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Abstract

Background: African trypanosomes are protozoan parasites that cause ‘‘sleeping sickness’’ in humans and a similar disease
in livestock. Trypanosomes also infect laboratory mice and three major quantitative trait loci (QTL) that regulate survival
time after infection with T. congolense have been identified in two independent crosses between susceptible A/J and BALB/
c mice, and the resistant C57BL/6. These were designated Tir1, Tir2 and Tir3 for Trypanosoma infection response, and range in
size from 0.9–12 cM.

Principal Findings: Mapping loci regulating survival time after T. congolense infection in an additional cross revealed that
susceptible C3H/HeJ mice have alleles that reduce survival time after infection at Tir1 and Tir3 QTL, but not at Tir2. Next-
generation resequencing of a 6.2 Mbp region of mouse chromosome 17, which includes Tir1, identified 1,632 common
single nucleotide polymorphisms (SNP) including a probably damaging non-synonymous SNP in Pram1 (PML-RAR alpha-
regulated adaptor molecule 1), which was the most plausible candidate QTL gene in Tir1. Genome-wide comparative
genomic hybridisation identified 12 loci with copy number variants (CNV) that correlate with differential gene expression,
including Cd244 (natural killer cell receptor 2B4), which lies close to the peak of Tir3c and has gene expression that correlates
with CNV and phenotype, making it a strong candidate QTL gene at this locus.

Conclusions: By systematically combining next-generation DNA capture and sequencing, array-based comparative genomic
hybridisation (aCGH), gene expression data and SNP annotation we have developed a strategy that can generate a short list
of polymorphisms in candidate QTL genes that can be functionally tested.
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Introduction

African trypanosomiasis is a disease of both livestock and

humans, largely caused by three species of Trypanosoma parasites.

Two subspecies of T. brucei: T. b. gambiense and T. b. rhodesiense,

cause severe disease in humans, whilst disease in livestock is mainly

caused by two other species: T. vivax and T. congolense. The diseases

affect over ten million Km2 of Africa and it is estimated that some

thirty percent of Africa’s 160 million cattle are at risk of infection.

Losses of livestock and crop production are estimated at over $1

billion per annum [1].

Some indigenous breeds of cattle, notably N’Dama (Bos taurus),

have the ability to tolerate the effects of an infection by Trypanosoma

parasites, and remain productive. Other, introduced, breeds are

much more susceptible, and quickly show the classic symptoms of

infection, such as anaemia, fatigue and muscle wastage [2]. This

effect is under genetic control, and ten quantitative trait loci (QTL)

have been mapped in F2 crosses between the N’Dama and

susceptible Boran cattle (Bos indicus) [2].

Scientists are aided by a mouse model of trypanotolerance, as

African trypanosomes also infect laboratory mice in which

susceptibility is measured by survival time after infection, which

varies between inbred lines. Whilst C57BL/6 mice survive for a

relatively long period after infection with T. congolense (110 days),

some other strains, such as A/J (16 days), 129/J (23 days), BALB/c

(49 days) and C3H/HeJ (59 days) mice are relatively susceptible

[3,4,5]. Mapping studies, initially undertaken in two independent

F2 crosses: C57BL/6JOlaHSD (C57BL/6) 6 BALB/cOlaHsd
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(BALB/c) and C57BL/6JOlaHSD 6A/JOlaHsd (A/J), identified

three major QTL regulating survival time [6]. These were mapped

to mouse chromosomes 17, 5 and 1 and have been designated

Tir1, Tir2 and Tir3 respectively for Trypanosoma Infection Response.

These loci were further refined to five smaller regions using

advanced intercross lines of the same crosses that were extended to

the F6 and then F12 generations, in which Tir3 was resolved into

three smaller regions, termed Tir3a, Tir3b and Tir3c [7,8]. Whilst

these studies substantially reduced the size of the 95% confidence

interval of each of the QTL to between 0.9 and 12 cM, each one

still includes 17 to 650 candidate genes.

Moving from well defined QTL regions to QTL genes is still a

major challenge: over 2,750 such quantitative trait loci have been

mapped in mice and rats but fewer than 1% have been

characterised at the molecular level [9]. However, new sequencing

technologies are making it possible to identify a large proportion of

the differences between common inbred mouse strains. At present

this is possible for defined areas of the genome, but public data sets

will soon be available for the whole genome. We have used a

combination of these methods and resources to demonstrate how

large QTL regions can be reduced to tractable short lists of

candidate genes for functional analysis.

We have mapped QTL in a C57BL/66C3H/HeJ cross so that

we now know whether four mouse strains carry either the

susceptible or the resistant allele at each QTL. This will reduce

the number of polymorphisms that correlate with phenotype at any

given QTL. The haplotype structure of the QTL regions has been

determined using the 8 million public SNP from 16 mouse strains in

the Perlegen set and identified regions where haplotypes correlate

with survival time in the four mouse strains studied. Copy number

variations (CNV) have been shown to be responsible for a significant

number of quantitative traits [10]. We have used array comparative

genomic hybridisation (aCGH) to identify CNV in QTL regions

that correlate with survival in the four mouse strains. We have also

correlated CNV with existing gene expression data from three of the

mouse strains [11] to identify CNV that putatively cause expression

differences. Finally we have sequenced one of the QTL regions in

four strains of mice to identify SNP that correlate with phenotype

and validated these against an additional publicly available dataset

[12,13]. We have also used Polyphen to identify the non-

synonymous SNP in the QTL regions that are most likely to

change the activity of the protein.

By combining additional mapping with haplotype analysis,

aCGH and resequencing we have reduced the initial long list of

genes within QTL regions to a short list of candidate genes with

defined genetic differences that correlate with phenotype. It is now

practical to test the function of these genes and polymorphisms to

determine their role in response to infection with T. congolense. The

Perlegen and aCGH data is already publically available for many

mouse strains and the Wellcome Trust Sanger Institute is

resequencing the genomes of the common laboratory mouse

strains so this strategy will soon be applicable to many QTL

without further experimental work [13,14,15].

Methods

Ethics statement
All animal work was undertaken under IACUC ref no 2003.19.

The ILRI IACUC complies voluntarily with the UK Animals

(Scientific Procedures) Act 1986 that contains guidelines and codes

of practice for the housing and care of animals used in scientific

procedures. All animals on survival experiments were regularly

monitored to check for signs of terminal illness, and any showing

such signs were euthanised by UK Schedule 1 procedures.

C3H/HeJ 6C57BL/6 cross
C57BL/6JOlaHSD (C57BL/6) and C3H/HeJ mice were

obtained from Harlan Laboratories. Mice were infected with

46104 T. congolense strain IL1180 intra-peritoneally (ip) as

previously described [6]. Any mice that did not develop a

microscopically proven parasitaemia were removed from the

study.

345 F2 C3H/HeJ 6 C57BL/6 mice were phenotyped for

survival time after infection with T. congolense strain IL1180. 94

animals that had extreme survival times (#62 days and .140

days) were selected for genotyping using the markers shown in

Table S1 in Supporting Text S1. Selective genotyping significantly

reduces genotyping costs with little loss of power to detect QTL,

however it does give exaggerated estimates of effect sizes [16]. The

F2 mice were also genotyped at the Tlr4 locus since C3H/HeJ

carries a proline to histidine mutation at position 712 of the Tlr4

gene that makes this mouse strain insensitive to LPS and might

modify response to infection with T. congolense [17].

PCR reactions were performed using Reddymix (Thermo) with

20 ng of template DNA. Cycling conditions were as follows: 95uC,

50 secs; [Tm 25]uC, 50 secs; 65uC, 50 secs; 306 cycles. PCR

products, including negative controls, were resolved by ethidium

bromide stained agarose-gel electrophoresis and visualised under

UV-light. SNP were genotyped by sequencing PCR products

using primers shown in Table S2 in Supporting Text S1.

Unincorporated primers and residual nucleotides were degraded

using ExoSAP-IT (USB Corp, Ohio, USA) and sequencing

products generated using Big-Dye v3.1 terminators (Applied

Biosystems, Foster City, USA). Cycle sequencing products were

ethanol precipitated and subject to electrophoresis on an Applied

Biosystems ABI-3130XL capillary sequencer. Microsatellite and

SNP genotyping data was viewed using PeakScanner (Applied

Biosystems) and GAP4 [18] respectively.

Allocation of strains to haplotypes
Strains were allocated to haplotypes as previously described

[19,20]. Briefly, Perlegen SNP and haplotype boundaries were

Author Summary

About one-third of cattle in sub-Saharan Africa are at risk
of contracting ‘‘Nagana’’—a disease caused by Trypanoso-
ma parasites similar to those that cause human ‘‘Sleeping
Sickness.’’ Laboratory mice can also be infected by
trypanosomes, and different mouse breeds show varying
levels of susceptibility to infection, similar to what is seen
between different breeds of cattle. Survival time after
infection is controlled by the underlying genetics of the
mouse breed, and previous studies have localised three
genomic regions that regulate this trait. These three
‘‘Quantitative Trait Loci’’ (QTL), which have been called
Tir1, Tir2 and Tir3 (for Trypanosoma Infection Response 1–3)
are well defined, but nevertheless still contain over one
thousand genes, any number of which may be influencing
survival. This study has aimed to identify the specific
differences associated with genes that are controlling
mouse survival after T. congolense infection. We have
applied a series of analyses to existing datasets, and
combined them with novel sequencing, and other genetic
data to create short lists of genes that share polymor-
phisms across susceptible mouse breeds, including two
promising ‘‘candidate genes’’: Pram1 at Tir1 and Cd244 at
Tir3. These genes can now be tested to confirm their effect
on response to trypanosome infection.

QTL Genes Affecting Trypanosome Infection Survival
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downloaded from Perlegen [15]. Strains were allocated to

haplotypes for each haplotype block using a local Perl script that

extracted all alleles from the Perlegen dataset within a haplotype

block, substituted them into the C57BL/6 reference sequence and

submitted the resulting aligned sequences to the Jukes-Cantor

algorithm in DNADIST in PHYLIP to calculate genetic distances

between each pair of strains [21]. Strains were given a binary

‘‘barcode’’ with all possible pairs of strains assigned a 1 or a 0

depending on whether the genetic distance for that pair was above

or below a threshold value. Strains that had the same ‘‘barcode’’

were allocated to the same haplotype number. C57BL/6 was used

as the reference strain for block allocation and assigned to

haplotype one; Succeeding strains were allocated to the same

haplotype block as another strain that they shared a haplotype

with or, if there was none, to the next available haplotype number

(Full details are available in Supporting Text S1; Allocation of

strains to haplotypes).

CNV discovery
Array CGH was performed using the Agilent Mouse Genome

CGH Microarray 244A platform. Dye-flip replicates were carried

out on the C57BL/6 reference strain and three test strains

(129P3/J, A/J and BALB/cJ) and analysed as previously described

[22]. Overlapping aberrations were grouped into CNVR (t-test

analysis, P#0.05, Overlap 0.9) using the Agilent CGH analytics

software (v 4.0) and using the ADM-2 algorithm (threshold 6.0)

using centralization (threshold 6.0, bin size 1) and Fuzzy Zero

[23]. CGH array data have been submitted to the NCBI Gene

Expression Omnibus database (GEO) [GEO: GSE9669].

DNA capture and sequencing
Genomic DNA for BALB/cJ (Jackson #000651), 129P3/J

(Jackson #000690), A/J (Jackson #000646) and C3H/HeJ

(Jackson #000659) were obtained from the Jackson Laboratories

and submitted to Nimblegen for sequence capture [24]. Capture

probes were designed to cover 4.5 Mbp of non-repetitive sequence

between 30,637,692 bp and 36,837,814 bp on Mmu17 (NCBI37).

385,000 60mer probes were tiled at approximately 5 bp intervals

leading to a mean of 12 probes over each base. Captured DNA

was sequenced on a Roche 454 FLX Genome Sequencer using

Titanium chemistry (Roche). Sequence assembly and SNP calling

was performed using the Newbler mapping algorithm, which

aligned 454 reads against the Ensembl C57BL/6 reference

(NCBI37) and outputs lists of SNP and associated coverage

metrics.

As pyrosequencing is known to miscall sequences either

across, or either side of, homopolymeric tracts (long stretches of

a single nucleotide), discrepancies were removed from subse-

quent analysis if they were within 13 bp of a homopolymeric

tract $5 bp [25]. SNP were additionally filtered to those with at

least an eight-fold coverage and occurring in at least 87.5% of

the reads sequenced across any polymorphic position. 14,440

high-confidence genotypes were submitted to dbSNP with

SSIDs ss159831440-ss159845897. 454 reads were submitted to

the European Short Read Archive under Accession number

ERA000179.

SNP were aligned against coding sequences and non-synony-

mous SNP were identified. SNP positions were compared to the

mouse regulatory build to test for SNP that may alter transcription

factor binding sites or promoter regions [26,27]. A 24-bp insertion

in Mdc1 in susceptible strains was amplified by PCR and verified

by agarose gel electrophoresis, but could not be shown to have any

functional effect (data not shown).

Identification and annotation of single nucleotide
polymorphisms (SNP)

SNP outside the Tir1 region were obtained from the 8 million

Perlegen SNP set [15]. phastCons conservation scores for SNP

positions [28] were obtained from UCSC [29]. These scores are a

measure of how conserved a position is amongst 30 mammalian

species and are on a scale between 0–1 with the most conserved

positions scored as 1.

SNP within exons were annotated using the Ensembl SNP

annotation API to identify non-synonymous SNP (nsSNP) and

SNP in splice sites. nsSNP in the 454 data were identified with a

local Perl script. Publically available functional SNP were also

obtained from BioMart and the Wellcome Trust Sanger Institute

website [12].

nsSNP were annotated with Polyphen [30] using the Polyphen

batch submission tool. Publicly available functional SNP identified

at QTL for which complete genotypes were not available were

confirmed in C57BL/6, A/J, BALB/cJ and 129P3 mice using

PCR and dideoxynucleotide sequencing as described for genotyp-

ing. Sequences which showed evidence of multiple copies were

cloned using TOPO-TA cloning kit (Invitrogen) and sequenced.

Measurement of gene expression
Gene expression was measured for A/J, BALB/c and C57BL/6

mice before infection and at four time points post infection on

Affymetrix 450_2 microarrays as previously described [11]. All

microarray data has been deposited at ArrayExpress under the

accession number E-MEXP-1190. The expression data and plots

like those presented here are also available for all genes on the

microarrays from the authors’ website [31].

Results

Refining numbers of candidate genes within the Tir QTL
Determination of QTL boundaries and initial candidate

gene identification. Different locations of the Tir2 and

Tir3a,b,c QTL have been published at the F6 and F12

generations [7,8]. QTL have also been physically mapped using

congenic mice [32]. The congenic data supports the F6 location in

one case (Tir2) and the F12 location in one other (Tir3a).

Consequently we have annotated genes under both definitions of

QTL positions and discuss their relative merits, case by case,

below. In order to refine the number of candidate genes within Tir

QTL it is necessary to first convert the 95% confidence intervals of

the QTL from centiMorgan (cM) positions to megabase (Mbp)

positions. Whilst the exact assignment of physical boundaries to

the QTL is not possible, we have used the physical position of the

peak marker in the F6 and F12 advanced intercross studies [7,8] as

the most likely position of the peak of the QTL. We estimated the

physical size of the 95% confidence interval (CI) by using Mouse

Genome Informatics data to find the median Kbp/cM ratio for

the intervals between the ten flanking markers (which were spaced

at ,0.3 Mbp intervals). This ratio varied between 0.69–

5.43 Mpb/cM and was used to convert the 95% CI in cM to

Kbp. These positions are then used to identify the candidate genes

contained within the QTL prior to further refinement (Table 1).

Identification of QTL in C3H/HeJ mice
By increasing the number of breeds known to carry susceptible

alleles at the QTL, candidate gene lists can be refined to remove

those genes that are in QTL for T. congolense infection response but

have the same ancestral haplotype as the resistant strain in at least

one susceptible mouse breed. The three major Tir QTL have only

been identified in C57BL/6, A/J and BALB/c mice, with

QTL Genes Affecting Trypanosome Infection Survival
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C57BL/6 carrying the resistant allele at each locus. To that end,

we measured survival after infection in an inter-cross between

another susceptible breed, C3H/HeJ, and C57BL/6 mice. For the

cross, the mean survival times of parental founder lines for the

C3H/HeJ 6C57BL/6 F2 cross were 63 days for C3H/HeJ and

87 days for C57BL/6. Out of the 345 F2 C3H/HeJ x C57BL/6

mice that were phenotyped, we selectively genotyped the 94 mice

(51= and 43R; p = 0.41) that had the most extreme survival times

(Table S1 in Supporting Text S1) with microsatellite and SNP

markers across the three known QTL. Table 2 shows that C3H/

HeJ carries alleles that reduce survival time at the Tir3 QTL on

Mmu1 and the Tir1 QTL on Mmu17. No QTL was discovered on

Mmu5 in the region of Tir2.

Refining numbers of candidate genes by allocation of
alleles to haplotype blocks

Over eight million SNP and haplotype block boundaries derived

from them have been published for the whole mouse genome [15],

however the haplotype alleles carried by each strain are not

Table 1. Physical locations of QTL and counts of candidate genes.

QTL Tir1 Tir2-F6 Tir2-F12b Tir3a-F6 Tir3a-F12 Tir3b-F6 Tir3b-F12 Tir3c-F6 Tir3c-F12

Chromosome 17 5 5 1 1 1 1 1 1

Peak marker D17Mit16 D5Mit114 D5Mit58 D1Nds2a DiMit286 D1Mit102 D1Mit102-
DiMit105

D1Mit113 D1Mit107-
DiMit16

95%CI (cM) 0.9 12 1 1.8 6 10 7 8 2

Median Mbp
per cM

1.04 1.77 1.46 3.9 1.93 5.49 1.92 0.69 1.16

Start (Mbp) 33.27 71.02 73.45 100.54 124.71 121.63 148.15 170.96 164.3

End (Mbp) 34.2 92.3 73.91 107.57 136.19 176.56 161.44 176.51 166.6

Size (Mbp) 0.93 21.25 1.46 7.03 11.56 54.93 13.44 5.54 2.23

# Genes 43 210 27 20 127 650 113 143 35

Number of
Candidate
Genes (H1)

0 42 12 10 33 144 30 54 8

Number of
Candidate
Genes (H2)

27 74 14 10 63 355 61 122 8

454 Sequencing Data

Common SNP
(d)

194

Common nsSNP 2

Additional Data from Illumina Comparison [13]

nsSNP 0

59-UTR SNP 0

Synonymous
SNP

2

Positions were interpolated using NCBI37 from peak marker positions and 95% confidence intervals. The physical position of the D1Nds2 marker is not known, so its
position was estimated from the intervals between its flanking markers. Lists of the genes with different haplotypes are shown in the Supplementary Data S2:
GenesAndHaplotypes.xls. a Number of SNP common to the three susceptible strains of mice: A/J; BALBc/J and C3H/HeJ. bAt Tir2-F12 we have estimated the physical 95%
confidence interval around the D5MIT58 peak marker and this 1.46 Mb region contained 27 genes, however the exact position of the peak is hard to identify since both
D5MIT58 and DMIT258 are at 41 cM in the MGI map although they are 7 Mb apart on the physical map.
Numbers of candidate genes were calculated under two hypotheses: Hypothesis 1: all four susceptible strains have the same haplotype as each other and different from
C57BL/6. Hypothesis 2: All susceptible strains have a different haplotype from C57BL/6 but not necessarily the same as each other. Hypothesis 1 is a special case of
hypothesis 2 and all genes included under hypothesis 1 are also included under hypothesis 2. Only A/J and BALB/c are known to carry susceptibility alleles at Tir2 and so
at this locus only the correlation of C57BL/6, A/J and BALB/c was considered. e nsSNP loci submitted to dbSNP.
doi:10.1371/journal.pntd.0000880.t001

Table 2. Loci regulating survival after T. congolense infection in the C3H/HeJ 6C57BL/6 cross.

Chr F-value LOD score 95% CI (cM) QTL position (cM) QTL effect days Peak marker

17 17.22 6.344 17 16 32 D17mit81

1 9.13 3.614 47 94.9 24 D1mit356

94 mice were genotyped with markers across known QTL regions but not elsewhere in the genome. QTL effects are the mean number of days difference in survival
between mice that are homozygous for the alternate alleles at a QTL. Positive QTL effects indicate that longer survival was associated with C57BL/6 alleles. The QTL
effects are likely to be biased upwards as a consequence of selective genotyping of the extremes of the phenotypic distribution [16]. Phenotype distribution is shown in
Figure S1 in Supporting Text S1.
doi:10.1371/journal.pntd.0000880.t002

QTL Genes Affecting Trypanosome Infection Survival
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available on a genome-wide basis. Full details of the allocation of

strains to haplotype blocks and associated figures are available in

Supporting Text S1; Allocation of Strains to Haplotypes. Results

are briefly presented here:

In order to identify haplotype alleles that correlated with

phenotype we obtained the Jukes-Cantor distance between each

pair of the four mouse strains (C57BL/6, A/J, BALB/c and C3H/

HeJ) for each haplotype block across each QTL. The distribution

of the natural logarithm of Jukes-Cantor distances was approxi-

mately normal and the fifth percentile of the distribution

corresponding to a distance of 561025 was selected as a threshold

(Figure S2 in Supporting Text S1). Strains were allocated to the

same haplotype allele if the Jukes-Cantor distance between them at

that block was less than 561025.

Under the assumption that where QTL coincide in multiple

crosses, it is likely that it is due to the same polymorphism in all

breeds tested, there are only two possible distributions of resistant

and susceptible haplotypes. In the present case, C57BL/6 was the

only strain carrying a haplotype for longer survival at any QTL,

therefore either: all susceptible breeds have the same haplotype

that is different from C57BL/6 (hypothesis one); or C57BL/6 has

a unique haplotype that differs from all susceptible breeds but that

these might differ amongst themselves (hypothesis two).

A list was compiled of the genes for which the susceptible strains

were on a different haplotype or immediately upstream or

downstream of a different haplotype from the resistant (C57BL/

6) strain (Supplementary Data S2: GenesAndHaplotypes.xls). Table 1

shows the number of candidate genes in each locus under the two

nested hypotheses: H1) Short survival time is caused by a common

deleterious allele in all three susceptible strains; or H2) that the

difference in survival is attributable to a beneficial allele in the

single long surviving line (C57BL/6) and the susceptible lines may

carry any non C57BL/6 haplotype. Under H1 the number of

candidate genes was reduced from 1193 to 283 and under H2 the

number was reduced from 1193 to 651.

A null allele of the Tlr4 gene in C3H/HeJ does not affect
survival

A functional toll like receptor 4 (Tlr4) gene is necessary for

maximal control of Trypanosoma cruzi in mice [33] and there is

evidence that the GPI anchor of T. brucei VSG has endotoxin like

properties that could stimulate Tlr4 [34]. C3H/HeJ has a

polymorphism in the Tlr4 gene, on mouse chromosome four,

which ablates its function, making these mice insensitive to LPS

[17]. We used this spontaneous mutation to discover whether Tlr4

was as important in the response to T. congolense as to T. cruzi. Since

all previous mapping had been done in mice with intact Tlr4

genes, no QTL could have been detected at this locus even if Tlr4

does modulate the response to infection. The C3H/HeJ 6
C57BL/6 mapping population could therefore be used to discover

whether this gene (or a closely linked one) is involved in the

regulation of survival time after infection. Mice were genotyped

with a microsatellite marker linked to the functional polymorphism

and sequenced across the polymorphic position. There was no

association with either of these markers and survival time,

indicating that the Tlr4 pathway does not affect survival after T.

congolense infection in mice (Table S1 in Supporting Text S1).

Comparative genomic hybridisation and gene expression
To assess the impact of copy number variation regions (CNVR)

upon the expression of genes that may influence response to T.

congolense infection we performed array-based comparative geno-

mic hybridisation (aCGH) on the complete genome of three mouse

strains: 129P3, A/J and BALB/c, relative to C57BL/6. The

expression of genes within CNVR in A/J, BALB/c and C57BL/6

mice over the course of infection was evaluated using a previously

described dataset [11].

Genome-wide, one hundred and twenty-nine CNVR involving

three or more probes were common to A/J, BALBc/J and 129P3/

J. These encompassed a total of 317 genes, and ranged in size from

400 bp to 6.4 Mbp, although 96% were smaller than 1 Mbp.

Twelve CNVR containing the complete coding sequences of genes

and that had corresponding differences in gene expression, were

common in all susceptible breeds of mice tested. Lists of the

genome-wide CNVR is shown in Table S8 in Supporting Text S1.

One significant CNVR was detected close to the peak of Tir3c in

the F6 population (D1Mit113: 173,734,611 bp). A two to four-fold

reduction in C57BL/6 copy number relative to A/J, BALB/c and

129P3/J encompassed, or overlapped with, the coding sequences

of Itln1 (intelectin 1), Cd244, and AC083892.19-1 and may affect

the nearby Ly9 (lymphocyte antigen 9) (173,441,746-

173,499,029 bp; 11 probes; p = 0.0003; Figure 1A). There were

expression differences in Cd244 (Figure 2A), but not Itln1 or Ly9

[31], over the course of infection between resistant C57BL/6 and

susceptible A/J and BALB/c. AC083892.19-1 was not on the

expression microarray. This CNV region has also been previously

reported by Graubert et al [14] who showed that an additional

susceptible strain, C3H/HeJ, carries the same variant as A/J and

BALB/c.

No common CNVR were detected within Tir1 or Tir2. The

CNVR that was previously reported to be the cause of differential

expression of Glyoxalase 1 (Glo1) [35] and is 2.8 Mbp from the

peak of Tir1, was detected as a two to fourfold reduction in copy

number for C57BL/6 and BALB/c relative to A/J and 129P3

(Chr17: 30,176,153 bp–30,650,413 bp; 68 probes; p,0.001;

Figure 1B). Since the CNVR did not correlate with phenotype,

this polymorphism is unlikely to contribute to the difference in

response to infection.

Identification of functional SNP
Lists of published non-synonymous SNP (nsSNP), SNP in splice

sites; and regulatory regions and SNP that cause gain or loss of

stop codons were obtained from BioMart. nsSNP were annotated

using Polyphen [30] in order to identify those most likely to modify

gene function. A complete list of annotated SNP is in

Supplementary Data S1: AnnotatedFunctionalSNP.xls. Polyphen

classifies nsSNP as benign, possibly damaging or probably

damaging according to the likelihood that the polymorphism will

modify protein activity. ‘Damaging’ implies a change of activity or

function but this change could be beneficial to the animal.

Tir1. The physical size of the 95% CI for Tir1 based on the

combined data from the A/J 6 C57BL/6 and BALB/c 6
C57BL/6 F6 crosses [7] was 930 Kbp and contained 43 genes.

Tir1 was not reassessed with the F12 data. Assessing the Perlegen

dataset against the smallest Tir1 definition, none of the genes had

haplotypes that correlated with phenotype under hypothesis 1, but

there were 27 genes that correlated with phenotype under

hypothesis 2 (Supplementary Data S2: GenesAndHaplotypes.xls).

SNP that might modify phenotype at Tir1 are discussed under

sequencing of Tir1 below.

Tir2. The Tir2 QTL contained 210 genes in the 21.25 Mb

(F6) QTL or 27 genes in the 1.46 Mb (F12) region, which was a

subset of the F6 region. Congenic mice that were bred to

physically map the Tir2 QTL had a region of C57BL/6 DNA in

an A/J background between 75.1 Mb and 89.7 Mb on

chromosome 5 [32]. This was within the large F6 QTL (71.0–

92.3 Mbp) but distal to the much smaller F12 QTL (73.5–

73.9 Mbp). Since the QTL was physically mapped in the congenic

QTL Genes Affecting Trypanosome Infection Survival

www.plosntds.org 5 November 2010 | Volume 4 | Issue 11 | e880



mice, they are expected to provide a more accurate prediction of

location than genetic mapping methods. There were 21 and 52

genes consistent with hypotheses 1 and 2 respectively within the

congenic region (Supplementary Data S2: GenesAndHaplotypes.xls).

There were probably damaging nsSNP in Srp72 (signal recognition

particle 72 kDa) and Ugt2b38 (UDP glucuronosyltransferase 2

family, polypeptide B38) (Supplementary Data S1:

AnnotatedFunctionalSNP). The SNP in Ugt2b38 and Srp72 had

phastCons scores of ,0.1 and 0.998 respectively indicating that

the Srp72 was in a highly conserved position. Therefore the Srp72

SNP was the SNP with the greatest probability of having an effect

on gene function in the Tir2 congenic region, although what this

might be and whether it would modify response to T. congolense is

not known.

Tir3a. The F6 Tir3a locus, at around 103 Mbp on

chromosome 1, is within a region that was tested for its effect on

survival after T. congolense infection by breeding congenic mice that

had a fragment of C57BL/6 origin between 93–123 Mbp on an

A/J background [32]. There was no difference in survival between

mice that carried the region derived from C57BL/6 and littermate

controls without the C57BL/6 region indicating that the F6 region

was not likely to contain the QTL gene. The F12 Tir3a locus was

distal to the congenic region and is consequently a more likely

candidate region for this QTL than the F6 QTL. It contains 33

and 63 candidate genes under hypotheses 1 and 2 respectively.

These include IL10, Cd55 (complement decay-accelerating factor)

and Cxcr4 (CXC chemokine receptor 4), which all have plausible

roles in the response to infection but there were no published SNP

in exons of any of these and no SNP in conserved intergenic

regions. Thsd7b (Thrombospondin type-1 domain-containing

protein 7B Precursor) was the only gene in the region with a

probably damaging (Polyphen) SNP and this SNP was also in an

evolutionary conserved position. However there are no published

studies of Thsd7b and expression levels are low in all tissues

measured [36].

Tir3b. The Tir3b region was the largest QTL in the F6

(54.9 Mb) and F12 (13.4 Mb) and contains 650 and 113 genes

respectively, of which 144 and 30 have haplotypes that correlate

with phenotype. The F6 Tir3b QTL overlaps the Tir3a and Tir3c

loci but exclusively contained Ptprc (protein tyrosine phosphatase,

receptor type, C; Leukocyte common antigen Precursor, CD45

antigen), which had a probably damaging nsSNP in a highly

conserved position (phastCons score 1). Tir3b F12 and F6 both

contained Soat1 (Sterol O-acyltransferase 1), which had a probably

Figure 1. CNV plots from Agilent DNA Analytics software. A: Reduced copy numbers in C57BL/6 of Itlnb and Cd244 near Tir3c relative to two
susceptible breeds of mice (Chr 1: 172,831,532–173,931,532 bp). B: CNV data at the proximal end of Tir1 showing a deletion of Glo1 and Dnahc8 in
C57BL/6 and BALB/c relative to A/J and 129P3. (Chr 17: 29,854,972–30,954,972). Probes are plotted at their genomic position relative to their
respective log2 fluorescence intensity ratios (Y-axis) along with genes on the x-axis (filled blue rectangles). Green dots are negative ratios and red dots
positive ratios (threshold 0.5). Lines are a moving average over a 10 Kbp window for A/J (blue); 129P3 (red) and BALBc (yellow). Genomic positions are
based on mouse build mm8 (NCBI36).
doi:10.1371/journal.pntd.0000880.g001
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damaging SNP. Soat1 expression increases eight-fold after infection

with T. congolense in A/J, BALB/c and C57BL/6 [31], and

expression was up to four-fold higher in C57BL/6. Soat1 is clearly

responding to infection and the probably damaging SNP could

affect its function and may be contributing to the difference in

expression.

Tir3c. There were 122 and 8 genes at the F6 and F12 Tir3c

loci that had haplotypes that correlate with phenotype, 54 and 8 of

which had identical haplotypes in all the susceptible strains. Cd244

(natural killer receptor 2B4) has a haplotype and expression

pattern that correlates with phenotype (Figure 2A), as well as a

CNV that may be the cause of the observed expression differences.

It is a strong candidate for being a QTL gene at Tir3c. CD244

binds CD48 on lymphocytes and Cd244 is about 60 Kbp from

Cd48, which has a probably damaging nsSNP (rs31533394).

Additional candidate genes at Tir3c were Apcs (serum amyloid P-

component; Sap) and Ifi202b (interferon activated gene 202B). The

expression of Apcs, a major acute phase protein, rose after infection

in all strains, but was consistently lower in C57BL/6 (Figure 2C).

This was associated with a SNP (rs47990301) in a regulatory

region that correlated with expression and phenotype and a SNP

in a splice site in the 59-UTR (rs47985673). Likewise, expression of

Ifi202b increased to high levels after infection in A/J and BALB/c

but remained at the threshold of detection in C57BL/6 in both

liver and spleen. The Ifi200 cluster, which includes Ifi202b, is at

the distal end of Tir3c and contains genes that are all IFN-

inducible and contain a highly conserved 200 amino acid motif

[37]. Fcgr3, a low affinity immunoglobulin receptor that is

associated with chronic inflammation [38], had a probably

damaging nsSNP that correlated with phenotype. Arhgap30 a little

known rho-GTPase that is most highly expressed in macrophages

and monocytes, had a probably damaging SNP (rs31539487) that

correlated with phenotype in all strains tested. Similarly, we

confirmed nsSNP in Klhdc9 (rs45643169); Darc (Duffy blood group,

chemokine receptor; rs51259593); Slamf8 (signalling lymphocytic

activation molecule F8; rs50073880) and E430029J22Rik (EN-

SMUSSNP3208701) that correlated with phenotype within this

QTL region.

Sequence capture and sequencing of Tir1
DNA from across the Tir1 QTL was sequenced in order to

characterise novel SNP and to improve the identification of

Figure 2. Expression of A/J OlaHsdnd (A/J), BALB/cJ OlaHsdce (BALB/c) and C57BL/6JOlaHSD (C57BL/6) mouse genes in the Tir3c
locus at five time points in the course of infection (0 days; 3 days; 5days; 9 days; 17 days). Graphs include a small x-axis offset to improve
spatial clarity. A Cd244 in the spleen, B Cd48 in the liver, C Apcs in the liver D Ifi202b in liver and spleen. Cd244 expression was low in liver in all strains
until Day 7 when it rose above background and C57BL/6 had slightly lower levels than A/J or BALB/c (data not shown).
doi:10.1371/journal.pntd.0000880.g002
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alternate alleles for each haplotype block. DNA from four mouse

breeds: 129P3, A/J, BALB/c and C3H/HeJ; was captured on

Nimblegen arrays with probes for a 6.2 Mbp region of mouse

chromosome 17 between 30,637,692 and 36,837,814 (NCBI37).

1.7 Mbp of repetitive sequence was excluded. Captured DNA was

sequenced on a Roche 454 Genome Sequencer FLX using

Titanium chemistry. 1,308,175 reads were mapped to the C57BL/

6 reference sequence giving an average ,156 coverage of each

sequenced strain (mean read length 282 bp; total sequence

,370 Mbp).

As 454 pyrosequencing is known to suffer from sequencing

errors within, or close to long homopolymeric tracts, SNP were

filtered to exclude those that were within a 13 bp window of

homopolymeric tracts $5 bp. Furthermore, SNP were addition-

ally filtered for those that were not outside regions covered by

capture probes even if they were within the Tir1 region. After

filtering, 14,440 SNP loci were identified, 3,618 of which were not

in dbSNP build 128. 1,588 loci were common to A/J, BALB/c

and C3H/HeJ, but differed from C57BL/6. Furthermore, upon

adding data for 129P3, there were 466 SNP loci common to all

four sequenced mouse strains. Summary statistics for all SNP are

available in Table S4 in Supporting Text S1.

Figure 3 shows a circular plot of all SNP called by the Roche/

454 mapping algorithm (Newbler) against the C57BL/6 reference.

Haplotype blocks can be seen as clusters of high-densities and low-

densities of SNP. Whilst at this resolution it is not easy to see

haplotype blocks in the A/J, BALB/c or C3H/HeJ data, one

haplotype block stands out in the 129P3 data where 81 common

SNP clustered within a 430 Kbp region (33,245,853–

33,675,688 bp).

In order to validate SNP calls, 454-generated SNP were

compared against those called in a recently published set sequenced

on the Solexa/Illumina platform from flow-sorted mouse chromo-

some 17 for A/J [13], and similar, publicly available SNP from the

concurrent Mouse Genomes Project (Wellcome Trust Sanger

Institute) for BALB/c, C3H/HeJ and 129P2 mouse breeds [12].

Only 3 out of 36,784 (0.014%) of the homozygous calls (coverage

.1; alternative allele frequency (AAF) .80%) were discordant

between the two datasets Table S7 in Supporting Text S1. The 454

data included 53–71% of SNP in the Illumina data depending on

the coverage required to call a SNP and the Illumina data contained

94–97% of SNP in the 454 data (Figure S5 in Supporting Text S1).

Full details of the comparison are available in Supplementary Data

S3; SNP validation.xls.

Figure 3. Array-based sequence capture and next generation sequencing of a 6.2 Mbp region of Mmu17 in four breeds of mice: A/J;
BALB/c; C3H/HeJ and 129/J (Mmu17:30,637,692–36,837,814 bp). Plot is circular for ease of display [56]. Tir1 is highlighted in black on the
inside track. Genomic positions are in Mbp. The outer tracks (blue and brown) show genes and designed capture probes, respectively. The four,
coloured, inner tracks show SNP called in each of the four sequencing experiments, with the black tick marks highlighting areas of common SNP.
Haplotype blocks can clearly be seen as clustering of high- and low- density regions of SNP. A magnified region around Tir1 is displayed underneath
the circular plot. Tracks are identically coloured and include a moving average (window 1 Kbp) of sequence read coverage across the region (top).
Genes in the region are displayed for the forward strand (above) and reverse strand (below).
doi:10.1371/journal.pntd.0000880.g003
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Structural polymorphisms
Using all available data, the Tir1 region contained 80 nsSNP

loci that correlated with phenotype. There were seven ‘‘possibly

damaging’’ (Polyphen) nsSNP and ‘‘probably damaging’’ nsSNP

in PML-retinoic acid receptor alpha regulated adaptor molecule 1

(Pram1) (rs33399614), Rgl2 (Ral guanine nucleotide dissociation

stimulator-like 2) and CR974462 (Table 3). Nine genes contained

splice site polymorphisms (See Supplementary Data S1: Annota-

tedFunctionalSNP.xls).

Regulatory polymorphisms
Differences between the susceptible strains and C57BL/6 were

aligned to the Ensembl mouse regulatory build (NCBI37: Ensembl

54). Ten differences were predicted to fall within regions of

accessible chromatin and may affect transcription factor binding

regions. Furthermore, 13 differences mapped to within 2500 bp of

the upstream region of genes that may be associated with promoter

regions. In total, 14 genes may be affected by SNP in this way (Table

S5 in Supporting Text S1). Of the 13 genes for which microarray

data was available, however, only phosphodiesterase 9A (Pde9a)

showed any differences in gene expression, and these correlated

with alleles of a SNP (rs33223038). A/J differed from C57BL/6 and

BALB/c at this locus in both SNP genotype and Pde9a expression,

but since this did not correlate with phenotype, it was discounted as

a candidate SNP. There were also SNP in non-essential splice sites

in nine genes that may modify their exon usage (Supplementary

Data S1: AnnotatedFunctionalSNP.xls).

Correlation of haplotype assignments using 454 and
Perlegen data

Jukes Cantor distances were calculated for each haplotype block

in the Tir1 region using the 454 and Perlegen datasets. A more

detailed description of the analysis is presented in Supporting Text

S1. Shared haplotypes had high positive predictive value and

specificity for shared SNP alleles but low negative predictive value

and sensitivity (Table S3b in Supporting Text S1), indicating that

having shared haplotypes is a good indicator of shared SNP alleles

but that the converse is not true. This means that assignments will

be accurate where C57BL/6 has been assigned the same

haplotype allele as susceptible strains but less accurate where

C57BL/6 has been assigned to a different haplotype block allele

from the susceptible strains. Therefore the data may be reliable

way of excluding loci as candidate QTL regions but less accurate

for including loci. The correlation between the distances

calculated from the 454 and Perlegen SNP sets was modest

(r = 0.63). The slope of the regression line was 0.67 reflecting the

greater number of SNP in the 454 dataset. A high degree of scatter

was observed in a plot of distances based on Perlegen and 454 data

(Figure S3 in Supporting Text S1). The scatter suggests that SNP

coverage is uneven in one or both datasets, and therefore

increasing SNP density should increase the reliability of haplotype

calls. Inspection of a plot of SNP coverage in the two data sets

shows that the ratio of the number of SNP that were found in the

two data sets varied substantially between haplotype blocks

(Figure 4 and Figure S4 in Supporting Text S1).

Plots like those shown in Figures 4 and S3 can be obtained for

any region of Tir1 from our website [31]. Plots of SNP and

haplotypes and tables of Jukes Cantor distances between alleles at

each haplotype block based on Perlegen data can be obtained for

any part of the mouse genome at the same site.

Discussion

The survival time phenotype for mapping murine QTL

associated with response to T. congolense infection was selected in

the 1990’s because the large variance between strains made it

more likely that there would be QTL of large enough effect to be

identifiable. This prediction proved correct [6], however survival is

likely to have a remote and complex relationship with the

underlying quantitative trait genes (QTG). Given that trypanoso-

miasis is a systemic blood stream infection and the remote

relationship between survival and the underlying QTG it is almost

impossible to prioritise candidate genes on the basis of known

functions. We have previously measured parasitaemia, anaemia

and fifteen clinical chemistry phenotypes, in inbred and congenic

mice, in order to identify correlations between survival and other

traits that might be more proximally related to gene function,

however no such associations have been found [32]. Therefore in

this study we have identified the allele carried at each QTL in an

additional strain (C3H/HeJ), formally identified the physical

boundaries of the QTL and enumerated CNV and functional SNP

that fall within those boundaries.

QTL mapping
The mapping studies showed that C3H/HeJ mice carry

susceptible alleles at the Tir1 and Tir3 loci. No QTL were

Table 3. nsSNP loci within the extended Tir1 definition.

Position C57BL/6 A/J BALB/c C3H/HeJ Phast Cons Gene Polyphen Consequence Peptide shift

33,283,941 A G G ,0.1 Zfp421 possibly damaging Y/C

33,781,645 T C C C ,0.1 Pram1 probably damaging L/P

33,956,791 T C ,0.1 Kank3 possibly damaging S/P

34,069,285 C T T T 0.928 Rgl2 probably damaging H/Y

34,112,420 T C C C ,0.1 CR974462.5 probably damaging H/R

34,114,833 C – – ,0.1 CR974462.5 possibly damaging G/R

34,119,278 G A ,0.1 AA388235 possibly damaging R/H

34,119,383 G A ,0.1 AA388235 possibly damaging G/D

34,119,473 T C 0.337 AA388235 possibly damaging F/S

34,134,481 T C C ,0.1 H2-K1 possibly damaging H/R

Genes within Tir1 (Mmu17:33271855–34203529 bp) with damaging nsSNP that correlate with survival phenotype. A full list of annotated SNP is available in
Supplementary Data S1: AnnotatedFunctionalSNP.xls.
doi:10.1371/journal.pntd.0000880.t003
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observed at the Tir2 locus. The Tir1 locus as defined by previous

fine mapping studies is just proximal to the major histocompat-

ibility complex (MHC) (Table 2), and the conversion of genetic

distances to physical positions presented here shows that Tir1

includes three classical class I MHC H2K genes. However

previous studies have found no correlation between MHC

haplotype and response to infection [4] consistent with the QTL

gene not being a classical MHC molecule.

The mapping population was also screened for an association

between Tlr4 and survival; no association was found. This

observation implies that the presence or absence of a functional

Tlr4 gene has no effect on survival, but does not preclude the

pathway from Tlr4 to Nfkb (nuclear factor kappa-B) from

responding to infection. Tlr4 could still participate in the

regulation of anaemia and parasitaemia, which are not correlated

with survival [11].

Identification of physical boundaries of QTL
The two independent F6 and F12 mapping populations have

reduced the 95% CI of the QTL to exceptionally small regions,

particularly at Tir1, the QTL of largest effect, where the physical

size of the 95% CI was 930 Kbp for the combined data from the

A/J 6C57BL/6 and BALB/c 6C57BL/6 F6 crosses (Table 1).

This was only twice the mean distance between markers at this

locus (400 Kbp) and consequently the main limitation in

identifying the boundaries of the QTL is in estimating the position

of the peak.

Identification of functional nsSNP
Resequencing of the QTL region on the Roche 454 platform at

Liverpool to 156 coverage discovered 3,618 novel SNP loci that

were deposited in dbSNP. Comparison with a resequencing

project on the Illumina platform at the Wellcome Trust Sanger

Institute to 226coverage [13] showed 99.98% consistency in SNP

calls even when no minimum coverage criterion was applied for

calling a SNP. Both data sets contained large numbers of SNP

called as heterozygotes with alternative allele frequencies between

25–80%. These loci from both data sets were associated with

significantly higher sequence coverage in our data indicating that

the majority were likely to be due to mapping artefacts probably

caused by CNV. The 454 data contained only 71% of the SNP

discovered by the higher coverage Illumina data but both methods

discovered the same set of nsSNP. The 454 data discovered an

additional 3% of SNP that were not in the Illumina data.

Utilising all SNP from the 454, Perlegen and Illumina data sets,

three probably damaging nsSNP were identified in genes at the

peak of the Tir1 QTL that correlated perfectly with phenotype

(Table 3). Two nsSNP were in Pram1; the Pram1537L/P polymor-

phism was scored as probably damaging by Polyphen. The

Pram1103R/K polymorphism was classed as benign by Polyphen but

lies within a proline rich domain (PRINTS: PR01217) that is

involved in binding the ‘‘SH3 domain of hematopoietic progenitor

kinase 1 (HPK-1)-interacting protein of 55 kDa (HIP-55),’’ which

is known to stimulate the activity of HPK-1 and c-Jun N-terminal

kinase (JNK)’’ [39]. Pram1 is almost exclusively expressed in

myeloid cells [36] and specifically in granulocytes in terminal

stages of differentiation [40] where it is induced by retinoic acid. It

was thought that Pram1 might be a negative regulator of neutrophil

differentiation since it is repressed in acute myeloid leukaemia.

The deletion of Pram1, however, has no effect on neutrophil

differentiation and maturation but does disrupt reactive oxygen

intermediate production and degranulation by neutrophils [41].

This may affect the early, pro-inflammatory response to infection

or downstream TNFa signalling, which has been shown to be

differentially expressed in susceptible and resistant mice [42].

C57BL/6 appears to have the derived allele of Pram1537L/P since

A/J, BALB/c and C3H/HeJ had the same allele as Hominidae

and dogs. Since C57BL/6 tend to have a more inflammatory

phenotype, it is possible that the polymorphisms lead to a gain of

function with stronger binding to HIP55 leading to faster and

more persistent ROI induction and a more inflammatory state.

The other probably damaging SNP at Tir1 were CR974462 and

Rgl2. There is no annotation for CR974462. Rgl2 (Rif) is a small

GTPase that is most highly expressed in macrophages and B cells

and appears to be involved in Ras mediated signalling [43]. The

Rgl2147HRY polymorphism could affect the Ras pathway that plays

a key role in leukocyte activation and is therefore a plausible

candidate gene.

The Fas death domain-associated protein (Daxx) gene, which we

have previously reported to contain a deletion of a single aspartate

residue in susceptible mice [44], is also under the peak of Tir1.

Daxx is within the MAPK pathway, which was found to respond to

T. congolense infection in microarray data. However a new

Polyphen analysis of the aspartate deletion in Daxx indicates that

this polymorphism will be benign in effect. The aspartate deletion

is within a run of 11 aspartate residues and a region where 35/41

residues are acidic [44]. Therefore this polymorphism is probably

less significant than the probably damaging ones reported here.

Figure 4. SNP plots of Tir1 between 31 and 31.65 Mbp. The C57BL/6 row represents the reference allele for all loci that are polymorphic in
either the Perlegen set or our 454 set. The SNP density is much greater in the 454 data set, in which haplotype blocks are clearly identifiable by eye. It
appears that SNP are much better represented in the Perlegen data set in some regions than in others. Between 31.2 and 31.30 the two data sets are
very similar with high density of SNP in BALB/c and 129 substrains in each dataset. However in the region between 31.1 and 31.20 the SNP in BALB/c
and 129 are relatively much sparser in Perlegen than in the 454 data.
doi:10.1371/journal.pntd.0000880.g004
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Regulatory polymorphisms could also cause the phenotypic

difference: one SNP (rs33223038) was identified in Ensembl as

being in a regulatory region upstream of Pde9a but although this

SNP correlated with differential expression it did not correlate

with survival differences between susceptible and resistant mouse

breeds. There were also SNP in non-essential splice sites in nine

genes.

Copy number variation at Tir QTL
CNV have previously been shown to be a major cause of

quantative trait differences [10]. We used Agilent whole mouse

genome aCGH arrays to identify CNV between C57BL/6 mice

and A/J, BALB/c and 129P3 mice. The aCGH data highlighted a

CNVR containing three genes close to the peak of the Tir3c QTL:

Cd244; Ly9 and Itln1 (Figure 1A). A nearby gene Cd48 had a

probably damaging nsSNP. Cd244, Cd48 and Ly9 are important

genes involved in the production and regulation of IFNg by NK

and T cells. CD244 binds CD48 on lymphocytes and is involved in

NK:NK cell and NK:T cell interactions leading to NK and T cell

proliferation [45], which are important mechanisms in innate

resistance to protozoan infection [46,47].

Splenic expression of Cd244 differed between strains with the

resistant C57BL/6 mice having the lowest expression consistent

with the low copy number of Cd244 in C57BL/6. Cd48 expression

increased 16-fold in liver after infection with T. congolense, but this

occurred in all strains tested (Figure 2). Since CD48 and CD244

directly interact, it is possible that the QTL is a consequence of the

combined effect of the probably damaging nsSNP in Cd48 and the

CNV in Cd244. Differences in expression could not be seen in Itlnb

or Ly9.

The large number of genes in Tir3c that had CNV, nsSNP or

haplotypes that correlated with phenotype may make it difficult to

identify the QTL gene at this locus. It is possible that the QTL is

not a consequence of a single polymorphism but the combined

effect of multiple polymorphisms in an extended haplotype.

However the CNV at Cd244 was the most substantial DNA

polymorphism in the region making Cd244 a strong candidate

QTL gene. Inserting an additional copy of Cd244 into the

C57BL/6 background, so that it had a similar gene dosage to the

susceptible strains, could test the effect of this CNV on the

response to infection.

Haplotype block analysis
We have previously used this strategy to show a strong

association between upstream haplotype differences and high

confidence (p,0.005) differences in gene expression [19] and also

short listed genes under QTL for differences in response to

Heligmosomoides bakeri infection [20]. We reduced the number of

candidate genes in this study by about 76% and 45% under

hypotheses H1 and H2 from the 1193 genes that were under the

95% confidence intervals of the QTL. There were 283 genes

where A/J, BALB/c and C3H/HeJ had the same haplotype

different from C57BL/6 and 651 genes where C57BL/6 differed

from the other three. The large number of genes that had

haplotypes that correlated with phenotype is mainly because: 1)

C3H/HeJ, A/J and BALB/c are more similar to each other than

to any other strain based on analysis of 673 genome wide SNP in

55 strains [48]; 2) we used the stringent criterion that a gene was

included if any haplotype block between the two neighbouring

genes correlated with phenotype; 3) The high positive predictive

power of the method means that whilst it is probably very reliable

for excluding loci where susceptible strains share a haplotype block

with the C57BL/6 resistant strains, it assigns too many haplotype

blocks to different alleles.

Whilst there are large numbers of reported SNP for A/J,

129X1/SvJ and 129S1/SvImJ due to the Celera sequencing

project [49] and for BALBc/ByJ and C3H/HeJ from the Perlegen

project [15], relatively few SNP are publicly available for the

129P3 strain. The 454 resequencing of the Tir1 region indicated

that approximately 50% of the resequenced region could be

excluded from the QTL if the allele carried by 129P3 mice at this

locus was known. If a QTL was identified at Tir1 in a 129P3 6
C57BL/6 cross then the QTL gene could be assumed to be within

the three blocks where 129P3 differed from C57BL/6. If no

evidence of a QTL was found then these regions could be

excluded from the QTL on the assumption that 129P3 carried the

same allele as C57BL/6 at this locus. This analysis indicates that

mapping QTL for response to infection in a 129P3 6 C57BL/6

cross should significantly refine the list of candidate genes. The

availability of this haplotype data makes it possible to make more

rational choices about the selection of strains for mapping

experiments. This strategy has been used before with a much

more limited SNP set [50] but the corresponding online resource is

no longer available.

Our objective was to identify the SNP that were most likely to

have an impact on function. These were considered to be nsSNP

that altered the physical properties of the protein as judged by

Polyphen analysis, SNP in essential splice sites and CNV and

regulatory SNP that correlated with changes in expression. It

should be emphasised, however, that many types of SNP can

underlie QTL, for example the QTL SNP at the Idd5 locus

appears to be a synonymous SNP that gives rise to a splice variant

[51]. This SNP would not have been identified as a high priority

by our pipeline. Furthermore, although we have substantially

complete sequence coverage of the Tir1 locus, at other loci we

have used the Perlegen data, which is estimated to be about 45%

complete [15]. Therefore although the candidate QTL SNP

presented here are the most likely given the available data and

annotation, both SNP data and annotation is incomplete and

other candidates may be discovered in the future.

The correlation of Jukes-Cantor distances calculated from our

454 data and the published Perlegen dataset was only modest

(r = 0.63). 32% of our 454 SNP loci were also in the Perlegen set,

however the low correlation between the two sets shows that SNP

discovery was uneven in one or both sets and inspection of the

SNP distribution suggests that this was certainly the case in the

Perlegen set. The uneven distribution of SNP discovery makes it

much harder to undertake a consistent analysis across the genome

using a single threshold for assigning alleles to haplotype blocks.

However the high positive predictive value (Table S3 in

Supporting Text S1) for identifying shared haplotypes suggests

that this procedure should reliably exclude regions where C57BL/

6 shares haplotypes with the susceptible strains. Nevertheless other

more robust data types such as CNV and potentially functional

SNP should still be surveyed in regions where haplotype does not

correlate with phenotype. The more complete mouse resequen-

cing projects that are currently underway should increase the

predictive power of this approach substantially.

QTL involved with resistance to other parasitic diseases overlap

with the Tir QTL, raising the possibility that polymorphisms

discovered here may be involved in the response to other parasites.

Leishmania resistance 1 (Lmr1) [52], Plasmodium chabaudi resistance

QTL 3 (Char3) [53] and Heligmosomoides bakeri nematode resistance

2 (Hbnr2) [54] all overlap with Tir1. Similarly, the Tir3c QTL

overlaps with a QTL for murine resistance to Plasmodium berghei-

driven experimental cerebral malaria (Berr1) [55].

Thirteen genes around the peak of Tir1 show conserved order

and sequence homology to a ,311 Kbp region of BTA7
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(15,412,179:15,723,462 bp) where there is a QTL in cattle that

regulates the level of parasitaemia in cattle infections with T.

congolense [2]. This region includes Pram1, which has a probably

damaging mutation that correlates with phenotype in mice and

was the most plausible candidate gene in Tir1 and is therefore a

candidate QTL gene in cattle as well. However since trypanoto-

lerance QTL cover approximately 15% of the bovine genome it

would be expected that at least one of the five murine QTL would

coincide with a bovine QTL by chance (p = 0.56).

Conclusions
By linking genes to haplotypes, we have reduced the number of

candidate genes in Tir1 to 43. Within these there were three genes

with probably damaging nsSNP; CR974462.5, Rgl2 and Pram1.

CR974462.5 is an anonymous gene in which the effects are hard

to predict. Pram1 regulates oxidative stress in neutrophils and Rgl2

is involved in Ras signalling which can regulate inflammation.

Pram1 is the closest to the peak of the QTL and has the best

understood function making it the most attractive candidate at

Tir1 however Rgl2 is also a plausible candidate. Probably

damaging polymorphisms were identified in Srp72 in Tir2 and

Thsd7b in Tir3a but little is known of their functions so it is hard to

interpret these observations. Ptprc (Cd45) and Soat1 in Tir3b had

probably damaging polymorphisms in conserved nucleotides,

CD45 is the common leukocyte antigen and has multiple roles

in cytokine signaling and cell regulation making it plausible

candidate. Tir3c has a CNVR encompassing Cd244, which is

differentially expressed and has a haplotype that correlates with

phenotype in the four strains tested. Since gene dosage is lower in

C57BL/6 it will be possible to test this hypothesis by inserting an

extra copy of the Cd244 gene into the C57BL/6 background.

Several other genes in Tir3c had haplotype and nsSNP that

correlated with phenotype but none had such a distinct CNV and

such strong differential expression.

By combining haplotype analysis, array-CGH, gene expression

and next-generation DNA capture and sequencing, we have

identified a small number of genetic polymorphisms that may be

responsible for differences in response to T. congolense infection,

demonstrating that this approach can systematically reduce the

number of candidate genes under QTL to generate a short enough

list of genes to test for function.

Supporting Information

Data S1 AnnotatedFunctionalSNP.xls. A comprehensive anno-

tation of publicly available SNP (NCBI build 37) across QTL

regions including Polyphen annotation.

Found at: doi:10.1371/journal.pntd.0000880.s001 (1.97 MB XLS)

Data S2 GenesAndHaplotypes.xls. Haplotype block alleles

across QTL regions

Found at: doi:10.1371/journal.pntd.0000880.s002 (1.02 MB XLS)

Data S3 SNP validation.xls. Comparison of resequencing of

Tir1 region on the Illumina system at the Wellcome Trust Sanger

Institute and on the 454 system at the University of Liverpool.

Found at: doi:10.1371/journal.pntd.0000880.s003 (0.04 MB XLS)

Text S1 Supporting Text referred to in the main text. Includes:

additional methods on haplotype analysis and genotyping markers

and primers; and additional SNP and CNV data.

Found at: doi:10.1371/journal.pntd.0000880.s004 (1.30 MB

DOC)
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