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Abstract: Hyaline cartilage is deficient in self-healing properties. The early treatment of focal car-
tilage lesions is a public health challenge to prevent long-term degradation and the occurrence
of osteoarthritis. Cartilage tissue engineering represents a promising alternative to the current in-
sufficient surgical solutions. 3D printing is a thriving technology and offers new possibilities for
personalized regenerative medicine. Extrusion-based processes permit the deposition of cell-seeded
bioinks, in a layer-by-layer manner, allowing mimicry of the native zonal organization of hyaline
cartilage. Mesenchymal stem cells (MSCs) are a promising cell source for cartilage tissue engineering.
Originally isolated from bone marrow, they can now be derived from many different cell sources
(e.g., synovium, dental pulp, Wharton’s jelly). Their proliferation and differentiation potential are
well characterized, and they possess good chondrogenic potential, making them appropriate candi-
dates for cartilage reconstruction. This review summarizes the different sources, origins, and densi-
ties of MSCs used in extrusion-based bioprinting (EBB) processes, as alternatives to chondrocytes.
The different bioink constituents and their advantages for producing substitutes mimicking healthy
hyaline cartilage is also discussed.

Keywords: stem cells; 3D printing; cartilage engineering; bio-ink

1. Introduction

Articular cartilage is a specialized tissue that lines the ends of the epiphyses and allows
joint movement. It is a layered tissue consisting of 4 zones—the superficial, transitional,
deep, and calcified areas separated from the underlying bone. Differences in cell morphol-
ogy, the constitution of the extracellular matrix (ECM), and the collagen fibers’ orientation
in each layer are responsible for the overall structure’s physical and biomechanical proper-
ties. The primary cartilage cell is the chondrocyte, whose prominent role is to maintain the
ECM’s integrity. The physiology, morphology, and metabolism of the chondrocyte also vary
from one area to another. Unfortunately, cartilage has limited self-repair capabilities due to
its avascular nature. Focal or diffuse cartilage damages can lead to pain, joint dysfunction,
or even secondary osteoarthritis. Apart from arthroplasty, the repair or replacement of
hyaline cartilage is a significant challenge in orthopedic surgery. Current orthopedical
methods such as microfracture, autologous chondrocyte implantation, or mosaicplasty
might offer short-term solutions. Still, none of them provide lasting repair, as the quality
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of the scarred neocartilage remains poor. As such, tissue engineering presents itself as a
promising alternative for the restoration of cartilage lesions.

Joint engineering is an interdisciplinary field that aims to recreate a neo-tissue whose
physical and biochemical property are close to those of the native tissue. It combines
cells, biomaterials, and environmental factors. It represents a potential tool for cartilage
regeneration. The main criteria to be taken into account are:

• homogeneous distribution of cells into the biomaterial,
• adapted porosity for homing, nutrient diffusion,
• cell differentiation optimized towards chondrocytes-like cells,
• preservation of the chondrocyte phenotype in situ,
• synthesis of a peri-cellular chondral-like ECM,
• persistent cell viability despite progressive biodegradation of the bioprinted biomaterial,
• biomechanical properties progressively close to those of the native cartilage
• bio-integration of the implants into the joint.

It is worth noting that conventional cartilage engineering methods have minimal
control over the shape, size, and organization of engineered products.
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Figure 1. Schematic illustration of the extrusion-based 3D bioprinting process for articular tissue
engineering using various hydrogels and cell types.

In contrast, the development of 3D bio-imaging technologies represents a recent
revolution in personalized regenerative medicine. This technique makes it possible to
obtain a well-defined, sometimes complex structure of a custom size, using a layer-by-layer
bio-manufacturing strategy, guided by computer-aided design. Different 3D bioprinting
processes are available, depending on the mechanical and biochemical properties of the
native tissues. The three primary techniques currently developed are laser-assisted printing,
inkjet, and bio-extrusion. The restoration of a layered structure such as a native hyaline
cartilage is a complicated technological lock. The bio-extrusion process presents itself
as the best alternative to recreate layered structures, such as skin and cartilage tissue.



Cells 2021, 10, 2 3 of 24

One of the advantages is the direct encapsulation of living cells in the bio-ink, during
the printing process, which allows the production of customized composite biomaterials.
In this review, after a brief synopsis of normal and pathological cartilage, as well as
the leading 3D printing methods, we focused on the interest of bioextrusion in cartilage
engineering, according to the biomaterial composition of the bioinks, and the nature of the
cell contingent, mainly mesenchymal stromal stem cells (MSCs), which are pluripotent,
depending on the environment used.

To this day, many exhaustive review already exist concerning the use of 3D printing
for the reconstruction of various tissues [1,2], or specifically on 3D printing for cartilage re-
generation [3,4]. The originality of our work is the particular focus on extrusion bioprinting
of cellularized hydrogels for articular cartilage tissue engineering (Figure 1).

2. Methodology

To perform this review, we searched for articles published up to 1 December 2020, in
PubMed, with no start date restriction, with the keywords ‘3D printing cartilage’. About
442 references were found. Second, a manual search of reference lists from selected articles
was conducted, with the keywords ‘3D printed AND cartilage’, ‘extrusion AND cartilage’,
‘biofabrication AND cartilage’, ‘3D printing AND chondrogenesis’ ‘extrusion AND chon-
drogenesis’ and ‘biofabrication AND chondrogenesis’. We only selected the references that
specifically uses a bioextrusion process of a cellularized hydrogel. The studies using a
PCL scaffold for support, post-printing molding, or aiming to recreate tissues other than
articular cartilage were eliminated. Only 25 were selected based on the selected criteria.
We apologize for those excluded from those criteria, and therefore not cited in this review.

3. Articular Cartilage Lesions and Their Surgical Treatment

3.1. Osteoarthritis

Osteoarthritis (OA) is the most common joint affliction, and its frequency and so-
cioeconomic impacts make it a public health challenge around the world, particularly in
the context of overall population aging [5]. Its symptoms are pain, swelling, occasionally
inflammation, and articular rigidity [6]. It is characterized by progressive degeneration of
cartilage that can lead to subchondral bone damage. Cartilage loss causes bone remodel-
ing, which is associated with acute pain [7]. There are four stages of pathological attack,
depending on the extent of the remodeling [8,9]. OA management encompasses the pre-
vention and treatment of pain, and includes palliative measures such as anti-inflammatory
drugs and analgesics [10,11]. Pharmacological treatments are usually paired with physical
therapy and weight control, to maintain or improve joint function [6,12,13]. When those
measures fail to improve the patient’s lifestyle, the last resort is surgery to substitute the
damaged joint with a synthetic prosthetic [10]. Early OA is characterized by a lack of
existing lesions. The exact causes of its appearance are still unknown [14]. Some already
identified factors are age, sex, weight, and metabolic dysfunction [11,15,16]. Secondary
arthrosis follows repetitive or abnormal loading; traumas can damage articular chon-
dral surfaces [17]. These traumas can lead to mechanical dysfunction, swelling, or pain.
The depth of their focal lesion classifies the different articulation injuries—(1) chondral
lesion leading to mechanical malfunction and (2) osteochondral lesion with damaged
cartilage, and subchondral bone causing articular disruption [18].

In chondral lesions, only the articular cartilage is injured. Chondrocytes near the
lesion react by increasing the synthesis of extracellular matrix proteins, but due to their
low proliferation rate, the cells are unable to restore cartilage integrity [19]. The increased
synthesis is quickly stopped, leaving the articular surface with a chondral defect that
can degenerate [20]. When the damage reaches the subchondral bone, undifferentiated
cells from the bone marrow can infiltrate the injured zone to start the healing process.
Mesenchymal stem cells (MSCs) differentiate into chondrocyte-like cells and initiate extra-
cellular matrix synthesis (ECM), but the organization and biomechanical properties of this
newly synthesized matrix differ from those of hyaline cartilage [20]. This fibrous repair
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tissue is unstable and leads to long-term degradation of the articular surface and function.
Cartilaginous defects tend to progress over time and might lead to OA [21,22]. One of
the significant challenges of cartilage regenerative medicine is treating these traumatic
cartilage lesions early, to prevent long-term degradation and secondary OA.

3.2. Actual Management and Its Limitations

Numerous surgical techniques were developed to address focal cartilage defects [23].
Here, we present some of the most commonly used surgical procedures and their processes.
Abrasion is a technique developed by Johnson in 1980 [24]; it is based on superficial de-
bridement of the exposed bone to expose the vascularity underneath and obtain a viable
bone surface to permit fibrin clot formation and attachment. The newly formed tissue on
the exposed bone surface is a fibrocartilage-type tissue resulting from blood clot differentia-
tion [25]. Microfracture and similar methods aim to stimulate the natural healing properties
of the body. Microfracture involves the perforation of the subchondral bone, to allow MSCs
and growth factors to escape the bone and fill the defect with newly synthesized tissue.
Microfracture can only be applied to treat full-thickness defects with healthy subchondral
bone. Furthermore, the repair is made of fibrocartilaginous tissue and is not stable in the
long-term, generally leading to joint surface degradation [26]. Full-thickness osteochondral
grafts are usually allografts. In this case, a unique cylindrical sample is harvested from a
tissue donor and reimplanted in the defect to fill the lesion. This method allows for partial
reparation of the surface through the formation of fibrocartilage between the native tissue
and graft [27].

In mosaicplasty, multiple cylindrical cartilage grafts are harvested from a healthy,
nonbearing zone of the patient’s joint [28], and then reimplanted to fill the defect. This sur-
gical procedure aims to permit repair of the articular surface, by producing neocartilage
in the gaps separating the edges of the lesion and cartilage shreds. It causes donor-site
morbidity but provides good long-term stability [29]. Brittberg’s technique, or autologous
chondrocyte implantation (ACI), was first performed in 1987 [30]. It consists of multiplying
the patient’s chondrocytes in vitro and then reinjecting them into the injured area with
support, allowing them to fill the cartilaginous defect. These different techniques generally
result in insufficient quality repair tissue, with low type II collagen content. This fibrocarti-
laginous tissue does not possess the phenotype of native hyaline cartilage [31] and might
not support the necessary constraints and biomechanical loads. Hence, finding alternatives
to those surgical procedures is a public health issue challenge. Tissue engineering (TE)
approaches offer the potential to recreate hyaline-like cartilage in vitro, making them a
promising tool for cartilage rehabilitation.

3.3. Healthy Cartilage Structure and Composition

Articular cartilage is a living, specialized connective tissue found in diarthrodial
joints such as knee or hip joints. Its primary role is to provide a smooth and lubricated
surface to permit load transmission during movement with a low friction coefficient [32].
Cartilaginous tissues can support movement and resist shear stress and deformation.
These tissues need to store energy to prevent lasting compression [33,34]. Cartilage is a
nonvascular and noninnervated tissue that possesses limited self-regeneration properties.
It comprises a single cell type, chondrocytes, and a dense extracellular matrix. Thus,
the sole resident cells of the cartilage are chondrocytes. Chondrocytes represent only
10% of the articular cartilage tissue volume [35]. The chondrocytes are spread across
a dense matrix and have no cell-to-cell contact. They are responsible for the synthesis
and degradation of the ECM component and maintain the homeostasis of the tissue;
they secrete integrins as mediators to control cell differentiation, proliferation, and survival
and matrix remodeling [36]. Chondrocytes specifically synthesize proteoglycans (PGs),
collagens, and other noncollagenous proteins [32,37]. Chondrocytes are isolated in hypoxic
niches, making hypoxia-inducible factor 1-alpha a key regulator of differentiation and
homeostasis [38].
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The hyaline ECM comprises water, PGs, and collagens, particularly type II collagen.
To a lesser extent, noncollagenous proteins and glycoproteins are present in the ECM [39].
The cartilaginous matrix is highly hydrated (65 to 80% of the total weight) with a specific
repartition of the water between the intra- and extrafibrillar compartments [33]. Less than
one-third of the water content is linked with collagenous fibrils, the rest is located in the free
space of the ECM [40]. PGs are highly glycosylated proteins, composed of a core protein
and glycosaminoglycan chains, such as chondroitin sulfate (CS) or keratan sulfate [33,41].
The most common PG in cartilage is aggrecan, which plays a role in load-bearing. PG binds
hyaluronan, forming a complex that retains a high amount of water in the ECM [37,42].
Collagen is a fibrillar protein; its primary role is to form a complex and organized network
supporting the matrix structure [43,44]. Type II collagen is one of the main components of
the ECM. It is distributed in a gradient with a higher density in the superficial zone of the
hyaline cartilage and the lowest density in the deep zone. Type II collagen interacts with
other collagen types, such as IX, XI, and III, for structural purposes [45].

Hyaline cartilage possesses a unique zonal organization in four differentiated lay-
ers [32]. The superficial zone is the thinnest layer, containing collagen fibers (primarily
type II and IX) oriented parallel to the articular surface. This layer is responsible for most
of the resistance properties of the articular surface [39]. In the transitional zone, collagen
fibrils are thicker and less organized, with more PGs [35]. The deep zone is character-
ized by the highest density of PGs and the lowest water content; the collagen structures
perpendicular to the tidemark separate the deep zone from the subchondral bone [46].
The chondrocyte density, morphology, and gene expression also vary depending on the
depth within the hyaline cartilage [47–49]. These differences are also associated with the
different biomechanical stresses exerted on the different layers [43,50]. This particular zonal
organization and cellular distribution are a crucial component of cartilage tissue repair.
The reconstruction of cartilaginous tissue with good repair, integration, and biomechanical
properties is the main challenge of cartilage tissue engineering.

3.4. Tissue Engineering for Cartilage Repair

Cartilage tissue engineering is currently considered a promising alternative to classic
treatment strategies [51–53]. It aims to recreate cartilaginous substitutes with properties
similar to those of natural cartilage. The three main axes to consider for cartilage TE
are biomaterials, cells, and the environment [54]. The biomaterial needs to have optimal
porosity, reticulation, biointegration, cell-seeded scaffolds, cytocompatibility, and good
cell adhesion properties [55,56]. Different cell types were investigated for cartilage tissue
engineering, the most common being chondrocytes and MSCs. The last important factor
is the environment. Chondrogenic matrix synthesis is driven by growth factors [57–61],
oxygen levels [62–66], maturation time [67], and mechanical stimuli, including dynamic
compression and shear stress, to mimic the natural diarthrodial environment [68–73].
Classical TE usually produces homogenous constructs. A new field of tissue engineering
development is the field of 3D printing. It offers new potential to produce stratified
products as well as innovations in personalized regenerative medicine.

4. 3D Printing for Cartilage Tissue Engineering
4.1. History of 3D Printing

Three-dimensional (3D) printing (or additive manufacturing) was invented in 1983
by Chuck Hull. Initially, the printing process was based on the stereolithography method.
A computer-aided design (CAD) is created and sent to a 3D printer. Sequential coats of
material are solidified in a layer-by-layer manner, until the full product is produced [74].
Numerous 3D printing processes were developed, based either on the solidification of
materials via an energy source or by the deposition of a liquid material that is polymerized
postprinting. First used exclusively in industry, 3D printing reached the medical field in
the 2000s to produce synthetic surgical models. Subsequently, the concept of bioprinting
emerged, raising the possibility of printing biological tissues and organs [75]. A decade
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later, the first printing process with live cell structures was successfully executed [76].
The concept of bioprinting is a promising perspective for modern tissue engineering. It has
only begun to influence medicine and surgery and revolutionize health care [77].

4.2. 3D Printing Processes for Cartilage Reconstruction

Significant advances were made in the field of cartilage and bone tissue engineering
over the past two decades [3]. 3D printing is a revolutionary process for the field of person-
alized medicine. It allows for the layer-by-layer deposition of a biomaterial as specified by
a CAD, making it possible to adapt the constructs to specific lesions, unlike other classical
TE methods [78,79]. Two main printing classes can be distinguished—acellular processes
and bioprinting. In this review concerning articular cartilage engineering, we focus on
bioprinting strategies.

Different bioprinting strategies are available for cartilage tissue engineering—inkjet
printing, laser-assisted printing, and bioextrusion (Figure 2) [80]. Inkjet bioprinting is
based on the deposition of droplets directly onto a support by thermal or piezoelectric
methods [81]. Laser-assisted bioprinting consists of the deposition of droplets from a
specific material onto a receiving substrate, under the influence of a laser-based energy
source [82]. Bioextrusion (or microextrusion) is a process based on the direct deposition of
a bioink onto a support via a printing needle (screw-based, pneumatic, or piston-driven),
following a CAD [83]. Bioextrusion is used in association with bioinks composed of natural
(alginate, gelatin, chitosan, hyaluronan) or synthetic (PCL, PGA, PEG) polymers and
embedded cells.
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Figure 2. Different bioprinting strategies are available for cartilage tissue engineering. (A) Inkjet
bioprinting based on the deposition of droplets formed by a thermal or piezoelectric actuator on a
support. (B) Bioextrusion (or microextrusion) based on the extrusion of a continuous bioink filament
through a printing needle driven by a screw, pneumatic or a piston. (C) Laser-assisted bioprinting uses
a laser-based energy source to produce droplets via the production of a vapor bubble in the substrate.

The bioextrusion process allows the printing of large and bulky substitutes with
high cell density, making it an excellent candidate to reproduce full-thickness cartilage
tissue [84,85]. It allows the deposition of different biomaterials and cell types throughout
the different printed layers of bioink to better mimic the natural osteochondral organization,
and more precisely, the four different hyaline cartilage layers [86]. This innovative process
could allow for personalized constructs with the zonal organization of native cartilage
directly adaptable to the patient’s lesion sites.

5. Bioextrusion Processes for Cartilage Tissue Engineering

5.1. Bioinks for Extrusion-Based Bioprinting

Biomaterials used for classic tissue engineering need to have specific characteristics.
The main factors are biocompatibility, biodegradability, and porosity [87]. The biomaterial



Cells 2021, 10, 2 7 of 24

needs to have biomechanical properties compatible with those of the native tissue it aims
to recreate. It also needs to be loose enough to permit ECM development but stable enough
to maintain a three-dimensional environment for the cells [55]. The biomaterial needs
to be adapted to the target tissue, the cell type, and mechanical constraints. Specifically
in cartilage TE, biomaterials play different roles depending on the embedded cell types.
The environments required to maintain chondrocyte differentiation and permit MSC differ-
entiation induction are different [88–90]. The integration of the engineered substitute with
the surrounding healthy tissue needs to be assessed.

The two main classes of biomaterials used for tissue engineering are synthetic and nat-
ural polymers. Synthetic polymers are human-made materials that are already widely used
in cartilage tissue engineering for their well-characterized and stable chemical properties.
Polymers such as poly(ethylene)-glycol (PEG), polycaprolactone (PCL), or polyglycolic
acid (PGA) can be combined or coated with hydrogels or natural polymers to enhance their
biocompatibility [91–94]. Another class of material developing is nanomaterials, such as
carbon nanotubes (CNTs) for their physico-chemical properties [95]. Natural polymers
are also considered promising for TE, with alginate, gelatin, and agarose being widely
studied for their properties [96]. The different biomaterial concentrations can be tuned
to optimize the final construct’s biological and mechanical properties [97,98]. They can
be combined to form a complex bioink, taking advantage of their different biomaterial
characteristics. To improve the stability of some natural polymers, such as gelatin or
hyaluronic acid (HA), modifications such as methacrylation are often used [99,100]. Hy-
drogels are natural polymers widely used for their excellent biocompatibility and ECM
mimetism [101]. Hydrogels are usually polysaccharides (e.g., alginate, HA) [102,103] or
protein-based (collagen, fibrin) [89,103].

Hydrogels can also be based on a decellularized extra-cellular matrix (dECM). First
used in biological sheets or coating for bioengineered scaffold, dECM can now also be
used for cartilage 3D-printing [104]. The aim while producing dECM is to eliminate
the cellular component, while maintaining the structure and composition of the native
ECM [105]. It can easily be made into a soft gel, making it a promising feature for bioex-
trusion. The main advantage of using dECM as a biomaterial is the mimicking of the
structure and biological cues of the native tissue that allows for the induction of growth
and differentiation of the cellular contingent. For cartilage TE, dECM is already used as a
bioink to produce 3D printed cartilaginous substitutes [106–108].

One crucial characteristic for any material used in three-dimensional bioprinting is
printability. Bioinks designed for EBB processes are based on biocompatible and bioprint-
able hydrogels. The advantages of the different biomaterials used in EBB processes are
presented in Table 1. Critical criteria include viscosity and viscoelasticity of the bioink to
achieve the optimal printing process [109,110]. The stability and mechanical properties of
printed gels are also essential considerations for the final construct [111]. To ensure three-
dimensional stability, hydrogel-based bioinks can be solidified by temperature change,
photocrosslinking, or chemical crosslinking [112–114]. Another method consists of printing
a heterogeneous scaffold composed of a structural PCL scaffold and a cytocompatible
hydrogel containing the cells [115,116].

The advantage of bioextrusion processes is the ability to print bioinks and cells to
simultaneously produce functionalized substitutes. The biocompatibility of the bioink is
often assessed by evaluating the viability of the printed cells [117–119]. In comparing differ-
ent cell-seeded bioinks and printing parameters, the yield stress, shear stress, and viscosity
were highlighted as crucial printing factors [120]. Shear stress can be impacted by different
printing parameters, such as needle geometric shape and diameter [117]. These parame-
ters need to be finely tuned to promote cell viability and differentiation potential in the
final constructs. The biomaterial used to produce cellularized hydrogels also needs to be
adapted to the construct’s cellular content.
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5.2. Mesenchymal Stem Cells as an Alternative to Native Chondrocytes

As the sole resident of the cartilage, chondrocytes seem to be the most suitable cell type
for cartilage tissue engineering. However, apart from the fact that they are hardly available
within the joint, their amplification in a monolayer generates cell dedifferentiation from the
first passages, with a significant decrease in type 2 collagen synthesis [121,122]. Of all adult
stem cells present in the body, mesenchymal stem cells currently represent a promising
candidate substitute for chondrocytes in cartilage tissue engineering. Many different factors
characterize human MSCs, including their adhesion to plastic supports; their expression of
stemness markers, such as CD105, CD73, CD29, and CD90; and their lack of expression
of hematopoietic surface proteins CD45 or CD34 [123–126]. MSCs are self-renewable and
multipotent-capable of differentiating into multiple cell lineages [127,128]. The signaling
pathways that affect the differentiation of MSCs are well characterized [129]. Their multipo-
tent potential can be influenced by their origin, depending on the cell source. Differences in
chondrogenic and osteogenic properties were already highlighted [130–132]. First identi-
fied in 1970 by Friedenstein, MSCs were initially isolated from bone marrow [133], but fur-
ther investigation showed that they could be easily isolated from other source tissues,
the most common being adipose tissue [134], synovial membrane, synovial fluid [135,136],
dental pulp [137], Wharton’s jelly, and umbilical cord blood [138].

Bone marrow-derived MSCs (BM-MSCs) are now well characterized because they are
the most commonly used cell type in tissue engineering. They possess good proliferation
properties but can also be induced to differentiate into various cell types, including os-
teocytes, adipocytes, chondrocytes, and neural or muscular cells [139,140]. To be induced
in the chondrogenic lineage, they require a combination of differentiation factors (mainly
growth factors such as TGF-β1 and TGF-β3) and a 3D environment to promote and stabilize
the chondrogenic phenotype [57]. Adipose-derived stem cells (ADSCs) are widely used in
cartilage tissue engineering for their chondrogenic properties [141–143]. Their main advan-
tage over other MSCs is that they are easily accessible via minimally invasive procedures.
Their differentiation capacity differs from that of BM-MSCs, which have better osteogenic
properties, while ADSCs synthesize more collagen. They can be isolated from different fat
tissues. Indeed, one of the sites most commonly used in cartilage TE is the infrapatellar fat
pad, already in the knee joint [144,145].

MSCs are also present in the synovial membrane. Their multipotency was investi-
gated to prove that they can differentiate into chondrogenic, osteogenic, adipogenic, and
sometimes myogenic pathways [135]. They have healing potential for articular tears [146],
making them good candidates for cartilage tissue engineering. Similar MSCs can be isolated
from synovial fluid [59], presenting an MSC phenotype and surface markers. They possess
the same multilineage potential as synovial membrane-derived cells. Synovial fluid mes-
enchymal stem cells show the highest chondrogenic potential among osteoarticular cell
types [131]. MSCs isolated from dental pulp possess different differentiation properties.
They primarily differentiate into the odontoblast pathway but can also be induced to
become adipocytes, osteoblasts, chondrocytes, and neural cells [147,148]. Already used in
cartilage TE, dental pulp MSCs exhibited potential for hyaline-like cartilage formation with
the synthesis of ECM components, such as aggrecan or collagen [149–151]. Umbilical cord
blood and Wharton’s jelly also contain mesenchymal-like cells expressing MSC markers
and lacking hematopoietic markers [138,152]. Their multipotent potential for cartilage
TE was already studied, and they showed good hyaline-like cartilage neosynthesis under
different conditions with lower type X collagen synthesis than BM-MSCs [62,132,153].

As not all cell sources were used in EBB processes for hyaline cartilage regeneration,
we focus only on the extruded cellularized constructs and their cell contingents.
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5.3. Cell Types Used in Extrusion-Based Bioprinting

5.3.1. Cartilage-Derived Cells

Chondrocytes are intensively investigated for cartilage regeneration. The EBB process
allows for the direct bioprinting of chondrocytes embedded in bioinks to print cellularized
constructs. They are usually associated with natural polymers. Some studies use algi-
nate [117], HA [118], gelatin [154] or dECM-based bioinks [108]. Chondrocytes can be used
to assess the biocompatibility and printability properties of different polymers and test
different concentrations of polymers [120] or different biomaterial blends [155]. To further
recreate the cartilage’s zonal organization, EBB systems were used to create layer-by-layer
substitutes. The gradient can be tuned by modifying the cell density within the gridded
construct [156]. Adding constituents to the deepest layers of the printed substitutes, such as
calcium, can improve a calcified zone [157]. Once printed and matured, cartilaginous con-
structs can be used to assess chondrogenesis inside the biomaterial, by measuring gene
expression and matrix synthesis [154]. Mechanical properties such as compressive stress
are also key factors that need to be assessed to recreate native cartilage [158].

An alternative to mature chondrocytes for tissue engineering is a subpopulation of
chondrocytes, articular chondroprogenitor cells (ACPCs) found in the surface zone of
mature cartilage [159]. ACPCs maintain good chondrogenic potential after extending the
monolayer culture, unlike mature chondrocytes [160]. ACPCs were already used in the EBB
process developed with a gelatin-based bioink playing two key roles—the ink provides
a scaffold to encapsulate the cells and acts as glue so that the extruded material directly
adheres to the defect surface in situ [161]. ACPCs must be more deeply investigated to
evaluate the chondrogenic potential of those cells. As seen previously, autologous chondro-
cytes are very limited in number, and while undergoing expansion in vitro, they might lose
their phenotype, morphology, and expression of specific markers. Therefore, the limitations
encountered in chondrocyte-based therapies instigated alternative cell searches as tools in
cartilage regeneration.

5.3.2. Mature MSCs

MSCs represent a promising alternative for cartilage tissue engineering due to their
many advantages, as discussed previously. The most common MSCs used are BM-MSCs.
By using extrusion-based 3D printing, BM-MSCs can be directly seeded into the biomaterial
and extruded into a compact three-dimensional construct. Due to their potential, BM-MSCs
could engineer different layers of native cartilage in vitro. MSCs are usually embedded
in a hydrogel to reproduce the hyaline-like cartilaginous matrix, due to their excellent
hydration properties, such as alginate [162] GelMA [163] or dECM-based bioinks [106].
An important aspect of tissue mimetism is the fiber organization within the different layers;
the bioextrusion process can print layers with different alignments, making it possible to
reproduce the collagen fibers’ natural organization within the cartilaginous ECM [103].
The addition of compounds that lead to differentiation was investigated at length. CS can
induce cartilaginous matrix production, especially type II collagen, while the presence
of HA in the hydrogel enhances cell viability and chondrogenesis [164]. HA also favors
the hypertrophic differentiation of MSCs [165]. To further reproduce the calcified layer,
calcium can be added to the bioink to increase the expression of hypertrophic cartilage
markers [166]. To fine-tune the chondrogenesis of the embedded MSCs in 3D-printed
constructs, the use of growth factors, especially TGF-β family members, is essential [60].

ADSCs can also be used in EBB processes to reproduce cartilaginous tissue through
additive manufacturing. A specific device, the BioPen, was developed to directly print
substitutes seeded with ADSCs [167]. Different studies assessed the process [168] and its
potential for cartilage reparation therapy in vitro [143]. The next step was to directly print
into a full-thickness defect with the handheld device, to assess in vivo printing in a large
animal model, highlighting the ability of the ADSC combined with a bioextruded hydrogel,
to promote the reparation of the cartilage by enhancing a more hyaline-like cartilaginous
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reparation [142]. Other MSC sources (synovium, Wharton’s jelly) were already used in
classical cartilage tissue engineering, but their chondrogenic potential in an extrusion-based
3D printing process is yet to be assessed [146].

5.3.3. Coculture of MSCs and Chondrocytes

The chondrocyte phenotypes vary from one zonal area to the next in joint carti-
lage [169]. To recreate this complex structural cellular organization, recent findings high-
lighted the fact that coculturing MSCs and chondrocytes in the same constructs could
favor the induction of chondrogenesis, especially for BM-MSCs [170]. Studies showed
that when combining a nanocellulose-based biomaterial with a coculture of BM-MSCs and
chondrocytes at a ratio of 8:2, the presence of MSCs enhances the proliferation of chon-
drocytes in vivo [171]. Using the same parameters, it was also proven that MSCs could
improve cartilaginous ECM synthesis in vivo, especially type II collagen synthesis [172].
To mimic the zonal organization of native cartilage, specific cell contingents can be used
to reproduce different layers. Alginate and gelatin-based bioinks were used to produce
a composite construct. The top layer comprises BM-MSCs and chondrocytes cocultured
(7.5:2.5) with CS and is designed to reproduce hyaline-like cartilage. The bottom layer
contains only MSCs embedded in a bioink to which HA was added to reproduce the
calcified zone. These constructs demonstrate the potential for zone-specific cartilage tissue
engineering [173]. Many factors in addition to cell origin need to be assessed to optimize
neocartilage production in the constructs.

5.4. Cell Density for Cartilage Tissue 3D Printing

The cell seeding density to use during 3D bioprinting remains an open question.
Due to chondrocytes’ low proliferation rate, a higher cell density generally yields a bet-
ter engineered cartilage tissue [174]. The cell density used for the extruded products
generally ranges from 5 to 20 × 106 cells/mL. Very few studies aimed to compare those
densities to assess induced chondrogenesis [156]. In most cases, researchers work with a
standard density optimized within that range [108,117–120,155,157]. In one study working
with chondroprogenitors, a high density of 20 × 106 was also selected [161]. Very few
studies used low cell densities, but they achieved good chondrogenic results [154,158].
For BM-MSCs, the range of densities is comparable to that of chondrocytes, starting from
4 × 106 cells/mL [175] and increasing to as high as 20 × 106 cells/mL [163]; most of the
studies were between those two values, thus achieving the best chondrogenic induction
possible [106,162,165,166]. Recently, some research aimed to compare two very low cell
densities, 1 and 2 × 106 cells/mL, to assess better options for obtaining good chondrogene-
sis, and they showed that the lowest density seemed to be optimal [60]. This could lead
to a new approach in cartilage tissue engineering by better mimicking the chondrocytes’
natural repartition in cartilage.

ADSCs delivered with BioPen technology are seeded at a slightly lower range of den-
sities than the other cell types, between 2 and 10× 106 cells/mL [142,143,168]. These condi-
tions seemed optimal to obtain good chondrogenic properties of the final construct in vitro
and in vivo. In cocultured substitutes, although the cell density used is crucial. The most
important cell number is usually 10 × 106 cells/mL. Another important aspect is the ratio
between the two cell types and the use of a higher density of stem cells than chondrocytes
in all printed substitutes. The ratio most often used is 8:2 [171,172]. The ratio between
MSCs and chondrocytes can vary between the layers, depending on the desired character-
istics [173]. The chondrogenic differentiation of the embedded cells is impacted by their
origin, their density, the nature of the biomaterial they are seeded in and environmental
factors.



Cells 2021, 10, 2 11 of 24

Table 1. Summary of the advantages of the various biomaterials used to date in extrusion-based 3D printing depending on
the embedded cell types for cartilage tissue engineering.

Biomaterial Advantages Cell Types References

Alginate

Biocompatible
Good printability

Ionic gelation
Low cost

Chondrocytes [117,119,155,157,158]

BM-MSCs [60,162,166]

Chondrocytes + BM-MSCs [173]

Gelatin

Biocompatible
Non immunogenic
Thermic gelation

Biodegradable

Chondrocytes [120,154]

ACPCs [161]

BM-MSCs [60,163,165,166,175]

ADSC [142,143,168]

Chondrocytes + BM-MSCs [173]

Hyaluronic acid

Biocompatible
Promote proliferation

Bio printability
Chondrogenic signalling

Chemical crosslinking
Anti-inflammatory

Chondrocytes [118]

BM-MSCs [165]

ADSC [142,143,168]

Chondrocytes + BM-MSCs [173]

Collagen

ECM component
Good printability

Promote cell adhesion
Chondro-induction

Chondrocytes [155,156]

Chondroitin sulphate
Component of ECM
Anti-inflammatory

Gelation by chemical modification

Chondrocytes [118]

BM-MSCs [165]

Chondrocytes + BM-MSCs [173]

Nanocellulose
Biocompatibility

Shear thinning properties
High stiffness

Chondrocytes [117,119,158]

Chondrocytes + BM-MSCs [171,172]

Agarose

Biocompatible
High stability

Thermic gelation
Low cost

Chondrocytes [155]

Fibrinogen
Biocompatible

Strong 3D network
Chemical crosslinking

BM-MSCs [60]

dECM

Biocompatible
Native ECM structure

Biological cues
Promote cell growth and differentiation

Chondrocytes [108]

BM-MSCs
[106]

NB: We presented only the studies using the 3D bioextrusion printing method, where the hydrogel-based bioink is directly seeded by
the cells before printing. Therefore, we eliminated acellular printing methods, publications associating a PCL scaffold with hydrogels,
and studies using extrusion coupled with post-printing molding.

5.5. Cell Viability

The cells’ ability to proliferate and differentiate inside the 3D-printed cartilaginous
construct is directly correlated with cell viability. The cell viability of the embedded cells
depends on the cell type and density used for 3D printing of cartilaginous constructs, as pre-
sented in Table 2. Printing parameters such as shear stress and pressure applied to the
cells during the extrusion process can affect cell viability, proliferation, and chondrogenic
properties. To reduce shear stress during extrusion, nozzle diameter and geometry are vital
factors [117]. Other printing parameters, such as cross-linking (UV light, ionic, or enzy-
matic gelation), also need to be tuned to permit maximum cell survival [60,103,119,165,166].
To assess the long-term effects of the overall printing process, many researchers evaluated
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viability at different times postprinting [162,165,166]. The biomaterials and additives in
the bioink can also affect cell viability, exerting a cytotoxic effect on the embedded cells.
Previous studies highlighted that adding components to the bioink, such as nanocellulose
or calcium derivative, can reduce the cell viability [117,119,157,173]. This decrease can
be explained either by a slightly toxic effect of the added molecule [157,173] or by a too
highly concentrated hydrogel [118]. In contrast, other biomaterials, such as gelatin, silk,
or collagen, can improve cell nesting and survival [154,155]. Other studies used cell aggre-
gates or spheroids to seed into the bioink instead of single cells [103,175]. A comparison
of embedded spheroids to isolated cells in bioextruded substitutes demonstrated a better
survival of cells inside spheroids [175]. Globally, the bioextrusion process using biocompat-
ible biomaterials and optimized printing parameters maintains good viability, generally as
high as >90% viability, after a sufficient maturation time [108,118,142,156,163,168,173].

5.6. Environmental Factors

First, oxygenation plays a crucial role in the chondrogenic pathway. The articular
cartilage is avascular; the chondrocytes are therefore exposed to low oxygen contents,
which vary from 5% at the level of the superficial zone to 2% in the deep zone [176].
The surrounding medium’s oxygen content impacts the proliferation, maintenance of the
chondrogenic phenotype, and chondrogenic differentiation of MSCs in tissue engineering
of cartilage [177]. Comparing normoxic to hypoxic conditions is of interest to determine
the best culture conditions for the cells [59,178,179]. This parameter is yet to be assessed in
EBB processes.

Supplementation of the culture media with growth factors can also impact cell differen-
tiation. Members of the TGF-β superfamily are essential regulators of chondrogenic differ-
entiation during embryonic development in chondrogenesis and osteogenesis. The TGF-β
superfamily is composed of 5 members (TGF-β1 to TGF-β5). TGF-β1 remains the most
widely used and is known to stimulate the synthetic activity of chondrocytes and induce the
chondrogenic differentiation of bone-marrow MSC, by decreasing the expression of type I
collagen and increasing the production of type II collagen and aggrecan [180]. Bone mor-
phogenetic proteins (BMPs) are glycoproteins of the TGF-β superfamily. BMP-2 is the most
widely used in vitro to induce cartilage-type ECM production, with the synthesis of PGs
and type II collagen [181]. Other factors such as IGF-1 showed an interest to maintain
chondrocyte anabolic activities [182].

In extrusion-based constructs, culture media supplementation with growth factors
is essential for the redifferentiation of embedded chondrocytes or MSC differentiation
induction. TGF-β1 is used in many different studies involving embedded ACPCs [161]
or MSCs [163,175]. Extruded gels can also be cultured in medium supplemented with
TGF-β3 to induce chondrocyte redifferentiation [157] or MSC chondrogenesis [143,165],
or in coculture substitutes containing both cell types [173]. For cartilage TE, BMP2 is usually
associated with a TGF-β factor. A study aiming to compare TGF-β1, TGF-β3, BMP-2, or the
association of these factors demonstrated the benefit of BMP-2 and TGF-β1 [60]. TGF-β2
was also used in 3D printed substitutes fed with chondrocytes, to support cartilaginous
matrix formation [120].
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Table 2. Comparison of cell viability and chondrogenic evaluation depending on cell types, origins, and densities used to date in extrusion-based processes for cartilage tissue engineering.

Cell Type
Bioink

Components Species
Cellular
Density

(cells/mL)
Cell Viability

Chondrogenic Evaluation

ReferenceBiochemical
Assays

Gene
Expression Matrix Synthesis Biomechanical

Testing

Chondrocytes

Silk fibroin
Gelatin Porcine 1 M Good Viability DNA and GAG

content

Col2, Sox9,
ACAN and

Col10
H&E staining Uniaxial compressive

test [154]

Alginate
Nanocellulose Human 2 M 71.6–97.3% N.D N.D N.D Unconfined

compression test [158]

Type II collagen Rabbit
5 M

10 M
20 M

93% DNA and GAG
content

Col1A1, Col2A1
and ACAN

H&E and Alcian blue
staining

Type I and II collagen and
PRG4 IHC

N.D [156]

Alginate
Nanocellulose Calves 6 M >65% N.D N.D Type I and II collagen and

Proteoglycan-HA IHC N.D [117]

Hyaluronic acid
Chondroitin

sulphate
Bovine 6 M 91% N.D N.D N.D N.D [118]

Alginate
Methylcellulose Human 6.5 - 7 M 45–75% GAG and type II

collagen content

Col2, ACAN,
COMP, Col10,
Col1 and Sox9

Aggrecan IF N.D [157]

Sodium
Alginate
Agarose

Type I collagen

Rat 10 M 70–95% DNA and GAG
content

ACAN, Sox9,
Col2A1 and

Col1A1
H&E staining Uniaxial compressive

test [155]

GelMA Equine 10-20 M N.D DNA and GAG
content N.D

Safranin-O/Fast green
staining

Type II collagen IHC
N.D [120]

Alginate
Nanocellulose Human 15 M 72.8–93% N.D N.D N.D N.D [119]

dECM Rabbit 20 M 90–98% GAG and
collagen content N.D

H&E,
Safranin-O/Fast-green

and Alcian blue staining
N.D [108]
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Table 2. Cont.

Cell Type
Bioink

Components Species
Cellular
Density

(cells/mL)
Cell Viability

Chondrogenic Evaluation

ReferenceBiochemical
Assays Gene Expression Matrix Synthesis Biomechanical

Testing

ACPCs GelMA Equine 20 M >70% DNA and GAG
content

Col1A1, Col2A1
and PRG4

Safranin-O staining
Type I and II collagen

IHC
N.D [161]

BM-MSCs

Alginate,
Gelatin and
Fibrinogen

Human 1 M >90% N.D

Col2A1, Col10A1,
ACAN, VCAN,

Sox9, COMP, ALP,
BGLAP and OSX

HES, Alcian blue,
Alizarin red and Sirius

Red staining
Type II collagen IHC

N.D [60]

Hyaluronic acid Human 3 M Good viability DNA and GAG
content

ACAN, Col2A1,
Sox9, Col1A1,
Col10A1 and

RunX2

Safranin-O/Fast green
staining

Type I collagen IF
N.D [103]

GelMA Human 4 M Good viability N.D N.D

H&E, Alcian blue and
picrosirius staining

Type I and II collagen
IHC

N.D [175]

Sodium alginate Human 6 M 73–87% N.D N.D

Alizarin red, Sirius red
and Safranin-O staining
Type I and II collagen

IHC

Unconfined
compression test [162]

GelMA and
alginate Human 10 M >80-85% N.D

Col1, Col2,
Col10A1, ACAN,

ALPL and BGLAP

Type I, II and X collagen
and aggrecan ICC N.D [166]

dECm,
silk-fibroin and

PEG
Rabbit 10 M >80% DNA, GAG and

collagen
Col1, Col2, ACAN

and Sox9
Safranin-O and Masson’s

trichrome staining N.D [106]

Alginate,
HAMA and
CS-AEMA

Human 10–15 M 85–90% N.D ACAN, Col1, Col2
and Col10

Type I, II and X collagen
and aggrecan ICC N.D [165]

HAMA and
GelMA Rat 20 M >90% DNA and GAG

content
Col2, Col1, Col10,
Sox9 and ACAN

Alcian blue, H&E,
Safranin-O staining

Dynamic mechanical
compressive test [163]
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Table 2. Cont.

Cell Type
Bioink

Components Species
Cellular
Density

(cells/mL)
Cell Viability

Chondrogenic Evaluation

ReferenceBiochemical
Assays

Gene
Expression Matrix Synthesis Biomechanical

Testing

ADSCs

HAMA-GelMA Human 2 M 97% N.D N.D N.D N.D [168]

HAMA-GelMA Sheep 2.5 M 97% N.D N.D
Safranin-O/Fast green

staining
Type I and II collagen IHC

Indentation test [142]

HAMA-GelMA Human 10 M N.D N.D

Col2A1, Col1A2,
ACAN, Sox9,
RunX2 and

Col10A1

Alizarin red, Safranin-O
staining

Type I, II and X collagen
and proteoglycan IF

Unconfined
compression test [143]

BM-MSCs +
Chondrocytes

NFC Human 10 M N.D N.D N.D
Alcian blue, Von Gieson
and Safranin-O staining

Type II collagen IHC
N.D [171]

NFC and
alginate Human 10 M N.D N.D N.D

Alcian blue and Von Gieson
staining

Type II collagen IHC

Unconfined
compression test [172]

GelMA, HAMA,
CS-AEMA Human 10 M 88–90% N.D

Col2A1, ACAN,
Col1A1, Col10A1

and ALPL

Type I, II and X collagen
and aggrecan IHC

Dynamic mechanical
compressive test [173]

N.D = No Data; Good Viability means that no precise value is available; ACAN: Aggrecan (gene), BGLAP: Osteocalcin (gene); COMP: Cartilage oligomeric matrix protein (gene); CS-AEMA: Chondroitin sulphate
2-aminoethyl Methacrylate; Col1A1: Collagen Type I Alpha 1 Chain (gene); Col2A1: Collagen Type II Alpha 1 Chain (gene); Col1: Collagen Type I (gene); Col2: Collagen Type II (gene), Col10: Collagen type X
(gene); dECM: decellularized ExtraCellular Matrix; DNA: Deoxyribonucleic acid; GAG: Glycosaminoglycan; GelMA: Gelatin methacrylamide; H&E: Hematoxylin Eosin staining; HA: Hyaluronic Acid; HAMA:
Methacrylated hyaluronic Acid; HES: Hematoxylin Eosin and Saffron staining; ICC: Immunocytochemistry, IF: Immunofluorescence; IHC: Immunohistochemistry; M: 106 (for Million); NFC: Nanofibrillated
Cellulose; PEG: Poly(Ethylene)-Glycol; PRG4: Proteoglycan 4 (gene); RunX2: Runt-related transcription factor 2 (gene); Sox9: Sex-determining region-related HMG-box9 (gene); and VCAN: Versican (gene).
NB: We presented only the studies using the 3D bioextrusion printing method, where the hydrogel-based bioink is directly seeded by the cells before printing. Therefore, we eliminated acellular printing
methods, publications associating a PCL scaffold with hydrogels, and studies using extrusion coupled with post-printing molding.
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5.7. Biomechanical Properties

Healthy articular cartilage needs to have biomechanical properties for physiological
load bearing. The compressive modulus of native cartilage ranges from 240 to 1000 kPa but
many hydrogels fail to meet this criterion [183]. Thus, 3D-printed cartilaginous biomechan-
ical properties need to be investigated. Only a third of the studies presented in this review
evaluated the compressive strength of the constructs either directly after printing [154],
after some maturation time [173], or by comparing different time points [143,163,172].
Most commonly, the mechanical process used for evaluation of the properties are a uniax-
ial compressive test [154,155], unconfined compression test [143,158,162,172], dynamical
mechanical compression test [163,173], or indentation [142]. The aim of those measures
being to compare the tissue-engineered construct to native cartilage but also to evaluate
the strength of different bioprinted biomaterials [162], to compare acellular constructs to
cellularized ones [172], or even to evaluate the most efficient culture conditions for chon-
drogenesis [143]. The different biomechanical parameters such as compressive strength but
also stiffness and elasticity need to be further investigated to better mimic native cartilage
properties.

We resume all parameters discussed above, such as cell origins, densities, and viability,
and chondrogenic and biomechanical properties in Table 2.

6. Conclusions and Future Directions

Currently, extrusion-based 3D printing can be used to produce cartilaginous con-
structs. Future applications still present challenges and limitations. Most studies aim to
produce standardized structures, generally cubes or rings, but in order to treat cartilaginous
defects, the 3D constructs need to be adapted to the depth and shape of a unique lesion [93].
Furthermore, the biomaterial used to produce those structures needs to integrate with the
native cartilage edges to form a strong and stable joint surface [142]. New noninvasive
methods are being developed to assess cartilage thickness, composition, and functional
integrity [184]. The most challenging requirement of TE is that the neosynthesized matrix
must have sufficient stability to bear the physiological loads of the joint. Thus, numerous
biomechanical parameters need to be assessed after 3D printing (compression modulus,
deformation) [120,143,163]. The gelation process usually necessary to maintain printed
construct integrity remains an obstacle to direct in situ printing. New methods were de-
veloped to directly crosslink the ink during the printing process [185] or to polymerize
the bioink in situ [142]. The ideal cell type to use for cartilage TE is still controversial.
The sole resident cells of cartilage present many disadvantages to in vitro expansion, such
as in vitro dedifferentiation. Adult MSCs are a promising alternative. With good prolifer-
ation and differentiation potential, they offer new cell types and density possibilities for
engineered constructs. Other cell types were extruded with subsequent evaluation of their
chondrogenic properties, such as ATDC5 cells [186,187] or IPS cells [188]. Today’s research
aims to create layered substitutes that reproduce the natural zonal organization of hyaline
cartilage, by optimizing cell types and densities, biomaterials, and environmental factors
(growth factors, oximetry), to mimic both the structural and biomechanical properties of
the natural material. However, many barriers still remain for the clinical translation of
those research [189].
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Abbreviations
3D Three Dimension
ACI Autologous chondrocyte implantation
ACPC Articular Chondroprogenitor Cells
ADSC Adipose Derived Stem Cells
BM-MSC Bone Marrow-derived Mesenchymal Stem Cells
BMP Bone Morphogenetic Protein
CAD Computer-Aided Design
CNTs Carbon nanotubes
CS Chondroitin Sulfate
dECM decellularized ExraCellular Matrix
EBB Extrusion-Based Bioprinting
ECM ExtraCellular Matrix
GelMA Gelatin Methacryloyl
HA Hyaluronic Acid
IGF Insulin-like Growth Factor
IPSc Induced Pluripotent Stem cells
MSC Mesenchymal Stem Cells
OA OsteoArthritis
PCL Polycaprolactone
PEG Poly(Ethylene)-Glycol
PG Proteoglycan
PGA Polyglycolic acid
TE Tissue engineering
TGF-β Transforming Growth Factor Beta
UV UltraViolet
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