowing for low variant
frequency were retained. Annotation of short indels was done using ANNOVAR
(version February 2016). The calls falling into a coding sequence or splice-site
were extracted.

Germline. Germline indels were called by Platypus. SNVs identified in the tumor
sample were annotated as germline if the control sample had at least 1/30 reads
supporting the alternative allele. Germline variants in 101 cancer predisposition
genes (Supplementary Data 4) were further filtered for rare variants and against
frequent variants in an in-house database before assessment according to AMP-
ACMG guidelines. The p-value for age at onset comparison was generated with a
two-sided, equal variance t-test.

Tumor ploidy, purity and copy number profile determination. For samples
sequenced with WGS, the absolute allele-specific copy numbers, tumor ploidy and
purity were estimated using ACEseq (version 5.0.1)53.

For samples sequenced with WES, the absolute allele-specific copy numbers
were estimated using CNVkit (version 0.9.3)54. Segments containing at least 20
heterozygous SNPs were further processed to infer sample ploidy and tumor cell
content (TCC) using a method adapted from ACEseq. The algorithm tested each
possible combination of TCC (range 0.15-1.0) and ploidy (range 1.0–6.5) to find
the local minima and thus optimal solution. If more than one solution was possible,
they were visually evaluated and ultimately one of them was chosen. Samples with
tumor cell content estimated to be 100% were considered unreliable (due to in fact
low tumor cell content) and thus discarded from the results (n= 19).

Microsatellite instability. Microsatellite instability was detected with MSIsensor
(version 0.2)55. The list of homopolymers and microsatellites generated with the
MSIsensor scan command from the 1000 genomes reference comprises 33,386,244
loci. MSIsensor was run with a minimum required coverage of 15 reads for gen-
omes and 30 for exomes in both tumor and control. A score > 3.5 implies
microsatellite instability.

RNA sequencing and gene fusion detection. If RNA quality was sufficient, either the
Illumina TruSeq RNA (with 1000 ng total RNA) or the Illumina TruSeq mRNA
stranded protocol (with 500 ng total RNA) was used for library preparation
(TruSeq mRNA stranded since February 2016, Supplementary Data 15). Both are
Oligo-dT-based protocols and enrich for mRNA only. Three libraries were pooled
and sequenced on one lane HiSeq 4000 100 PE. The reads were aligned to the same
reference genome as DNA sequencing data with STAR 2.5.1b56. The gene fusions
were detected by Arriba pipeline (version 0.8), the software is available on
GitHub57. Fusions were categorized into high, medium or low level of confidence.
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Mutational signatures. Mutational signatures were calculated using R/Bio-
conductor package YAPSA (version 1.13.3)58 and COSMIC signatures (version
2)59. All identified somatic SNVs were used for the analysis. Six samples with less
than 50 SNVs were excluded from the analysis. Mutational catalogs were cal-
culated separately for the whole-exome and the whole-genome sequencing data.
The whole-exome catalog was corrected additionally by factors specific for the
target capture kits that were used for the preparation of samples. Afterwards,
mutational catalogs were normalized by the average length of the coding
sequence in Mb (2800 and 30 for WGS and WES, respectively) and merged
together for signature decomposition. Exposures were calculated per sample
using the set of 30 validated signatures (no artifact signatures) and absolute
signature-specific cutoffs with cost factor 6. Corresponding confidence intervals
were calculated per sample. Only if their lower bound was greater than 0, the
signature was considered to be positively identified.

Methylation-based entity prediction. The Infinium MethylationEPIC BeadChip
microarray (850 K) was used for 55 CUP samples and 77 samples of the validation
cohort (Supplementary Data 7) to interrogate DNA methylation patterns at
genome-wide level. All samples were gathered within the NCT/DKTK MASTER
program and had a tumor cell content >30% of the NCT/DKTK MASTER cohort
to interrogate DNA methylation patterns at the genome-wide level. The library
preparation, hybridization and scanning of the array was performed at the German
Cancer Research Center (DKFZ) Genomics & Proteomics Core Facility. The raw
data (idat files) were processed into beta values with the minfi R package60. Beta
values range from 0 to 1 with 0 being a CpG unmethylated and 1 fully methylated.

TCGA (The Cancer Genome Atlas) pan-cancer methylation was retrieved via
the curatedTCGAData package61. The dataset (33 entities, 8024 samples)
comprised both 450k and 27k methylation arrays. The intersection of these arrays
comprised 25978 CpGs. For a more meaningful entity prediction colorectal
(COAD) and rectal (READ) adenocarcinomas were binned together (COAD/
READ).

The 5000 CpGs for the methylation-based entity predictions were derived after
(i) removing known SNPs as previously described62, (ii) only considering
overlapping CpGs between 850k, 450k and 27k arrays to ensure compatibility with
all Illumina methylation arrays and (iii) lastly calculating the top 5000 most variant
CpGs across the pan-cancer dataset. The probe IDs are listed in Supplementary
Data 16.

Methylation-based entity prediction of 55 CUP samples and 77 samples of the
validation cohort was performed by correlating (Spearman correlation) the vector
of 5000 CpGs with all samples in the TCGA cohort. The entity of the sample with
the highest correlation coefficient was deemed to be the predicted entity.

Similarity in methylation profiles was visualized by tSNE plot with the Rtsne R
package63. Missing data was imputed with the impute.knn function. The perplexity
was set to 100.

Transcriptome-based entity prediction. In order to identify the tissue of origin of a
CUP sample based on gene expression, we searched for samples with a similar
expression profile in two reference cohorts: the MASTER cohort (comprising
1890 samples from 1814 patients, Supplementary Data 9) and the union of 33
TCGA cohorts (TCGA cohorts with >50 samples were subsampled, yielding a
total of 1809 samples). For each reference cohort, we compared the expression
profile of the CUP sample to all possible pairwise combinations of reference
samples. The reference samples were ranked by the number of times they were
more similar to the CUP sample than the other reference sample in a given pair
of reference samples. Similarity was measured as the fraction of genes that were
upregulated in both the CUP sample and one of the samples in a given pair of
reference samples (FPKM > 13), but downregulated in the other reference
sample (FPKM < 3). The thresholds for up- and downregulation were deter-
mined by means of 10-fold cross-validation on a subset of the MASTER cohort.
To mitigate the distortion of the CUP expression profile by contamination from
surrounding normal tissue in the bulk RNA-Seq data, we ignored genes found to
be upregulated in normal liver tissue (Supplementary Data 17) if the sample was
obtained by liver biopsy. The entity of the most similar reference sample was
assumed to predict the entity of the CUP sample. If the most similar reference
sample was a CUP as well, the most similar non-CUP sample was chosen for
prediction instead. The method was validated on 72 patients from the validation
cohort (Supplementary Data 6).

Tumor mutational burden (mutations per megabase). For each sample, the numbers
of non-silent SNVs and coding indels in the exons of the tumor were added and
divided by the length of the coding sequence of the genome (in Mb). The
denominator depended on the technology, including different library preparation
kits, used for sequencing of a sample. For samples sequenced with WGS, the
GENCODE Human v19 gene annotation (GTF format) was taken, coding
sequences were identified and merged, and the total length was calculated. For
samples sequenced with WES, however, the merged coding sequences were addi-
tionally intersected with the coordinates of the corresponding target capture (BED
format). All sequence operations were done using bedtools v2.27.164. Calculations
resulted in lengths: (i) 35.334619Mb for WGS, (ii) 31.057260Mb for WES with

SureSelectXT Human All Exon V5 including UTRs and (iii) 30.894643Mb for
WES with SureSelectXT Human All Exon V5 excluding UTRs. Please note that the
MTB used the sum of non-silent SNVs and coding indels as measure for TMB.

Homologous recombination deficiency. Homologous recombination deficiency
(HRD) was determined using three different methods. The first one was being
used for Molecular Tumor Board and could be applied to both whole-exome and
whole-genome sequencing data. This method was based solely on results from
the copy number analysis, and consisted of the estimation of two parameters:
loss of heterozygosity (LOH-HRD)65 and large-scale state transitions (LST)66.
An unweighted sum of those produced a score, which classified samples to high
(>20), intermediate (11–20) or low (≤10) level of impaired homologous
recombination.

The other two methods which were used, HRDetect67 and CHORD (version 2.0)68,
calculate a method-specific probability score of HR deficiency and can be applied to
whole-genome sequencing data only. As inputs, they both used raw data comprising
single-nucleotide variants, small insertions and deletions, structural variants (detected
with SOPHIA, https://bitbucket.org/utoprak/sophia/src/master) and, only in case of
HRDetect, copy number variation. All 27 whole-genome sequencing samples with
reliable copy number data were therefore used in the analysis. Genes considered as
HRD related in Fig. 1 are listed in Supplementary Data 18.

Viral infections. We used three computational approaches to detect viral infections
from next-generation sequencing (NGS) data: a k-mer-based approach (Kraken2
version 2.1.269), an assembly-based approach (P-DiP70), and an alignment-based
approach where the sequencing reads were aligned against concatenated assemblies
of the human genome and all RefSeq viral genomes, in accordance with Arriba’s
workflow for the detection of viruses. Kraken2 was considered to make a call if it
detected at least one read per 40 million mapped reads as originating from a virus
and if at least 10% of the viral genome was covered with reads. For P-DiP, a cutoff
of one virus-originating read per million mapped reads was used. Moreover for the
Arriba workflow, a sample was considered to be associated with a virus when at
least 5% and 100 bp (whichever was bigger) of the viral genome was covered with
reads. Supplementary Table 1 lists all viruses that were reported by at least two
methods. To detect viral integration sites, we used Arriba version 2.1.0 for RNA-
Seq data and VIRUSBreakend version 2.12.071 for DNA-Seq data.

Additional data processing and analysis. The downstream analysis was performed
in R (version 3.4.3) using Bioconductor repository and such packages as tidyverse
(version 1.2.1)72, ComplexHeatmap (version 1.99.5)73 and Biobase (version
2.38.0)74. If possible, the sample used for the first MTB was used for the general
cohort description, only for CUP-70 we analyzed the sample for the second MTB.
PFS, PFSr, and mPFSr were calculated using Microsoft Excel. Survival analysis
using Kaplan–Meier estimator and log-rank tests was performed using ggplot2
(version 3.3.3). p-values < 0.05 were considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
TCGA pan-cancer methylation was retrieved via the curatedTCGAData package61.
FPKM expression values of the TCGA cohorts were obtained from the GDC data release
v22.0. Genome, transcriptome and methylation data generated in this study have been
deposited in the European Genome-phenome Archive under the accession number
EGAS00001004786. The data are available under controlled access due to the sensitive
nature of genome sequencing data, and access can be obtained by contacting the
appropriate Data Access Committee listed for each dataset in the study. Access will be
granted to commercial and non-commercial parties according to patient consent forms
and data transfer agreements for as long as needed. We have an institutional process in
place to deal with requests for data transfer and aim for rapid response time. GENCODE
(release 19) was used for gene annotation and is publicly available. The raw clinical data
are protected and are not available due to data privacy laws. The processed clinical data
are available as Supplementary Data files. The remaining data are available within the
Article, Supplementary Information, Supplementary Data or Source Data file. Source
data are provided with this paper.

Code availability
Bioinformatics analyses were performed using above-mentioned open-source software
with parameters as described in each method section. The R script for transcriptome-
based entity prediction is available in Supplementary Software 1.
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