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A B S T R A C T   

Investigating the causal relationship between insulin secretion and prostate cancer (PCa) development is chal
lenging due to the multifactorial nature of PCa, which complicates the isolation of the specific impact of insulin- 
related factors. We conducted a Mendelian randomization (MR) study to investigate the associations between 
insulin secretion-related traits and PCa. We used 36, 60, 56, 23, 48, and 49 single nucleotide polymorphisms 
(SNPs) as instrumental variables for fasting insulin, insulin sensitivity, proinsulin, and proinsulin in nondiabetic 
individuals, individuals with diabetes, and individuals receiving exogenous insulin, respectively. These SNPs 
were selected from various genome-wide association studies. To clarify the causal relationship between insulin- 
related traits and PCa, we utilized a multivariable MR analysis to adjust for obesity and body fat percentage. 
Additionally, two-step Mendelian randomization was conducted to assess the role of insulin-like growth factor 1 
(IGF-1) in the relationship between proinsulin and PCa. Two-sample MR analysis revealed strong associations 
between genetically predicted fasting insulin, insulin sensitivity, proinsulin, and proinsulin in nondiabetic in
dividuals and the development of PCa. After adjustment for obesity and body fat percentage using multivariable 
MR analysis, proinsulin remained significantly associated with PCa, whereas other factors were not. Further
more, two-step MR analysis demonstrated that proinsulin acts as a negative factor in prostate carcinogenesis, 
largely independent of IGF-1. This study provides evidence suggesting that proinsulin may act as a negative 
factor contributing to the development of PCa. Novel therapies targeting proinsulin may have potential benefits 
for PCa patients, potentially reducing the need for unnecessary surgical treatments.   

1. Introduction 

Prostate cancer (PCa) poses a significant global health concern and 
ranks as the second leading cause of cancer-related deaths in men 
worldwide. The American Cancer Society reported an estimated 
1,414,259 new cases of PCa and 375,304 deaths from the disease 
worldwide in 2020 [1]. Insulin and insulin-like growth factor 1 (IGF-1) 
play pivotal roles in prostate carcinogenesis by stimulating cell growth 
and proliferation through activation of the insulin receptor and the 
IGF-1 receptor. This activation triggers downstream signaling pathways, 

such as the phosphoinositide 3-kinase (PI3K) pathway [2–4]. The 
recruitment of PI3K occurs subsequent to the activation of the insulin 
receptor substrate, which results from insulin binding to the insulin 
receptor and facilitates cell survival and proliferation [5,6]. In vitro 
studies have reported an association between the overexpression of the 
insulin receptor and cell proliferation, as well as decreased apoptosis 
[7–9]. In the case of androgen-independent prostate cancer, combined 
inhibition of PI3K and the androgen receptor, as well as direct inhibition 
of the IGF-1 receptor, has shown significant effectiveness [10,11]. Pre
clinical studies have suggested that targeting the insulin/IGF-1 signaling 
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pathway could be a potential therapeutic strategy for PCa [4]. 
Investigating the causal relationship between insulin secretion and 

PCa development is challenging due to the multifactorial nature of PCa, 
which complicates the isolation of the specific impact of insulin-related 
factors. The majority of studies are observational and susceptible to bias 
and confounding factors [12–14]. Insulin levels can be influenced by 
various factors, such as diet, physical activity, and body weight, which 
can confound the association between insulin and PCa, posing chal
lenges in establishing causality [12]. Additionally, variability in 
measuring insulin resistance using surrogate markers, such as the ho
meostasis model assessment of insulin resistance (HOMA-IR), can be 
influenced by various factors [15,16]. Despite these challenges, several 
observational studies have suggested a potential link between 
insulin-related factors and PCa. However, further research is needed to 
establish causality and identify potential therapeutic targets [2,3,13, 
14]. 

Mendelian randomization is a method that employs genetic variants 

as instrumental variables to investigate causal relationships in obser
vational studies. This approach offers a natural experiment capable of 
establishing causality and overcoming the limitations of observational 
studies, including confounders and bias. Furthermore, it can explore the 
effects of exposures that may be challenging to manipulate in a clinical 
setting and identify potential therapeutic targets [17]. The counterfac
tual framework inherent in Mendelian randomization enables the esti
mation of causal effects by comparing observed outcomes among 
individuals with different genetic variants. Fig. 1 depicts the workflow 
of this study. 

2. Methods 

2.1. Data sources for exposure 

Genetic variants associated with insulin production were extracted 
from the largest genome-wide meta-analysis to date conducted by the 

Fig. 1. Workflow diagram. FI: fasting insulin; ISI: insulin sensitivity; BFP: body fat percentage; IGF-1: insulin-like growth factor 1.  

G. Chen et al.                                                                                                                                                                                                                                    



Computational and Structural Biotechnology Journal 23 (2024) 2337–2344

2339

Glucose and Insulin-related Traits Consortium (MAGIC) [18]. The 
MAGIC genome-wide association studies (GWAS) meta-analyses 
included 151,013 participants for fasting insulin (FI) concentration, 
16,735 participants for insulin sensitivity (ISI) evaluation, 45,861 par
ticipants for proinsulin concentration, and 10,701 nondiabetic in
dividuals for the proinsulin concentration (nonDM) trait. All 
participants had European ancestry. The GWAS for the proinsulin trait 
(nonDM) included only nondiabetic participants. The FI levels were 
adjusted for body mass index (BMI), study-specific covariates, and 
principal components [18]. The GWAS for ISI analyzed the combined 
effects of genotype, adjusted for BMI, and the interaction effect between 
genotype and BMI on the ISI following the method developed by 
Manning et al. [19]. Proinsulin values underwent natural logarithm 
transformation and were regressed with age, sex, and population 
structure [20]. Proinsulin values from nondiabetic individuals were 
adjusted for fasting insulin, age, sex, and study-specific covariates [21]. 
Supplemental analyses on diabetes mellitus (DM) and exogenous insulin 
were derived from the GWASs conducted by the Neale laboratory, which 
included 55,495 and 62,295 individuals from the UK Biobank, respec
tively [22]. This study adheres to the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) guidelines (S1 
checklist). 

2.2. Data sources for outcome 

The Prostate Cancer Association Group to Investigate Cancer- 
Associated Alterations in the Genome (PRACTICAL) Consortium pro
vided GWAS summary level data for PCa risk, which comprised a total of 
79,148 cases and 61,106 controls. All of the individuals in these studies 
were males of European descent [23]. Genotyping was performed using 
a custom array, namely, OncoArray. 

2.3. Selection of genetic instruments 

Instrumental variables (IVs) included in the Mendelian randomiza
tion study had to demonstrate a significantly strong correlation with 
exposure. For the analysis of the FI trait, the limitation was defined as 
p < 5 × 10− 8. To ensure that a sufficient number of instrumental vari
ables were present, p < 1 × 10− 5 was deemed acceptable when select
ing the IVs of the ISI, proinsulin, and proinsulin (nonDM) traits. The 
necessity of guaranteeing a certain number of IVs stems from the 
avoidance of bias in parameter estimates due to problems such as weak 
instruments and low statistical power [24]. Moreover, this study also 
adopted the MR–Egger method to test potential horizontal pleiotropy 
due to the loose of screening thresholds for IVs to ensure compliance 
with the exclusivity constraints of the three principles of the MR method 
[25]. 

The threshold of r2 for clumping was fixed at 0.001 in order to 
eliminate the IVs with linkage disequilibrium (LD). The F-statistic was 
utilized to evaluate the significance of the selected instrumental vari
ables in the study, and the F value calculation formula has been vali
dated by previous studies [26]. 

2.4. Statistical analysis 

2.4.1. Heterogeneity and pleiotropy analysis 
Cochran Q statistics were employed to quantify the heterogeneity of 

independent single nucleotide polymorphism (SNP) effects. Directional 
pleiotropy was identified by MR–Egger, which is the regression of ge
netic associations with the outcome on genetic correlations with the 
exposure based on the InSIDE assumption [27,28]. The fact that the 
MR–Egger intercept was not null or that the P value was less than 0.05 
indicated pleiotropy. The results of scanning the IVs selected for this 
study in the Phenoscanner database revealed that there were associa
tions of IVs with obesity and body fat percentage (p < 5 ×10− 8). 
Therefore, multivariable MR analyses were conducted to examine the 

causal effect of insulin production-related traits on PCa after adjusting 
for putative pleiotropy. To analyze the insulin secretion-related traits 
from a genetic correlation perspective, this study utilized the MTAG 
method. The MTAG is designed to enhance statistical power in detecting 
genetic associations by jointly analyzing GWAS results for multiple 
related traits [29]. 

2.4.2. Two-sample MR analysis 
Two-sample Mendelian randomization is a method for estimating the 

association of genetic instruments with exposure and outcome based on 
two sets of GWAS that require their populations to be of the same 
ancestry and have similar traits [24]. MR is based on three assumptions 
to ensure the validity of the method, and two-sample MR, as a basic MR 
method, also follows these three assumptions [25]. First, any of the 
instrumental variables are strongly associated with the exposure trait 
under study, which is called the correlation assumption. Second, none of 
the instrumental variables are associated with traits other than expo
sure, which is called the independence assumption. Third, genetic 
variation can only affect the outcome through exposure, which is called 
the exclusivity constraints assumption. 

Common two-sample Mendelian randomization (MR) methods 
include the random effects inverse variance weighted (IVW) method, 
MR–Egger, and weighted median estimator. The IVW method served as 
the primary statistical analysis technique in this study, while MR–Egger 
and the weighted median estimator were employed as validation 
methods. 

2.5. IVW method 

The principles underlying the IVW technique involves weighting 
each SNP’s estimated effect by its precision, which is inversely propor
tional to its variance. This approach allows the method to generate more 
precise estimates of causal influence by considering the quality of evi
dence from each variant. The weighted effect estimates are subsequently 
merged using a random effects model, which considers heterogeneity. 
Consequently, the overall effect estimate provided by the random effects 
IVW method is more robust than that provided by fixed effects models 
[30,31]. 

2.6. MR-Egger 

In this study, the MR–Egger method was employed to detect the 
pleiotropy of IVs. It is important to note that the MR–Egger method 
does not completely eliminate the potential for bias due to horizontal 
pleiotropy and should be used in conjunction with other MR methods, 
such as IVW, to obtain a more comprehensive assessment of the causal 
effect of exposure on an outcome [27,28]. 

2.7. Weighted median estimator 

The weighted median estimator is used to calculate a summary sta
tistic for the effect of a genetic variant on the exposure and outcome. The 
method involves weighting each SNP by its effect size and using the 
median of the weighted effects as a summary statistic. This approach is 
more robust to outliers than other methods that use mean statistics, such 
as IVW methods [32]. 

2.8. Multivariable MR analysis 

To avoid confounding the causal relationship between insulin- 
related traits and PCa, we applied a multivariable IVW approach to 
adjust for obesity and body fat percentage, which were prompted by the 
Phenoscanner to be associated with IVs. A GWAS involving 18,953 Eu
ropean participants from the FinnGen consortium was used to select the 
IVs of the obesity trait [33]. In addition, the IVs of body fat percentage 
were gathered from 354,628 European participants in the UK Biobank 
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project [22]. 
Compared to two-sample MR, multivariable MR has three underlying 

assumptions about instrumental variables that need to be applied to 
each exposure [34,35]. When a set of SNPs is screened as instrumental 
variables for multivariable MR, each exposure in the estimation should 
be strongly predicted by the set of instrumental variables; otherwise, 
there is weak instrumental bias due to multicollinearity [34]. Multi
variable MR avoids the pleiotropic effects that occur in two-sample MR 
caused by overlap in instrumental variables between one exposure and 
other exposures by incorporating multiple exposures into the same 
model for analysis; thus, multivariable MR itself is considered a method 
for pleiotropy adjustment [34]. However, when there are genetic vari
ants violating the exchangeability assumptions through unknown 
pleiotropic pathways, multivariable MR–Egger is considered a method 
that can be used to estimate consistent causal effects [36]. And 
MVMR-robust which is a new MVMR method that retains correct type I 
error rates despite the presence of horizontal pleiotropy in certain 
instrumental variables has been employed in this study to further sup
plement the validation of MVMR results [37]. 

2.9. Two-step MR analysis 

To better understand the involvement of proinsulin, an insulin- 
related trait, in prostate carcinogenesis, we conducted two two-step 
Mendelian randomization analyses. Initially, our goal was to assess 
whether proinsulin acted as a mediator in the association between 
obesity and prostate cancer, where obesity served as the exposure, 
proinsulin served as the mediator, and PCa served as the outcome. 
Subsequently, we conducted a second two-step Mendelian randomiza
tion analysis to investigate whether IGF-1 acted as a mediator in the 
relationship between proinsulin and PCa, where proinsulin was 
considered the exposure, IGF-1 was considered the mediator, and PCa 
was considered the outcome. The methodology for two-step Mendelian 
randomization and the relevant formulae are detailed in the Supple
mentary Material. 

3. Results 

3.1. Selection of instrumental variables and F-test 

A total of 36, 60, 56, 23, 48, and 49 SNPs were selected as instru
mental variables for fast insulin, insulin sensitivity, proinsulin, proin
sulin (nonDM), diabetes, and exogenous insulin, explaining 1.3%, 5.8%, 
9.5%, 9.3%, 6.4%, and 5.9% of the phenotypic variance, respectively, 
with total F-statistics of 55.25, 17.01, 84.08, 47.48, 78.90, and 79.75, 
respectively. 

3.2. Detection of heterogeneity and directional pleiotropy 

The sources of all exposure and outcome data are listed in Table S1. 
Table S2 presents the SNPs included in the two-sample Mendelian 
randomization of this study, as well as their descriptive statistics in the 
exposure and outcome GWAS. MR–Egger intercept analysis did not 
demonstrate multidirectionality in any of the analyses (Table S3). The p 
values of the intercepts for fasting insulin, insulin sensitivity, proinsulin, 
proinsulin (nonDM), diabetes, and exogenous insulin were 0.476, 0.433, 
0.995, 0.717, 0.057 and 0.376, respectively. None of the p values ob
tained based on MR–Egger intercept analysis were statistically signifi
cant, suggesting the absence of pleiotropy. Using Cochran Q statistics for 
heterogeneity identification, proinsulin and proinsulin (nonDM) ana
lyses revealed the presence of heterogeneity. The IVW approach has 
been used as the main analytical approach because of its strength in 
dealing with heterogeneity between IVs when assessing causality. 

3.3. Two-sample MR analysis 

Two-sample Mendelian randomization studies have revealed strong 
associations between genetically predicted fasting insulin levels, insulin 
sensitivity, proinsulin levels in individuals with diabetes mellitus (DM), 
and proinsulin levels in nondiabetic patients and the development of 
PCa (Fig. 2). Fasting insulin, insulin sensitivity, proinsulin, and proin
sulin in nondiabetic patients increased by one SD, and the integrated 
ORs for PCa were 0.781 (IVW 95% CI: 0.627–0.972; P = .026), 1.008 
(IVW 95% CI: 1.000–1.016; P = .037), 0.941 (IVW 95% CI: 
0.887–0.999; P = .048), and 0.927 (IVW 95% CI: 0.860–0.999; 
P = .046), respectively. MR–Egger and the weighted median were used 
to further validate the findings of the univariate MR analysis, and the 
results are presented in the supplementary tables (Table S4) alongside 
the IVW results. The beta values from the MR–Egger and weighted 
median results agreed with the IVW results, indicating a positive or 
negative association between exposure and outcome, although some of 
the results were not statistically significant. 

To further assess the impact of diabetes and insulin levels on the 
occurrence of PCa, we examined the causal relationships among dia
betes, exogenous insulin, and PCa occurrence. Our investigation 
revealed that none of these relationships were present, as detailed in the 
supplementary material (Table S4). 

3.4. Multivariable MR analysis 

Phenoscanner was applied to detect the traits associated with the 
selected IVs, and obesity and body fat percentage were identified as 
possible variables confounding the association between exposure and 
outcome in the present study. The associations between fasting insulin, 
insulin sensitivity, and PCa were not significant in multivariable IVW 
analyses after adjusting for obesity alone, body fat percentage alone, or 
both obesity and body fat percentage (Table S5). However, proinsulin 
remained significantly associated with all three conditions, adjusting for 
obesity alone, body fat percentage alone, or both obesity and body fat 
percentage, with corresponding composite ORs for PCa of 0.931 (IVW 
95% CI: 0.882–0.984; P = .012), 0.947 (IVW 95% CI: 0.903- 0.994; 
P = .026), and 0.934 (IVW 95% CI: 0.891–0.979; P = .005), respectively 
(Figs. S1–3). MVMR-robust, as a complementary validation method, also 
found proinsulin as a protective factor for PCa when performing 
multivariate analyses of proinsulin, obesity and body fat percentage, but 
the results were not statistically significant (Table S6). The MR–Egger 
approach confirmed that this association was significant without hori
zontal pleiotropy (Table S7). 

Correlations between the three traits associated with insulin were 
present that were validated by MTAG (Table S8). To further validate the 
causal role of proinsulin in prostate carcinogenesis, a multivariable 
Mendelian randomization analysis of fasting insulin, insulin sensitivity, 
and proinsulin was performed. After adjusting for two other indicators 
related to insulin secretion, proinsulin remained significantly causally 
associated with prostate carcinogenesis, with an OR of 0.919 (IVW 95% 
CI: 0.868–0.972; P = .003) (Fig. 3). The MVMR-robust findings for 
fasting insulin, insulin sensitivity, and proinsulin indicate that while 
proinsulin is still regarded as a protective factor for PCa, there is no 
statistically significant relationship (Table S6). 

3.5. Two-step MR analysis 

We investigated the causal relationship between obesity and PCa 
with proinsulin as a mediator and between proinsulin and PCa with IGF- 
1 as a mediator. This approach allowed us to explore the mechanism 
linking obesity to prostate carcinogenesis and the involvement of IGF-1 
in the causal pathway between proinsulin and PCa risk. 

According to the two-step Mendelian randomization with obesity as 
the exposure, proinsulin as the mediator, and PCa as the outcome, we 
found a significant negative association between trait obesity and PCa 
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risk (OR: 0.937; IVW 95% CI: 0.881–0.997; P = .040) and a significant 
negative association between proinsulin levels and PCa risk (OR: 0.941; 
IVW 95% CI: 0.887–0.999; P = .040). However, no association between 
obesity and proinsulin levels was confirmed (OR: 1.029; IVW 95% CI: 
0.965–1.097; P = .376). Therefore, proinsulin did not play a mediating 
role in the association between obesity and PCa risk (P = .394) (Fig. 4). 

According to the two-step Mendelian randomization with proinsulin 
as the exposure, IGF-1 as the mediator, and PCa as the outcome, a sig
nificant negative association was found between proinsulin and PCa risk 
(OR: 0.941; IVW 95% CI: 0.887–0.999; P = .040), and a significant 
positive association was found between IGF-1 and PCa risk (OR: 1.012; 
IVW 95% CI: 1.000–1.024; P = .043). An exploration of the associations 
between exposure factors and mediators indicated a significant positive 
association between proinsulin and IGF-1 (OR: 1.218; IVW 95% CI: 

1.015–1.460; P = .034). After calculating the total effect of proinsulin in 
leading to a reduced risk of PCa as 1, the mediating effect of IGF-1 be
tween proinsulin levels and PCa risk was − 0.042, and the direct effect 
of proinsulin was 1.042 (P = .044) (Fig. 5), with the opposite signs 
indicating the opposite direction of the two effects. Specifically, proin
sulin has a negative effect on PCa, as one of its protective factors, and a 
positive effect on IGF-1, which in turn has a positive effect on PCa, as one 
of its facilitators. 

4. Discussion 

Employing a two-sample Mendelian randomization approach, we 
found that fasting insulin levels, proinsulin levels, and proinsulin levels 
in nondiabetic individuals were inversely associated with prostate 

Fig. 2. Estimates for the association of fasting insulin, insulin sensitivity, proinsulin, and proinsulin (nonDM) with risk of prostate cancer. Odds ratios (OR) per SD 
increment in the exposure from inverse variance weighted analysis. 

Fig. 3. Multivariable MR analysis results of fasting insulin, insulin sensitivity, and proinsulin. Odds ratios (OR) per SD increment in the exposure from inverse 
variance weighted analysis or egger analysis. IVW: Inverse variance weighted analysis; egger: Mendelian randomization egger analysis. 

Fig. 4. The results of two-step Mendelian randomization with obesity as exposure, proinsulin as mediator, and prostate cancer as outcome. Odds ratios (OR) per SD 
increment in the exposure from inverse variance weighted analysis. 
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cancer (PCa) risk, while insulin sensitivity exhibited a positive associa
tion. However, upon conducting multivariable Mendelian randomiza
tion adjusted for obesity and body fat percentage, the significance of the 
associations between all exposure factors and PCa disappeared, except 
for proinsulin. Moreover, in multivariable Mendelian randomization 
analyses involving fasting insulin, insulin sensitivity, and proinsulin, 
proinsulin retained a significant causal association with PCa risk despite 
adjusting for the other two indicators. Subsequently, two-step Mende
lian randomization revealed that proinsulin does not mediate the rela
tionship between obesity and PCa development. Conversely, IGF-1 acts 
as a mediator in the causal pathway between proinsulin and prostate 
carcinogenesis, exhibiting an opposing effect on the association between 
proinsulin and prostate cancer. Proinsulin was negatively associated 
with PCa risk, while IGF-1 was positively associated with PCa risk. 
Notably, the effect of proinsulin was significantly stronger than that of 
IGF-1. 

Several experimental and observational studies have examined the 
association between insulin secretion-related characteristics and PCa. 
Insulin and IGF-1 are closely related ligands that bind to the insulin 
receptor (IR) and insulin-like growth factor I receptor (IGF-IR) families. 
Signaling occurs via the PI3K-AKT-mTOR and RAS-MAPK pathways 
upon ligand activation of insulin receptor and IGF-1R, ultimately 
resulting in cell proliferation and migration and the inhibition of 
apoptosis [38,39]. Mutations in the PI3K-AKT and RAS-MAPK pathways 
are prevalent in cancer, and insulin and IGF signaling can activate other 
pathways and promote cell proliferation [40]. In vitro experiments 
revealed that high-grade prostate tumors had more insulin receptors on 
their cell membranes [41], especially the IR-A subtype [42,43], which is 
consistent with findings from a number of other tumors [44]. 

Current epidemiological studies indicate that the association be
tween insulin and PCa is ambiguous. In an early retrospective study, 
insulin levels among PCa patients and the general population were not 
substantially different, but elevated serum insulin was found in PCa 
patients older than 65 years of age [45]. The results of our study are 
consistent with these arguable findings, except that our study focused on 
the phenomenon of high insulin levels as a protective factor against 
prostate cancer in a wide range of populations. In a prospective study 
conducted in 2021, 5929 incident cases of total PCa and 667 cases of 
fatal PCa were tracked for 28 years, and the results indicated that a 
hyperinsulinemic diet was not related to total PCa. The connection be
tween a hyperinsulinemic diet and advanced and fatal PCa was only 
identified after adjusting for variables such as race, height, BMI, and 
smoking status (HR: 1.07; 95% CI: 1.01–1.15) [46]. Although this 
phenomenon may conflict with our findings, it is difficult to determine 
the relationship between insulin-related factors and prostate cancer 
development through dietary patterns alone, given the relationship 
between a hyperinsulinemic diet and inflammation development that 
existed in this study, as well as many other potential confounding 
factors. 

The relationship between insulin sensitivity and PCa was also 
investigated in this study. Insulin sensitivity was computed utilizing a 

model created by Manning and colleagues based on the Stumvoll insulin 
sensitivity index and adjusted for BMI [19,47]. Insulin sensitivity, as 
measured by the insulin resistance index (HOMA-IR), was thought to be 
negatively associated with nonaggressive PCa in earlier epidemiological 
research [48]. This is consistent with the findings of our investigation. 
According to the univariate Mendelian randomization analysis, there 
was a significant negative causal link between fasting insulin and PCa. 
However, the causal relationship disappeared when the two components 
of obesity and body fat percentage were included together. In the study 
of insulin sensitivity, its significant causal relationship with PCa simi
larly disappeared after applying a multivariable Mendelian randomiza
tion approach to adjust for two factors, obesity and body fat percentage. 
This indicates that the effect of insulin on prostate carcinogenesis is 
regulated by a multitude of other variables. 

In our study, proinsulin was examined as a distinct indicator. Based 
on previous in vitro studies, proinsulin is a prohormone with minimal 
biological activity that exerts biological effects by binding and acti
vating IR isomers. Proinsulin was discovered to have a greater affinity 
for the IR-A subtype, a low-specificity receptor with a greater affinity for 
both insulin and IGF-II, than for the IR-B subtype [49]. The binding of 
proinsulin to IR-A induces its phosphorylation, leads to sustained 
ERK1/2 activation and increases the rate of ERK1/2-Akt activation, and 
exerts a biological effect comparable to that of insulin in promoting 
mitosis and cell migration. Additionally, experiments conducted on a 
PCa PC3 cell line revealed that proinsulin and insulin were equally 
effective at stimulating all downstream kinases. Moreover, the highest 
absolute levels of IR-A were detected in PCa cell lines compared to breast 
and smooth muscle tumor cell lines, and in terms of biological effects, 
the difference in efficacy between proinsulin and insulin in promoting 
cell mitosis was minimal [49]. This provides more evidence that pro
insulin can have an impact comparable to that of insulin in altering the 
mitosis of tumor cells in prostate carcinogenesis by activating the re
ceptor for IR-A. In this research, proinsulin was found to have a statis
tically significant causal relationship with PCa in all main analyses, 
demonstrating its importance in the development of the disease. The IVs 
associated with proinsulin are also worthy of further investigation. The 
top SNPs with significant correlation and high statistical power with 
proinsulin were rs7109575 and rs10501320, whose chromosomal po
sitions involved the genes ARAP1 and MADD, respectively. Previous 
studies have confirmed the role of ARAP1 and MADD in the regulation of 
proinsulin secretion [50–52]. Additionally, ARAP1 is also involved in 
promoting the formation of a special ring-shaped membrane structure 
rich in F-actin in breast cancer, contributing to tumor migration [53]. In 
a recent study, MADD was found to bind to the lactylated NCL and 
potentiate intrahepatic cholangiocarcinoma pathogenesis via the MAPK 
pathway [54]. The role of these genes in other malignant tumors may 
provide insights into the mechanisms underlying the causal relationship 
between proinsulin and prostate cancer. 

This study represents an inaugural Mendelian randomization inves
tigation into the correlation between insulin secretion-related traits and 
PCa. The multifaceted nature of insulin involvement in tumorigenesis is 

Fig. 5. The results of two-step Mendelian randomization with proinsulin as the exposure, IGF-1 as the mediator, and prostate cancer as the outcome. Odds ratios 
(OR) per SD increment in the exposure from inverse variance weighted analysis. IGF-1: insulin-like growth factor 1. 
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well recognized. Employing a multivariable Mendelian randomization 
approach, this research amalgamates interconnected traits in a unified 
analysis, elucidating their contribution to the relationship between 
insulin-related characteristics and PCa. Following adjustment for 
obesity and body fat percentage, two variables were speculated to 
potentially affect the exploration of the causal link between insulin and 
PCa, with proinsulin emerging as a trait significantly associated with 
PCa. 

Proinsulin has received less attention than IGF-1 in the past decade. 
However, our study suggested that proinsulin may constitute a novel 
and potentially significant factor in prostate carcinogenesis, which is 
supported by previous in vitro findings. Our subsequent investigations 
confirmed this assertion. Employing a two-step Mendelian randomiza
tion approach, we found that proinsulin does not mediate the causal 
relationship between obesity and prostate cancer (PCa); rather, it exerts 
a distinct influence. Conversely, IGF-1 serves as a mediator between 
proinsulin and PCa, albeit with minimal impact, underscoring the strong 
association between proinsulin and prostate carcinogenesis. 

The findings of this study may have value for drawing attention to 
proinsulin in subsequent clinical applications and suggesting a potential 
preventive role for drugs that regulate insulin production and proinsulin 
levels in the development of prostate cancer. Lifestyle changes or insulin 
sensitizers, which may influence the level and sensitivity of individuals 
to insulin, have the potential to reduce the risk of prostate cancer. 

There are several limitations to our study. The validity of the MR 
method is contingent upon its three underlying assumptions. Despite the 
use of multivariable Mendelian randomization and MR–Egger methods 
to assess and avoid the presence of IV level multiple effects and het
erogeneity, respectively, to satisfy the second and third assumptions, 
there is no universally acknowledged method that guarantees complete 
avoidance. Second, our study sample consisted solely of Europeans and 
was not validated in other populations. Under the assumption that PC or 
insulin-related traits are regulated by different genetic patterns in 
different populations, the results of this study can be generalized to the 
entire spectrum of ethnic groupings. On the one hand, repeating our 
experimental analyses in populations based on other races is an 
approach that can address racial heterogeneity. On the other hand, 
comparing the pathogenic gene patterns of different racial populations 
through genomic approaches can also address the underlying racial 
heterogeneity at a fundamental level. In addition, past epidemiological 
research has revealed a correlation between stratified insulin levels and 
distinct PCa grades, suggesting the possibility of a threshold effect. 
Because our investigation was based on summary GWAS results, we 
were unable to precisely define insulin levels, which may have obscured 
the causal association between insulin and prostate development. 

5. Conclusions 

We initiated the first Mendelian randomization (MR) study to 
explore the link between insulin secretion-related traits and prostate 
cancer. Two-sample MR analysis revealed a positive association between 
insulin sensitivity and prostate cancer risk. However, upon adjusting for 
two confounding factors, namely, obesity and body fat percentage, these 
associations lost significance, except for proinsulin. Multivariable MR 
analysis demonstrated that proinsulin remained significantly correlated 
with prostate cancer risk, even after accounting for fasting insulin and 
insulin sensitivity. Two-step MR analysis indicated that IGF-1 mediated 
the causal relationship between proinsulin and prostate carcinogenesis. 
Our findings suggest that proinsulin may act as a restraint factor in 
prostate cancer development. Targeting proinsulin with novel therapies 
could hold promise for prostate cancer patients, potentially reducing the 
need for unnecessary surgical interventions. 
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approach to assess causality using observational data. J Am Soc Nephrol: JASN 
2016;27(11):3253–65. 

[18] Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, Willems SM, 
Wu Y, Zhang X, Horikoshi M, et al. The trans-ancestral genomic architecture of 
glycemic traits. Nat Genet 2021;53(6):840–60. 

[19] Manning AK, LaValley M, Liu CT, Rice K, An P, Liu Y, Miljkovic I, Rasmussen- 
Torvik L, Harris TB, Province MA, et al. Meta-analysis of gene-environment 
interaction: joint estimation of SNP and SNP × environment regression 
coefficients. Genet Epidemiol 2011;35(1):11–8. 

[20] Broadaway KA, Yin X, Williamson A, Parsons VA, Wilson EP, Moxley AH, 
Vadlamudi S, Varshney A, Jackson AU, Ahuja V, et al. Loci for insulin processing 
and secretion provide insight into type 2 diabetes risk. Am J Hum Genet 2023;110 
(2):284–99. 

[21] Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, Rybin D, Petrie JR, 
Travers ME, Bouatia-Naji N, Dimas AS, et al. Genome-wide association identifies 
nine common variants associated with fasting proinsulin levels and provides new 
insights into the pathophysiology of type 2 diabetes. Diabetes 2011;60(10): 
2624–34. 

[22] UK Biobank GWAS Results. [http://www.nealelab.is/uk-biobank]. 
[23] Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, 

Dadaev T, Leongamornlert D, Anokian E, Cieza-Borrella C, et al. Association 
analyses of more than 140,000 men identify 63 new prostate cancer susceptibility 
loci. Nat Genet 2018;50(7):928–36. 
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