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ABSTRACT Cryo-electron microscopy is rapidly emerging as a powerful technique to determine the structures of complex
macromolecular systems elusive to other techniques. Becausemany of these systems are highly dynamical, characterizing their
movements is also a crucial step to unravel their biological functions. To achieve this goal, we report an integrative modeling
approach to simultaneously determine structure and dynamics of macromolecular systems from cryo-electron microscopy den-
sity maps. By quantifying the level of noise in the data and dealing with their ensemble-averaged nature, this approach enables
the integration of multiple sources of information to model ensembles of structures and infer their populations. We illustrate the
method by characterizing structure and dynamics of the integral membrane receptor STRA6, thus providing insights into the
mechanisms by which it interacts with retinol binding protein and translocates retinol across the membrane.

INTRODUCTION
Cryo-electron microscopy (cryo-EM) (1–9) is a powerful
structural biology technique that enables the characteriza-
tion of complex biological systems that are not readily
amenable to other traditional techniques, such as x-ray crys-
tallography and NMR spectroscopy. With the continuous
progress in the development of both instrumentation and im-
age processing software, cryo-EM is rapidly approaching
the resolution of x-ray crystallography (2–9), allowing the
structures of complexes or individual proteins of great bio-
logical relevance to be determined in their natural environ-
ments at nearly atomistic resolution (10–17).

Despite these great advances, a major challenge remains
open—the characterization of the dynamics of the systems
observed (18,19). This is a crucial problem, because most
macromolecular machines populate multiple conforma-
tional states, and their functions depend on the interplay be-
tween structure and dynamics. In several cases, cryo-EM
can detect alternative conformations (3–6,15,16), provided
that two-dimensional images of particles with distinct con-
formations are separately classified (5,6,20). However, if
the system has highly dynamic regions or the low resolution
of two-dimensional images hinders classification, three-
dimensional reconstructions generated by combining multi-
Submitted November 17, 2017, and accepted for publication February 20,

2018.

*Correspondence: mb2006@cam.ac.uk or mv245@cam.ac.uk

Editor: Monika Fuxreiter.

1604 Biophysical Journal 114, 1604–1613, April 10, 2018

https://doi.org/10.1016/j.bpj.2018.02.028

� 2018 Biophysical Society.

This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
ple class-averages present regions at lower resolution. These
regions may correspond to flexible parts of the system,
which are averaged out in the class-averaging and recon-
struction process, or to particularly noisy portions of the
map caused, for example, by radiation damage.

Several modeling approaches are currently used to trans-
late cryo-EM data into structural models (21,22). Following
the classification proposed in (22), these approaches
include methods for rigid-body fitting (Chimera (23),
COAN (24), EMfit (25), MODELLER (26), MultiFit (27),
SITUS (28)), flexible fitting (EMFF (29), MDFF (30),
MODELLER (26), SITUS (28), MDFIT (31), Flex-EM
(32)), homology modeling (Fold-EM (33), ROSETTA
(34), MODELLER (26)), de novo modeling (EM-fold
(35), SITUS (28), IMP (36), RELION (20), Phenix (37)),
and integrative approaches (IMP (36)). All these approaches
search for single structural models that minimize the devia-
tion between observed and predicted cryo-EM density
maps, usually by incorporating additional restraints into
Monte Carlo or molecular dynamics (MD) simulations.
Some of these techniques can provide multiple alternative
models that individually fit the input map to a certain extent
(24,38), in the same way as multiple molecular models are
derived from NMR spectroscopy data (39), and routinely
deposited in the PDB database. The sets of these models
can be considered as uncertainty ensembles (40), because
they reflect the limited information available on the systems
and thus the fact that different models might be equally
consistent with the input data; they do not, however, reflect
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the conformational heterogeneity arising from the internal
dynamics of the systems themselves (40–44). In many cases,
as for instance in inferential structure determination (45),
weights can be associated to the members of these uncer-
tainty ensembles. These weights quantify the consistency
with the input information and thus the overall confidence
in each individual model (46); they are not, however, statis-
tical weights, because they are not meant to represent the
equilibrium populations of different conformations present
in a conformationally heterogeneous mixture.

The methods described above can successfully determine
single-structure models as well as uncertainty ensembles
from cryo-EMdata, but they do not provide fully quantitative
information about the thermodynamics and dynamics of the
systems studied. Such information can only be extracted
from thermodynamic ensembles representing sets of confor-
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mations, together with their statistical weights, which coexist
in a heterogeneous mixture along with their equilibrium pop-
ulations (40,44,47). To obtain a thermodynamic ensemble,
one should search for structural models whose ensemble-
averaged observables, rather than individual conformations,
fit the input data (40,44,47). Importantly, in the construction
of such thermodynamic ensembles, all possible sources of
errors should be taken into account when evaluating the fit
of the ensemble with the experimental data (46,48).

Here, we report an approach to enable the simultaneous
determination of structure and dynamics of proteins and
protein complexes by modeling thermodynamic ensembles
from cryo-EM density maps. This approach is based
on the recently introduced metainference (46), a general
Bayesian inference method (45) that enables the modeling
of heterogeneous systems from noisy, ensemble-averaged
experimental data. This method incorporates a Bayesian
treatment of cryo-EM data that accounts for variable levels
of noise in the maps and enables structural modeling at
atomistic resolution (49).
MATERIALS AND METHODS

Overview of the metainference approach

Metainference (46) is a Bayesian framework (45) for modeling thermody-

namic ensembles by integrating prior information on a system (physical,

chemical, or statistical knowledge) with noisy experimental data. Themethod

is designed to deal with conformationally heterogeneous systems, in which

experimental observations reflect an ensemble of states rather than a single

conformation, and with data affected by known and unknown errors. The

metainference approach enables: 1) optimally combining and weightingmul-
tiple sources of information, 2)modeling thermodynamic ensembles, 3) deter-

mining the population of all states in the ensemble, and 4) determining the

level of noise in the input data. In doing so, metainference allows overcoming

the limitations of individual computational and experimental techniques (40).

StandardMD simulations, which are hampered by inaccuracies in the empir-

ical physico-chemical description of the system (the force field), are comple-

mented by experimental data, which alone provide only sparse information

affected by random and systematic errors.

In metainference, the generation of models is guided by the metainfer-

ence energy function, defined as EMI¼�kBT log pMI, where kB is the Boltz-

mann constant, T is the temperature of the system, and pMI is the

metainference posterior probability. The posterior expresses the probability

of observing a given set of structural models, and possibly other parameters,

in terms of prior information and data likelihood. The former encodes phys-

ico-chemical knowledge of the system; the latter quantifies the agreement

with experimental data and incorporates a model of experimental noise.

In the case of Gaussian noise, the metainference posterior of observing a

set of N conformations X ¼ [Xr] given Nd independent experimental data

points D ¼ [di] is
where fiðXÞ ¼ ð1=NÞPN
r¼1fiðXrÞ is the average of the predictor (or forward

model) fi for the experimental observable di calculated over the set ofN con-

formations, sBr;i is a parameter quantifying the noise level in data point di,

and sSEMr;i is the statistical error in calculating an ensemble average of fi us-

ing a finite set of conformations. The parameters pðsBr;iÞ and pðXrÞ are the
priors on sBr;i and Xr, respectively.

A sample of the posterior distribution is typically obtained by running

a multiple-replica simulation (50) guided by the associated metainference

energy function

EMI ¼ EMD þ kBT
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in which the force field of standard MD simulations, EMD ¼
� kBT

PN
r¼1log pðXrÞ, is modified by 1) a series of (harmonic)

data restraints that ensure the agreement of the structural ensemble

with the experimental data and 2) a series of error restraints, Es ¼
kBT

P
r;i
f� log pðsBr;iÞþ 0:5 log½ðsBr;iÞ2 þ ðsSEMr;i Þ2�g. In this multireplica

simulation scheme, one needs to sample, for each replica, not only the

space of possible conformations Xr, but also of the parameters sBr;i that

quantify the level of noise in the data. This is typically achieved by a Gibbs

sampling scheme, which combines MD to sample the coordinates space

with Monte Carlo for the noise parameters sBr;i. The values of these noise

parameters ultimately determine the intensities of the harmonic data re-

straints: low noise will result in a strong structural restraint; inconsistent

data points and outliers will be automatically labeled as noisy and down-

weighted in the construction of the final ensemble.
The metainference approach for cryo-EM
density maps

In the following, we define the metainference components, previously intro-

duced in general terms, specifically for the case of cryo-EM data. The
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development of these elements builds on the approach proposed in (49). A

summary of all the elements at the basis of our approach is reported in Table

S1. The method is implemented in the PLUMED-ISDB module (51) of the

open-source, freely available PLUMED library (http://www.plumed.org)

(52).

Experimental data. Typically, a cryo-EM density is distributed as a map

defined on a grid, or set of voxels, in real space. In our approach, we will

represent the experimental density map using a Gaussian mixture model

(GMM) 4D with ND components (data-GMM):

fDðxÞ ¼
XND

i¼ 1

fD;iðxÞ ¼
XND

i¼ 1

uD;i$Gðx j xD;i;SD;iÞ; (3)

where uD;i is the (normalized) weight of the ith component of the data

GMM and G is a normalized Gaussian function centered in xD;i and with

covariance matrix SD;i. This representation has three advantages. First, it

is computationally convenient to use an analytical representation of the

input data, rather than a discrete definition on a grid. Second, a GMM

can provide a representation of the data in terms of independent bits of in-

formation, whereas in the grid representation neighboring voxels should be

considered as correlated data points affected by correlated noise. Third and

finally, a GMM can be tuned to represent the data at different resolutions,

from coarse-grained for initial efficient modeling or for low-resolution

maps, to atomistic for refinement of high-resolution maps. To efficiently

fit high-resolution maps at near-atomistic detail, we used a divide-and-

conquer approach (49), which starts from a low-resolution fit using few

Gaussians and refines it in subsequent iterations to increase the resolution

of the final GMM (Supporting Material).

The forward model. We developed a forward model to simulate a cryo-

EM map from a structural model. As for the representation of the experi-

mental map, the forward model 4M is a GMM. Because here we

employed high-resolution synthetic and real cryo-EMmaps, we represented

each heavy atom of the system by one Gaussian function, whose parameters

were obtained by fitting the electron atomic scattering factors (53) for a

given atomic species (Table S2). In the case of low-resolution maps, a single

Gaussian can be used to represent each coarse-grained bead, with the

Gaussian width proportional to the size of the bead (49).

The noise model. The deviation between predicted and observed density

maps is measured in terms of the overlap ovMD;i between the forward model

GMM fM and the ith component fD;i of the data-GMM,

ovMD;i ¼
Z

dx fMðxÞ fD;iðxÞ: (4)

The overlap ovMD;i can be expressed in a computationally convenient

analytical form (49), with fD;iðxÞ as a Gaussian function and fMðxÞ as

a GMM. In a heterogenous system, the forward model fM is an

average over the N metainference replicas fr
M , and thus the overlap can

be written asZ
dx

 
1

N

XN
r¼ 1

fr
MðxÞ

!
fD;iðxÞ ¼

1

N

XN
r¼ 1

Z
dx fr

MðxÞ fD;iðxÞ

¼ 1

N

XN
r¼ 1

ovrMD;i ¼ ovMD;i :

(5)

For each component of the data-GMM, we used a Gaussian noise model

with one uncertainty parameter per data point to account for a variable

level of noise across the map. The data likelihood for the overlap ovDD;i
of the ith component of the data-GMM with the entire data-GMM can

then be written as
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Prior information. As structural prior information pðXrÞ, we used the

AMBER99SB*-ILDN molecular mechanics force field (54) and the

GBSA implicit model of water (55). For the uncertainty parameters,

we used an uninformative Jeffreys prior (56). To avoid sampling all the

uncertainty parameters, we marginalized them before simulating the

system (Supporting Material). The level of noise in each component

of the data GMM can then be estimated a posteriori using all the

structural models produced by the metainference simulations (Supporting

Material).

Metainference energy function. After defining the noise model as out-

lined in the previous paragraphs and marginalizing all the noise parameters,

the metainference energy function for cryo-EM data becomes:

EMI ¼ EMD � kBT
X
r;i

log

"
1

2ðovDD;i � ovMD;iÞ

� erf

 
ovDD;i � ovMD;iffiffiffi

2
p

sSEM
r;i

!#
;

(7)

where erf(x) is the error function.
General details of the metainference simulations

All simulations were performed using as prior the AMBER99SB*-ILDN

force field (54) along with the GBSA implicit model of water (55). This

is a computationally convenient combination of force fields, although

its accuracy has been shown to be modestly inferior compared to

AMBER99SB*-ILDN combined with explicit solvent models (57). Start-

ing models were equilibrated at 300 K for 1 ns. A time step of 2 fs was

used together with LINCS constraints (58). The van der Waals and

Coulomb interactions were cut off at 2.0 nm. Neighbor lists for all

long-range interactions were cut off at 2.0 nm and updated every

10 MD steps. Simulations were carried out using a nonperiodic cell in

the canonical ensemble at 300 K, enforced by the Bussi-Donadio-Parri-

nello thermostat (59). Configurations were saved every 2 ps for postpro-

cessing. To improve computational efficiency, the cryo-EM restraint was

calculated every 2 MD steps (60), using neighbor lists to compute the

overlaps between model and data GMMs, with cutoff equal to 0.01 and

update frequency of 100 steps. Well-tempered metadynamics (61) was

used to accelerate sampling of the metainference ensemble (Supporting

Material). All simulations were carried out with GROMACS 4.5.7 (62)

and PLUMED (52). Parameters of the GBSA implicit solvent were im-

ported from GROMACS 5.1.4.
GroEL metainference simulations

The crystal structures of apo GroEL (PDB: 1XCK) (63) and GroEL-ADP

complex in the relaxed allosteric state (PDB: 4KI8) (64) were used to

generate a synthetic cryo-EM map, using the following procedure. Chains

A were extracted from the two PDBs (Fig. 1 A) and aligned using

UCSF Chimera (23). MODELLER v9.17 (26) was used to generate a

http://www.plumed.org


FIGURE 1 Validation of the metainference approach on a conformationally heterogeneous ensemble of the chaperonin GroEL. The crystal structure of

Apo-GroEL (63) (A, blue) and a comparative model built from the structure of GroEL in complex with ADP (64) (A, red) were used to create synthetic

cryo-EMmaps at near-atomistic resolution (B). An average map was then computed by mixing contributions from the two models in ratio 1:1 (C). The meta-

inference approach was capable of disentangling the contribution of the two states (D), determining their relative populations in the mixture, and inferring the

local level of noise in the map (E). To see this figure in color, go online.

Protein Dynamics Using Cryo-EM
comparative model (GroEL-ADP*) of the sequence of apo GroEL based

on the GroEL-ADP complex template (64). The gmconvert utility (65)

was then used to separately convert the apo-GroEL and GroEL-ADP*

atomistic models into two density maps (Fig. 1 B). Radius and weight

for the conversion were determined by the residue-type method imple-

mented in gmconvert. The final synthetic map was computed as the

average of the two individual maps, with equal weight (Fig. 1 C).

A divide-and-conquer approach (49) was used to fit a GMM with 4000

components, which resulted in a cross correlation with the original map

of >0.99 (Fig. S1). Initial models for the metainference production run

were randomly extracted from the 1-ns-long equilibration run initiated

from the apo-GroEL model. The metainference ensemble was simulated

using four replicas for a total aggregated time of 50 ns. sSEMr;i was kept

constant for all replicas and set to 0:01 ovDD;i. This parameter determines

the maximum intensity of the cryo-EM restraint in the case of the absence

of data noise (sBr;i ¼ 0) and was set to the minimum value that allowed

a proper integration of the cryo-EM restraint. To enhance sampling,

we used well-tempered metadynamics with W0 ¼ 1000 kJoule/mol and

g ¼ 150,000.
STRA6 metainference simulations

The cryo-EM map of the complex of zebrafish STRA6 with copurified

calmodulin at 3.9 Å resolution (EMD: 8315 (66)) was fit with a GMM using

a divide-and-conquer approach (49). The final GMM was composed of

11,585 Gaussians and resulted in a cross correlation with the original

map equal to 0.97 (Fig. S2). The cytosolic loop (residues 575–597) missing

from the deposited model (PDB: 5SY1) was modeled using the software

MODELLER v9.17. The residue numbering scheme was kept as in the

deposited model. The resulting comparative model was then equilibrated

at 300 K, as previously described. Initial models for two independent pro-

duction runs (labeled as ‘‘RUN I’’ and ‘‘RUN II’’) were then randomly ex-

tracted from the equilibration run. The metainference ensemble was

simulated using 16 replicas for a total aggregated time of 355 ns per produc-

tion run. sSEMr;i was set to 0:1$ ovDD;i. To enhance sampling, we used well-

tempered metadynamics with W0 ¼ 5000 kJoule/mol and g ¼ 950,000.

Details of the analysis of the simulations (stereochemistry assessment,
comparison with the experimental cryo-EM map, free-energy calculations,

noise inference, and convergence analysis) are reported in the next sections.
Stereochemistry assessment of the STRA6
ensemble

To measure the stereochemical quality of the ensemble of STRA6 models

generated by the metainference method, we calculated the distribution of

the backbone dihedral angles 4 and j on the conformations sampled in

the two independent simulations. To achieve this, we used the program

PROCHECK (67), specifically the procheck_nmr collection of codes de-

signed to evaluate the quality of NMR ensembles. This program classifies

all residues in all models in four regions of the Ramachandran plot

(Fig. S3 A): residues in most favored regions (red), in additional allowed

regions (yellow), in generously allowed regions (light yellow), and in disal-

lowed regions (white). The percentages of residues in each of these regions

for the two independent metainference simulations were, in both cases:

87.4, 11.6, 0.5, and 0.5% (Fig. S3 C). These values were comparable to

those obtained using the STRA6 deposited model (PDB: 5SY1): 86.4,

13.3, 0.3, and 0.0% (Fig. S3 B).
Comparison with the STRA6 experimental
cryo-EM map

To evaluate the quality of the fit of our metainference ensemble with the

experimental map and compare it with the deposited model, we used the

gmconvert utility (65) to calculate synthetic cryo-EM maps from structural

models. It is important to note that the algorithm implemented in gmconvert

is different from our forward model and from the approach implemented in

RELION (20) and used in (66) to refine the deposited model. In this way,

gmconvert provides a method to predict a cryo-EM map independent

from those used in the generation of our ensemble and in the refinement

of the deposited model. We believe that this is a fair procedure to evaluate

the agreement with the experimental map. The local cross correlation (CC)

with the experimental map (EMD: 8315) of the average map computed on

our metainference ensemble and the one computed on the deposited model
Biophysical Journal 114, 1604–1613, April 10, 2018 1607
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was evaluated in a five-voxel sliding window using the ‘‘vop’’ localcorrela-

tion command in UCSF Chimera (23). The same program was then used to

color the metainference maps and deposited-model maps based on the value

of the local CC (Figs. 2, B and D and S4, B and D).
STRA6 thermodynamic ensemble analysis

To characterize the thermodynamics of the metainference ensemble obtained

from the STRA6 cryo-EM data, we projected all the conformations onto a set

of structural descriptors, or collective variables (CVs). To shed light on the

dynamics of the external cleft and the binding of RBP, the CVs were defined

as: 1) the distance between the Ca atoms of residues L323 and N441 in the

first chain of STRA6 and 2) the distance between the Ca atoms of the cor-

responding residues in the other identical chain (L3230 and N4410). To inves-
tigate the role of the juxtamembrane (JM) helix in retinol binding and

release, the CVs were defined as: 1) the distance between the geometric cen-

ters of residues P248-D252 in JM and V5350-F5380 in the JM loop (JML)

and 2) the distance between the geometric centers of residues P248-D252

in JM and L366-R376 in TM7. The PLUMED driver utility (52) was used

to calculate the CVs defined above from the metainference ensemble, which

were then used to construct the associated free energies (Figs. 3 B and 4 C).
Convergence of the STRA6 metainference
simulations

Toassess convergence,weperformeda cluster analysis of the two independent

STRA6 simulations. We first merged the two runs (labeled as ‘‘RUN I’’ and

‘‘RUN II’’) and then performed a cluster analysis on the concatenated trajec-

tory, after discarding the initial 20% of each run.We used the GROMOS clus-

tering algorithm (68) and the backbone root-mean-square deviation (RMSD)

asmeasure of conformational similarity, with a cutoff equal to 0.35 nm. In this

way, we defined a discrete set of 18 conformational states of STRA6 common

to the two production simulations. To assess the convergence of a given run,

for each cluster we calculated its population and error as the average and stan-

dard deviation of the population computed in the first- and second-half of each

simulation, and then we compared the results from the two independent runs

(Fig. S10).Additional characterizationof the STRA6 ensemble obtained from

RUN I and RUN II is reported in Figs. S4, S7, and S8.
1608 Biophysical Journal 114, 1604–1613, April 10, 2018
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Validation with GroEL data

Wefirst assessed the accuracy of the metainference approach
by applying it to the case of the chaperonin GroEL in two
different conformations (Fig. 1 A): apo-GroEL, the compact
crystal structure of apo GroEL (63), and GroEL-ADP*, a
comparative model built from an extended allosteric state
adopted by GroEL in complex with ADP (64). We created
synthetic cryo-EM maps from these two models (Fig. 1 B),
and used them to construct an average cryo-EM map that
equally mixed contributions from the two states (Fig. 1 C),
which have a backbone RMSD of 3.9 Å (Fig. S5). As ex-
pected, the metainference ensemble was characterized by
the presence of two distinct, equally populated structural
clusters (Fig. 1 D), which corresponded to apo-GroEL and
GroEL-ADP*, with backbone RMSD of the centers of the
two clusters from the correspondent model equal to 2.0 Å
(Fig. S5). Our approach accounts for unknown and variable
levels of noise across the experimental map during the
modeling of the ensemble. In this case, the only source of
error, i.e., of deviation between predicted and observed
maps, is the difference between the procedures used to
generate the synthetic map and in our modeling approach.
The inferred level of relative noise was fairly uniform across
the map, with an average value of�0.003 (Figs. 1 E and S6).
Structure and dynamics of the STRA6 membrane
receptor

We then applied our metainference approach to the integral
membrane receptor STRA6 (66), which mediates the
cellular uptake of retinol by extracting it from its carrier
FIGURE 2 Structure, dynamics, and noise char-

acterization of the STRA6 membrane complex.

Compared to the single-structure model (PDB:

5SY1, A), the metainference ensemble displays a

higher degree of flexibility (C). We calculated the

predicted cryo-EM maps from the single-structure

model (B) and metainference ensemble (D) and

evaluated the global and local CC with the experi-

mental map. The metainference map provides a

better CC with the experimental map (global

CC ¼ 0.91) compared to the single-structure map

(global CC ¼ 0.86), especially in the more dynam-

ical regions of STRA6. Cross-correlation maps are

visualized at a threshold of 3.5. The pie charts

report the distributions of local CC in the regions

of the single-structure and metainference maps

with density between 3.4 and 3.6. The level of rela-

tive error in the experimental map inferred by

metainference is rather uniform, with the exception

of the regions occupied by cholesterol and amphi-

pols (E). To see this figure in color, go online.



FIGURE 3 Structural insights into the mecha-

nism of RBP binding. To understand the mecha-

nism of RBP binding (A), we projected all

conformations of the metainference ensemble

along the two collective variables d1 and d2, which

were defined as the distances between residues

N441 in the TM8-TM9 loop and L323 in LP, in

each of the two identical monomers. The resulting

free energy landscape indicates an equilibrium

among different conformations (B). The close state

observed in the single-structure model (LP1, C), in

which the two LPs are close together, has a rela-

tively low population. A more stable state is an

open conformation in which the two LPs

fold back to interact with the TM8-TM9 loop

(LP2, D). States in which only one of the two

LPs folds back are also visible (LP3 and LP4, B).

To see this figure in color, go online.
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(retinol binding protein, or RBP) and moving it across the
membrane (69). Recently, zebrafish STRA6 was determined
at 3.9 Å resolution by single-particle cryo-EM (EMD: 8315)
(66). The structural model obtained from the cryo-EM map
(PDB: 5SY1) revealed a dimer of STRA6 in complex with
the protein calmodulin, and enabled the characterization
of the regions involved in RBP binding and retinol translo-
cation across the membrane (66). In this work we focus in
particular on the regions of the STRA6 map that were deter-
mined at lower resolution (66), including the periphery of
the complex and the RBP binding region, to show that
they can be interpreted in terms of a combination of confor-
mational dynamics and noise in the data.

The STRA6 metainference ensemble

Starting from the 5SY1 structure (Fig. 2 A), we modeled a
thermodynamic ensemble of conformations by integrating
cryo-EM data (Fig. S2) with an a priori, physico-chemical
knowledge of the system (Materials and Methods). In the
generated ensemble (Figs. 2 C and S4 C), STRA6 presents
a significant degree of flexibility around the single-structure
model, in particular in the N-terminal and C-terminal do-
mains, the lid peptide (LP) and the RBP-binding motif,
the cytosolic loop, and the JM helix (Fig. S7 A). These re-
gions correspond to areas at lower resolution in the experi-
mental map (66), as well as in the back-calculated maps
(Figs. 2, B and D and S4, B and D). The cytosolic loop,
which is not included in the PDB: 5SY1 structure, displays
the largest fluctuations (Fig. S7 A, magenta), whereas
calmodulin (Fig. S7 B) and the STRA6 trans-membrane
(TM) domain (Fig. S7 A, gray) are instead more rigid and
deviate less from the PDB: 5SY1 model (Fig. S7, C and
D). The latter result is particularly relevant, given the
low accuracy of the prior in the TM region (Materials
and Methods).

We then measured the agreement of the metainference
ensemble with the experimental data by calculating the
maps predicted from the ensemble and the single-structure
model (Supporting Material). We found that the metainfer-
ence ensemble provided a better cross correlation with the
experimental map (global CC ¼ 0.91) than the single-struc-
ture model (global CC ¼ 0.86), especially in the more
dynamical regions of STRA6 (Figs. 2, B and D and S4, B
and D). We also verified that the improved agreement
with the experimental data was not achieved at the expense
of the stereochemical quality of the models (Fig. S3).

Noise inference

To quantify the level of noise in the data, we calculated an
error density map from the metainference ensemble (Sup-
porting Material) and visualized it onto the experimental
map (Figs. 2 E and S4 E). The inferred level of relative
error was fairly uniform, with an average value of �0.38
(Fig. S8), except for a few specific regions: the binding sites
in-between the two horizontal intramembrane helixes (IM),
the interior of the outer cleft, and the external region
Biophysical Journal 114, 1604–1613, April 10, 2018 1609



FIGURE 4 Structural insights into the mechanism of retinol release. To investigate the role of JM in retinol binding and release (A and B), two collective

variables were defined as the distance between the geometric centers of residues P248-D252 in JM and V5350-F5380 in JML (d1) and the distance between the

geometric centers of residues P248-D252 in JM and L366-R376 in TM7 (d2). The associated free energy landscape indicated an equilibrium among different

conformations (C). JM, which in the PDB model resides far apart from JML and TM7 (JM1, D), can transiently interact with both JML (JM2, E) and TM7

(JM3, F), suggesting a possible role of JM in facilitating retinol release by weakening the JML-IM interaction and the stability of the binding site situated

between the IM helices (B). To see this figure in color, go online.
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surrounding the TM domain (Figs. 2 E and S4 E). It has been
suggested (66) that all these regions are occupied by compo-
nents that were not explicitly modeled, including cholesterol
in the binding sites and in the outer cleft, and amphipols in
the shell around the TM domain. Consistent with the conclu-
sion that these electron densities could not be explained
by the presence of STRA6 alone, the metainference method
resulted in the assignment of a high level of noise to these
regions.

Dynamics in the RBP-binding region

Next, we investigated how the conformational dynamics ob-
tained by the metainference approach can be linked to the
biological function of STRA6 and thus to what extent the re-
sulting ensemble can be more informative and predictive
than a single-structure model. The observed flexibility in
the N-terminal domain might be functional, as this region
might act as a sensor for unidentified ligands (66) or to facil-
itate RBP recognition and recruiting through nonspecific in-
teractions, before binding specifically. We found that the LP
region (Fig. 3 A) is characterized by the presence of an equi-
librium among different conformations (Fig. 3 B). The state
in which the two LPs from the two STRA6 monomers are
close together (LP1, Fig. 3 C), as in the PDB model, appear
to have a relatively low population. In the most populated
state, the two LPs fold back and approach the loop region
between TM8 and TM9 (LP2, Fig. 3 D). States in which
1610 Biophysical Journal 114, 1604–1613, April 10, 2018
only one of the two LPs folds back were also present
(LP3 and LP4, Fig. 3 B). As these results are consistent
with the possibility that LP2, rather than LP1, may be
more productive for RBP binding, incorporating further in-
formation about the physico-chemical environment in the
surroundings of the LP region will improve their prior
description and offer a more accurate quantification of their
relative stabilities. The existence of the LP2 state, not
directly visible in the single-structure model, could explain
the fact that inserting a Myc tag at the apex of the TM8-TM9
loop impairs RBP binding (70). This effect would be the
result of altering the equilibrium among LP states in favor
of either a conformation not productive for binding or one
destabilizing the actual binding state, depending upon
whether LP2 is the actual binding conformation.

Translocation of retinol across the membrane

Concerning the exit mechanism of retinol from STRA6 into
the cytosol (Fig. 4, A and B), the single-structure model sug-
gests a lateral pathway, as the alternative pathway from the
central dimer interface would require significant conforma-
tional changes (66). From our study of the conformational
dynamics of STRA6, we identify a potential role of the
JM helix in regulating retinol release through either of the
two pathways. This fragment populates multiple distinct
conformations in our ensemble (Fig. 4 C). In one state
(JM1, Fig. 4 D), JM points outwards from STRA6, as in
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the single-structure model. In the second (JM2, Fig. 4 E),
this peptide interacts with the JML, which is situated below
the horizontal IM helices and the putative retinol binding
site (Fig. 4 B). In another state (JM3, Fig. 4 F), JM resides
in proximity to TM7. This complex equilibrium among
states suggests that JM can transiently interact with JML
and possibly compete with the formation of the conserved
salt bridge D539-R5110 between JML and IM. This salt
bridge appears to be crucial for consolidating the JML-IM
interaction and stabilizing the retinol binding site located
in-between the IM helices, as its disruption by mutation in
human STRA6 results in Matthew-Wood syndrome (71).
By competing with the salt-bridge formation, JM could
promote IM and JML mobility, weaken the stability of the
retinol binding site, and eventually favor retinol unbinding.
Translocation of retinol across the membrane can later occur
through either the lateral or central pathways. The latter
scenario would require additional conformational changes,
which might be facilitated by the transient disruption of
the salt bridge and the increased mobility of this region.

This dynamical picture of JM offers interesting perspec-
tives, regardless of the specific retinol exit pathway. It
could rationalize why mutations in TM6 and TM7 inhibit
retinol uptake (72), as they could shift the equilibrium to-
ward a state (JM3) in which JM is close to TM7 and cannot
destabilize the IM-JML interaction to favor retinol unbind-
ing. Furthermore, JM is adjacent in sequence to CamBP0
(66), one of the STRA6 helices that directly interact with
calmodulin, suggesting a possible role of calmodulin in
altering the equilibrium among JM states, and ultimately
regulating retinol uptake. This observation is particularly
intriguing, as the role of calmodulin still remains enig-
matic, with no direct link to retinol transport being identi-
fied so far.
CONCLUSIONS

We have reported a method to determine structure and
dynamics of macromolecular systems by modeling thermo-
dynamic ensembles from cryo-EM density maps. The appli-
cation to the integral membrane receptor STRA6 has
illustrated how functional dynamics might remain hidden
in areas of the map at lower resolution. The method is
capable of revealing such dynamics by disentangling the ef-
fect of noise in the maps from conformational heterogeneity.
This method is implemented in the PLUMED-ISDB module
(51) of the open-source PLUMED library (http://www.
plumed.org) (52), allowing the integration of cryo-EM with
other ensemble-averaged experimental data, thus readily
enabling integrative structural and dynamical biology studies
(18,19). The approach can be extended to model multiple en-
sembles using three-dimensional reconstructions obtained
from different two-dimensional class-averages and to thor-
oughly characterize the conformational landscape, dy-
namics, and function of complex biological systems.
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Bioinformatics. 28:3265–3273.

34. DiMaio, F., M. D. Tyka, ., D. Baker. 2009. Refinement of protein
structures into low-resolution density maps using ROSETTA. J. Mol.
Biol. 392:181–190.

35. Lindert, S., N. Alexander, ., J. Meiler. 2012. EM-fold: de novo
atomic-detail protein structure determination from medium-resolution
density maps. Structure. 20:464–478.

36. Russel, D., K. Lasker, ., A. Sali. 2012. Putting the pieces together:
integrative modeling platform software for structure determination of
macromolecular assemblies. PLoS Biol. 10:e1001244.

37. Adams, P. D., P. V. Afonine,., P. H. Zwart. 2011. The Phenix software
for automated determination of macromolecular structures. Methods.
55:94–106.

38. Singharoy, A., I. Teo, ., K. Schulten. 2016. Molecular dynamics-
based refinement and validation for sub-5 Å cryo-electron microscopy
maps. eLife. 5:e16105.

39. Br€unger, A. T., P. D. Adams, ., G. L. Warren. 1998. Crystallography
& NMR system: a new software suite for macromolecular structure
determination. Acta Crystallogr. D Biol. Crystallogr. 54:905–921.

40. Bonomi, M., G. T. Heller,., M. Vendruscolo. 2017. Principles of pro-
tein structural ensemble determination. Curr. Opin. Struct. Biol.
42:106–116.
1612 Biophysical Journal 114, 1604–1613, April 10, 2018
41. Sormanni, P., D. Piovesan, ., M. Vendruscolo. 2017. Simultaneous
quantification of protein order and disorder. Nat. Chem. Biol.
13:339–342.

42. Allison, J. R. 2017. Using simulation to interpret experimental data in
terms of protein conformational ensembles. Curr. Opin. Struct. Biol.
43:79–87.

43. Fisher, C. K., and C. M. Stultz. 2011. Constructing ensembles
for intrinsically disordered proteins. Curr. Opin. Struct. Biol.
21:426–431.

44. Gaalswyk, K., M. I. Muniyat, and J. MacCallum. 2017. The emerging
role of physical modeling in the future of structure determination.
bioRxiv. https://doi.org/10.1101/228247.

45. Rieping, W., M. Habeck, and M. Nilges. 2005. Inferential structure
determination. Science. 309:303–306.

46. Bonomi, M., C. Camilloni,., M. Vendruscolo. 2016. Metainference: a
Bayesian inference method for heterogeneous systems. Sci. Adv.
2:e1501177.

47. Lindorff-Larsen, K., R. B. Best, ., M. Vendruscolo. 2005. Simulta-
neous determination of protein structure and dynamics. Nature.
433:128–132.

48. Schneidman-Duhovny, D., R. Pellarin, and A. Sali. 2014. Uncer-
tainty in integrative structural modeling. Curr. Opin. Struct. Biol.
28:96–104.

49. Hanot, S., M. Bonomi, ., R. Pellarin. 2017. Bayesian multi-scale
modeling of macromolecular structures based on cryo-electron micro-
scopy density maps. bioRxiv. https://doi.org/10.1101/113951.

50. Cavalli, A., C. Camilloni, and M. Vendruscolo. 2013. Molecular dy-
namics simulations with replica-averaged structural restraints generate
structural ensembles according to the maximum entropy principle.
J. Chem. Phys. 138:094112.

51. Bonomi, M., and C. Camilloni. 2017. Integrative structural and
dynamical biology with PLUMED-ISDB. Bioinformatics. 33:3999–
4000.

52. Tribello, G. A., M. Bonomi, ., G. Bussi. 2014. PLUMED 2: new
feathers for an old bird. Comput. Phys. Commun. 185:604–613.

53. Prince, E. 2004. International Tables for Crystallography, Vol. C. Wi-
ley, Hoboken, NJ.

54. Best, R. B., and G. Hummer. 2009. Optimized molecular dynamics
force fields applied to the helix-coil transition of polypeptides.
J. Phys. Chem. B. 113:9004–9015.

55. Still, W. C., A. Tempczyk, ., T. Hendrickson. 1990. Semianalytical
treatment of solvation for molecular mechanics and dynamics. J. Am.
Chem. Soc. 112:6127–6129.

56. Sivia, D. S., and J. Skilling. 2006. Data Analysis: A Bayesian Tutorial.
Oxford University Press, Oxford, New York.

57. Beauchamp, K. A., Y. S. Lin, ., V. S. Pande. 2012. Are protein force
fields getting better? A systematic benchmark on 524 diverse NMR
measurements. J. Chem. Theory Comput. 8:1409–1414.

58. Hess, B. 2008. P-LINCS: a parallel linear constraint solver for molec-
ular simulation. J. Chem. Theory Comput. 4:116–122.

59. Bussi, G., D. Donadio, and M. Parrinello. 2007. Canonical sampling
through velocity rescaling. J. Chem. Phys. 126:014101.

60. Ferrarotti, M. J., S. Bottaro,., G. Bussi. 2015. Accurate multiple time
step in biased molecular simulations. J. Chem. Theory Comput.
11:139–146.

61. Barducci, A., G. Bussi, and M. Parrinello. 2008. Well-tempered meta-
dynamics: a smoothly converging and tunable free-energy method.
Phys. Rev. Lett. 100:020603.

62. Hess, B., C. Kutzner, ., E. Lindahl. 2008. GROMACS 4: algorithms
for highly efficient, load-balanced, and scalable molecular simulation.
J. Chem. Theory Comput. 4:435–447.

63. Bartolucci, C., D. Lamba, ., H. Heumann. 2005. Crystal structure of
wild-type chaperonin GroEL. J. Mol. Biol. 354:940–951.

http://refhub.elsevier.com/S0006-3495(18)30288-1/sref18
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref18
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref19
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref19
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref19
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref20
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref20
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref21
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref21
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref21
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref22
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref22
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref23
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref23
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref23
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref24
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref24
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref24
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref25
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref25
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref25
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref26
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref26
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref27
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref27
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref27
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref28
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref28
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref29
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref29
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref29
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref30
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref30
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref30
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref31
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref31
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref31
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref32
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref32
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref33
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref33
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref33
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref34
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref34
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref34
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref35
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref35
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref35
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref36
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref36
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref36
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref37
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref37
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref37
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref38
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref38
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref38
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref39
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref39
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref39
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref39
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref40
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref40
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref40
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref41
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref41
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref41
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref42
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref42
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref42
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref43
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref43
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref43
https://doi.org/10.1101/228247
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref45
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref45
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref46
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref46
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref46
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref47
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref47
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref47
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref48
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref48
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref48
https://doi.org/10.1101/113951
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref50
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref50
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref50
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref50
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref51
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref51
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref51
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref52
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref52
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref53
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref53
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref54
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref54
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref54
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref55
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref55
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref55
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref56
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref56
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref57
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref57
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref57
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref58
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref58
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref59
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref59
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref60
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref60
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref60
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref61
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref61
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref61
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref62
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref62
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref62
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref62
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref63
http://refhub.elsevier.com/S0006-3495(18)30288-1/sref63


Protein Dynamics Using Cryo-EM
64. Fei, X., D. Yang, ., G. H. Lorimer. 2013. Crystal structure of a
GroEL-ADP complex in the relaxed allosteric state at 2.7 Å resolution.
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