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a b s t r a c t

Odontogenic stem cells originate from cranial neural crest cells and offer unique advantages in the
regeneration of dentin-pulp complex. There is increasing evidence that stem cells exert their biological
functions mainly through exosome-based paracrine effects. Exosomes contain DNA, RNA, proteins, me-
tabolites, etc., which can play a role in intercellular communication and have similar therapeutic po-
tential to stem cells. In addition, compared with stem cells, exosomes also have the advantages of good
biocompatibility, high drug carrying capacity, easy to obtain, and few side effects. Odontogenic stem cell-
derived exosomes mainly affect the regeneration of the dentin-pulp complex by regulating processes
such as dentintogenesis, angiogenesis, neuroprotection and immunomodulation. This review aimed to
describe “cell-free therapies” based on odontogenic stem cell-derived exosomes, which aim to regen-
erate the dentin-pulp complex.
© 2023, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Dentin, a highly mineralized substance, forms the primary hard
tissue of the tooth. Dentin composed predominantly of dentinal
tubules, odontoblastic cell processes, and an intercellular matrix,
which impart strength and hardness of the tooth structure [1]. The
pulp tissue, situated within the pulp cavity at the dentin's center,
comprises blood vessels, nerves, lymphatic vessels, a variety of
cells, and an extracellular matrix, providing dentin-forming,
nutritive, sensory, and defensive functions [2]. While dentin lacks
blood circulation and nerve innervation, it can respond to external
stimuli such as temperature, chemical, and physical changes
through interactions with the pulp tissue via dentin tubules. In fact,
pulp and dentin are closely related in embryonic development and
their responses to external stimuli are interrelated. They form a
biological entity, collectively referred to as the dentin-pulp com-
plex. Dental caries, trauma, and retrograde periodontitis can result
in pulpitis or pulp necrosis, traditional root canal treatment pre-
vents infection by removing dental pulp. However, the affected
tooth loses vitality due to the absence of blood supply and inner-
vation after endodontic-treatment, increasing its brittleness and
susceptibility to fractures and loss [3,4]. In recent years, with the
ongoing advancements in tissue engineering and regenerative
medicine, an increasing amount of research has focused on
regenerating the dentin-pulp complex to achieve biomimetic
restoration, primarily encompassing vascular and nerve regenera-
tion, inflammation regulation, and promotion of dentin regenera-
tion and mineralization [5].

Mesenchymal stem cells (MSCs) are a unique cell type charac-
terized by self-renewal and multi-lineage differentiation capabil-
ities. Initially isolated from bone marrow by Friedenstein et al. [6].
MSCs hold immense potential in regenerative medicine, playing
roles in immune regulation, inflammatory response, and apoptosis
[7,8]. Due to their inherent ability to differentiate from primary
tissues, tooth-derived stem cells exhibit distinct advantages in
dentin-pulp complex regeneration. Researchers have identified
various mesenchymal stem cells from dental tissues, with these
odontogenic stem cells originating from intracranial neural cells
[9]. To date, approximately six primary types, including dental pulp
136
stem cells (DPSCs), stem cells from apical papillae (SCAPs), peri-
odontal ligament stem cells (PDLSCs), dental follicular progenitor
cells (DFPCs), and gingival mesenchymal stem cells (GMSCs), have
been extensively studied, isolated, and characterized.

Although stem cells have been widely employed in tissue repair
and regeneration, their clinical translation faces challenges due to
storage, transportation, high cost, and ethical concerns. The potential
tumorigenic risk associated with cell therapy poses safety concerns
that cannot be overlooked. Furthermore, cell therapy may exhibit
poor biocompatibility and provoke immune rejection following
transplantation [10]. In recent years, a cell-free therapy centered on
exosomes has been proposed [11], which can play a similar thera-
peutic potential as stem cells. Exosomes play a role in cell-to-cell
communication and usually represent the biological characteristics
of their parental cells. Exosomes facilitate cell-to-cell communication
and typically reflect the biological characteristics of their parent cells.
They can be stored at �80 �C, maintaining their biological activity
during storage, which renders them more convenient and manage-
able compared to cells [12]. In fact, exosomes secreted by stem cells
from different parts have innate differences, which further lead to
their different biological functions, because they reflect the genomic
characteristics of their parental cells [13]. Exosomes derived odon-
togenic stem cells may have unique functions compared with other
mesenchymal stem cell-derived exosomes. For example, the function
of DPSCs-Exo is more manifested in vascular regeneration, immune
regulation, osteogenic differentiation and facilitating tooth differ-
entiation, while the function of PDLSCs-Exo is more manifested in
periodontal membrane and bone tissue regeneration [14]. This re-
view aims to describe the cell-free therapy based on exosomes
derived from odontogenic stem cells, which aims to regenerate the
dentin-pulp complex and provide new research methods and ideas
for clinical treatment.

2. Biological characteristics of exosomes

2.1. Classification and biogenesis

Extracellular vesicles (EVs) are nanoscale vesicles featuring a
bilayer membrane structure, secreted by cells. In the early stages of
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research, they were not well understood and often dismissed as
“cellular waste”. It wasn't until 1967 that Wolf observed a tiny
particulate matter under an electron microscope through high-
speed centrifugation and called it “platelet dust” [15]. At present,
the subtypes of exosomes are still controversial. EVs can be divided
into exosomes (40 nm < diameter<160 nm, average about 100 nm),
microvesicles (100e1000 nm) and apoptotic bodies (>1000 nm in
diameter) according to their diameter size. The term “exosome”
was first formally proposed in 1987 [16].

The biogenesis of exosomes is a dynamic process involving a
series of endocytosis and exocytosis. Exosomes are derived from
endosomes, whose diameter ranges from 40 to 160 nm, and the
cytoplasmic membrane invaginates to form a cup-like structure,
which contains cell surface proteins and soluble proteins related to
the extracellular environment, forming early endosomes. Early
endosomes canmergewith other early endosomes, and endosomes
mature to form late endosomes, which further form multivesicular
bodies (MVBs) containing intralumenal vesicles (ILVs). This is also
the second invagination of multivesicular bodies of the cytoplasmic
membrane that can be decomposed by lysosomes/autophagosomes
or fuse with the plasma membrane to release intralumenal vesicles
(ILVs)/exosomes. Surface molecules on exosomes enable them to
target receptor cells. They can conduct signals through receptor-
ligand interaction, or internalize through endocytosis or phagocy-
tosis, fusewith themembrane of target cells and deliver contents to
their cytoplasmic matrix, playing a role in intercellular communi-
cation [17] (Fig. 1).
2.2. Composition and distribution of exosomes

Exosomes are secreted into the extracellular environment by
prokaryotic and eukaryotic cells, which contain many components
of parental cells, including DNA, RNA, metabolites, and cell surface
proteins. These molecules are directly released into target cells by
exosomes through different signaling pathways, thus changing the
biological characteristics of target cells [18]. The components in
exosomes remain relatively stable and do not degrade. Surface
labeled proteins mainly include tetraspanins
(CD9,CD63,CD81,CD82), integrins, immunomodulatory proteins.
Integral proteins include Alix, TSG101, heat shock proteins (Hsp70,
Hsp90), etc. Exosomes are widely distributed, almost all mamma-
lian cells are able to secrete exosomes. In addition to exosomes are
widely present in all body fluids, including blood, urine, saliva,
peritoneal effusion, bile, etc. In the latest progress, exosomes are
also extracted from plants and bacteria [19]. However, the purpose
of exosome production is not clear, and it is speculated that it may
be to remove unnecessary components in cells to maintain cell
homeostasis.
2.3. Isolation of exosomes

At present, six technologies for the isolation of exosomes have
been established: ultracentrifugation, ultrafiltration, antibody af-
finity capture, microfluidic chip technology, size exclusion chro-
matography(SEC) and precipitation based isolation [20e22].
Among them, ultracentrifugation is the most widely used exosome
separation technology and is considered to be the “gold standard”
for exosome isolation. The ideal method for exosome isolation
should be relatively simple, fast, inexpensive and efficient. Never-
theless, different principles of isolation can impose unique limita-
tions on various techniques, and as of yet, there is no universally
applicable isolation technique for all types of research. The com-
bination of two or more isolation techniques can optimize the
isolation efficiency and quality of exosomes [23].
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Ultracentrifugation and precipitation are the most common isola-
tion techniques for exosomes derived from odontogenic stem cells
[24].

2.3.1. Ultracentrifugation
Ultracentrifugation was the first method for exosome isolation

and remains the most commonly used isolation method. Ultra-
centrifugation produces centrifugal forces of up to 1,000,000 � g to
precipitate and purify vesicles of the same size from the sample by
high-speed centrifugation. This method is easy to scale up to large-
scale exosome preparation, and the technical expertise re-
quirements are low, but the purity of the isolated exosomes is low
and time-consuming [25].

2.3.2. Ultrafiltration
Using the interception ability of porous membranes, it is phys-

ically intercepted and separates the particles of substances of
different sizes in the solution, so as to achieve the purpose of
concentration, purification and screening of different components
in the solution. However, the adhesion of the filter membrane may
lose exosomes, and the deformation of exosomes may be impaired
due to the shear forces and pressures generated by filtration [26].

2.3.3. Size exclusion chromatography
Size exclusion chromatography (SEC) is a method for separating

particles in solution based on particle size, resulting in exosomes
that are uniform in size, structurally intact, and take short time.
However, exosomes and microvesicles of the same size cannot be
separated, resulting in reduced purity [27,28].

2.3.4. Polymer precipitation method
Polymer precipitation was originally used for the isolation of

viruses. Because viruses and exosomes have similar biophysical
properties, they are used for the isolation and purification of exo-
somes [29]. This method is fast, simple, and does not require
expensive equipment, and most kits for the rapid isolation of
exosomes are based on this method. However, polymer precipita-
tion may also cause protein contamination (including lipoproteins).

2.4. Identification of exosomes

According to the morphology, size and formation process of
exosomes, the identification of exosomes mainly depends on the
detection of morphological characteristics, particle size and surface
markers.

2.4.1. Electron microscopy detection
Scanning electron microscopy (SEM), transmission electron

microscopy (TEM), and cryo-electron microscopy (cryo EM) are
commonly used to characterize the microstructure of exosomes.
Electron microscopy can directly observe the structure and
morphology and identify exosomes of different sizes. SEM can
obtain the microscopic morphology of exosome surface, and TEM
has superior resolution to observe the internal structure and
morphology. However, during steps such as fixation and staining of
exosomes, their size and morphology may be affected, allowing
them to dry and form a collapsed cup-like structure [30]. Cryo-
electron microscopy, on the other hand, avoids the effects of
chemical fixatives and dehydration, and observes circular struc-
tures and morphologies [31].

2.4.2. Exosome particle size and concentration detection
Nanoparticle tracing (NTA) and dynamic light scattering (DLS),

which detect suspended particle distribution, have been used as
one of the methods for exosome characterization. NTA uses the



Fig. 1. A Biogenesis of exosomes. The biogenesis of exosomes is a dynamic process. First, through endocytosis, the plasma membrane of the cell invaginates to form early endosome
(ESE) containing proteins and nucleic acids. Early endosome maymerge with other early endosome or form late endosome (LSE). The late endosomal membrane undergoes a second
invagination, further forming multiveisicular bodies (MVBs) containing intraluminal vesicles (ILVs). The multiveisicular bodies (MVBs) can be degraded by lysosomes or fused with
the plasma membrane of the cell to release the so-called exosomes through exocytosis. B Structure of exosomes. Exosomes are nanoscale vesicles wrapped by phospholipid bilayer
structure, containing DNA, RNA, lipids, tetraspanins (CD9, CD63, CD81, CD82), heat shock proteins (Hsp70, Hsp90), integrins, metabolites, etc.
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characteristics of light scattering and Brownian motion to obtain
the particle distribution in the suspension, and its sample pro-
cessing is simple, the detection speed is fast, and the size distri-
bution and concentration of particles can be directly and real-time.
The main difference between DLS and NTA is the concentration
range, DLS can only detect samples with higher concentrations.
138
2.4.3. Identification of surface markers
Exosomes contain nucleic acids, proteins, lipids, etc. Common

exosome surface marker proteins include heat shock protein
(HSP70, HSP90), protein involved in MVB formation (Alix, TSG101),
tetraspanins protein (CD9, CD63, CD81, CD82), integrin, immuno-
modulatory protein, etc. Flow cytometry and Western blot
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techniques are utilized to detect the expression of these unique
exosome marker proteins, enabling the identification of exosomes
at the protein level.

3. The effect of exosomes derived from odontogenic stem
cells on the dentin-pulp complex

3.1. Dentinogenesis

3.1.1. Odontoblastic differentiation
Odontoblastic differentiation is a multi-gene regulated process

involving growth factors and dentinmatrix proteins, et [32]. During
odontogenic differentiation and tertiary dentin formation, Exo-
somes Derived from Odontogenic Stem Cells induces the differen-
tiation of odontogenic stem cells into odontoblasts. Studies have
shown that DPSCs-Exo and exosomes derived from odontoblasts
have the effect of inducing the migration of DPSCs and differenti-
ating into odontoblasts, forming tertiary dentin to prevent further
destruction of tooth tissue [33]. DPSCs-Exo cultured in odontogenic
media are internalized by DPSCs and significantly upregulate
dentin sialphosphoprotein (DSPP), alkaline phosphatase (ALP),
growth factors (GDF10, BMP9), transcription factors (RUNX2), and
type I collagen [34]. Stem cells from apical papilla (SCAPs) are
derived from the papilla and differentiate into odontoblastic, which
secrete DSPP and DMP-1 to form tubular dentin, and vascular
endothelial cells(ECs) [35]. Recent studies have shown that dental
pulp cell-derived exosomes loaded with nuclear factor IC(NFIC) can
promote SCAPsmigration, proliferation and dentin production [36].
NFIC is a key transcription factor for tooth and bone development,
which can regulate the expression of DSPP and DMP-1 during the
differentiation of odontoblasts [37]. Abundant evidence has proved
that exosomes derived fromodontogenic stem cells pretreatedwith
LPS can promote the migration, proliferation and differentiation of
odontogenic stem cells [38], while exosomes derived from dental
pulp cells pretreated with LPS can inhibit the odontoblast differ-
entiation of SCAPs by down-regulating NFIC [36]. The contradictory
effect of LPS on exosomes may be attributed to the heterogeneity
between odontogenic stem cell-derived exosomes different sub-
types. MiRNAs accounts for about 50% of the RNA content in MSCs-
Exo and are considered to be a key regulator of the function of
exosomes. Exosomes promote odontogenic differentiation of DPSC
by regulating miRNA. Exosomes isolated from DPSC cultured under
odontogenic conditions cause odontogenic differentiation of DPSC
by upregulating DSP, DMP-1, ALP and RUNX2, and the expression of
miR-27a-5p is significantly upregulated [39].

In addition, exosomes can also form dentin by regulating
Schwann cells (SCs). SCs are precursors of dentin cells [40], the
main source of dentin cells, which migrate to the site of injury and
differentiate into odontoblasts/pulp cells. DPSC-Exo can promote
SCs differentiation into odontoblasts by regulating the migration
and proliferation of SCs [41]. On the other hand, DPSC-Exo pre-
treated with lipopolysaccharide has better regulation of SCs, better
odontogenic differentiation and dentin formation.

3.1.2. Dentin mineralization
After differentiation, odontoblasts begin to secrete extracellular

matrix. Most of the organic matrix is type I collagen, and the
inorganic component is mainly hydroxyapatite (HA). Mineraliza-
tion is the process of hydroxyapatite deposition in the extracellular
matrix (ECM). Dentin and bone share many common features and
are very similar in composition and mineralization process. Bone
marrow mesenchymal stem cells (BMMSCs) act as a source of
mesenchymal stem cells within the bone marrow and exhibit the
potential to differentiate into multiple cell types, including the
ability to differentiate into osteoblasts [42]. Research evidence
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indicates that the biochemical pathways involved in the differen-
tiation of DPSCs into odontoblasts and BMMSCs into osteoblasts
share similarities [43]. However, DPSCs exhibit a higher prolifera-
tion rate, colony formation rate, and mineralization potential when
compared to BMMSCs [44]. Dentin sialoprotein (DSP), dentin
phosphoprotein (DPP) and dentinmatrix protein-1 (DMP-1) are the
SIBLING family proteins that mainly exist in dentin matrix and play
important roles in dentinogenesis and mineralization. DPSCs-Exo
can promote mineralization and upregulate the expression of
specific odontogenic genes (such as DSPP, VEGF and BSP) by acti-
vating MAPK signaling pathway, thereby promoting dentin regen-
eration [33]. SCAPs-Exo can be endocytosed into bone marrow
mesenchymal stem cells (BMSCs), promote the formation of
mineralized nodules and regulate the formation of dentin by
upregulating the expression of DSPP in BMSCs [45]. In addition,
exosomes derived from the epithelial root sheath can increase the
activity of alkaline phosphatase (ALP), the formation of mineralized
nodules, and induce the activation of Wnt-b-catenin signaling
in vitro [46].

3.2. Angiogenesis

Angiogenesis is a key factor in the success of pulp regeneration,
providing oxygen and nutrients to the tissues to achieve regener-
ation [47]. Clinical studies have shown that culture in conditioned
medium for exosomes deletion impairs the angiogenic response of
MSCs, so exosomes are speculated to play an important role in
angiogenesis, and exosomes have been proposed as key drugs for
regulating angiogenesis [48,49]. The regulatory mechanism of
exosomes on angiogenesis is not clear, and it is speculated that it
may be related to the pro-angiogenic factors, microRNAs secreted
by exosomes. Exosomes can not only directly regulate pro-
angiogenic factors, but also affect pro-angiogenic factors by regu-
lating the expression of microRNAs, and ultimately promote
angiogenesis. Furthermore, alterations in the microenvironment
play a critical role in exosomes regulating the expression of pro-
angiogenic factors [50](Fig. 2).

3.2.1. Pro-angiogenic factors
Odontogenic stem cells are not only directly involved in angio-

genesis by differentiation into ECs, but also by releasing pro-
angiogenic factors through paracrine action. The process of angio-
genesis is regulated by a variety of molecules, including vascular
endothelial growth factor(VEGF), platelet-derived growth factor
(PDGF), placental growth factor (PGF), epidermal growth factor
(EGF), angiopoietin (ANG), transforming growth factor b (TGF-b),
and tumor necrosis factor a (TNF-a) [51]. These growth factors
work synergistically with a large number of MMPs to promote
angiogenesis.

MSCs-Exo has special properties that depend on the type of
stem cell, so the appropriate stem cell type is important in inducing
angiogenesis. For odontogenic stem cells, the most common
assessment of regenerative potential and pro-angiogenic capacity
are DPSCs, PDLSCs, SHEDs and GMSCs. Stimulated by LPS, the
mRNA expression levels of VEGF and KDR in DPSCs-Exo are
significantly increased [52]. Similarly, SHED-Exo significantly en-
hances blood vessel formation in a time- and dose-dependent
manner. After co-culture of SHED and SHED aggregate exosomes
(SA-Exo), VEGF, angiogenin and PDGF expression levels in SHED
treated with SA-Exo were significantly upregulated [53]. PDLSCs-
Exo can promote angiogenesis in HUVECS by upregulating the
expression of the vascular-specific markers CD31 and VEGF-A54.
In vitro studies have shown that isolation of GMSCs-exo and
binding to hydrogel/chitosan scaffolds results in epithelial growth
and angiogenesis at the wound site in rat models [55].



Fig. 2. Angiogenesis of exosomes. In addition to direct differentiation into ECs involved in angiogenesis, odontogenic stem cells can also be represented by paracrine. Odontogenic
stem cells indirectly promote angiogenesis by releasing exosomes carrying pro-angiogenic factors and microRNAs, regulating the proliferation and migration of ECs.
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3.2.2. MicroRNA
miRNAs are a group of small non-coding RNAs that do not

encode proteins themselves, but they can bind to the 30 untrans-
lated region of the target mRNA to induce mRNA cleavage or inhibit
its transcription, thereby acting as a negative regulator of the gene
of interest. miRNAs are important regulators of function of ECs and
angiogenesis. In fact, during angiogenesis, MSCs-Exo can release
several miRNAs with pro-angiogenic abilities to promote angio-
genesis in tissue repair [56,57], such as miRNA-31, miRNA-21, etc.
In vitro studies have shown that miRNA-424 may play a negative
regulatory role in ECs differentiation and regeneration of human
dental pulp cells. Overexpression of miR-424 inhibits ECs differ-
entiation, while inhibition of miR-424 expression promotes
angiogenesis [58]. MSCs-Exo has been shown to promote vascu-
larization via the p38 MAPK signaling pathway [34]. MiR-26a
transferred from SHED aggregate exosomes (SA-Exo) promotes
angiogenesis via the TGF-b/SMAD2/3 signaling pathway, thereby
promoting pulp regeneration [53]. It is worth mentioning that miR-
100-5p and miR-1246 enriched in SHED-Exo and transferred to
endothelial cells can also inhibit angiogenesis by downregulating
the expression of VEGFA, while the opposite mechanism of action
exhibited is still unclear [59]. As a result, miRNAs are able to
regulate VEGF in multiple ways and thus participate in VEGF-
mediated angiogenesis [60].
3.3. Neuroprotection and neuroregeneration

A series of biological changes occur after nerve damage,
including clearance of damaged axons and myelin sheaths and
proliferation of SCs. Nerve regeneration after injury refers to the
growth of neurites, especially neuronal axons after damage, to re-
establish synaptic structures with target tissues and restore phys-
iological functions. Exosomes are involved in a range of
140
mechanisms in post-injury neuroprotection and neuro-
regeneration, including activation of SCs, axon regeneration,
angiogenesis and inflammation regulation (Fig. 3).

3.3.1. Activation of SCs
SCs are important glial cells of the peripheral nervous system,

and their migration and proliferation play an important role in
neural repair [61]. When peripheral nerves are damaged, SCs un-
dergo dedifferentiation, synaptic transmission, axon regeneration
and other reactions. At the same time, SCs also secrete various
cytokines, growth factors, neurotrophic factors and extracellular
matrix molecules, thereby promoting the survival of neurons [62].
Exosomes have been shown to promote peripheral nerve regener-
ation by regulating the biological function of SCs. Studies have
shown that GMSCs-Exo, after being engulfed by SCs, can signifi-
cantly promote SCs proliferation, DRG axon growth, and promote
myelination to repair peripheral nerve damage in rats [63]. MiRNAs
contained in exosomes may be the main effector molecules, influ-
encing gene expression of SCs through post-transcriptional mech-
anisms in response to nerve damage. Qin et al. confirmed that
in vitro GMSCs-Exo promotes the expression of SCs dedifferentia-
tion/repair phenotype-related genes, restoring function through
activation of SCs during regeneration [64]. Thus, exosomes can
exert their neuroprotective functions through activation of SCs [65].

3.3.2. Axon regeneration
Axon regeneration is a fundamental process of nerve repair.

During peripheral nerve repair, axons express various adhesion
molecules that promote the migration of SCs. In addition, SCs
dedifferentiation relies on axon contact, and in the absence of axon
contact, the regenerative capacity of SCs decreases and the number
of cells decreases, so accelerating axon regeneration is critical for
neural repair [66]. MSC-Exo promotes axon regeneration by



Fig. 3. Neuroprotection and neuroregeneration. Odontogenic stem cells are derived from the neural crest, so they have good neurogenetic potential. Exosomes derived from
odontogenic stem cells can play neuroprotective and neuroregenerative roles similar to stem cells through a series of interactions, such as axon regeneration, activation of SCs,
angiogenesis and inflammatory regulation.
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carrying miRNAs and growth factors. Exosome-specific expression
of miRNAs, such as miRNA-23a, miRNA-200, miRNA-133b over-
expression is involved in phenotypic transformation, axon growth
and macrophage migration of Schwann cells.

3.3.3. Inflammatory regulation
The inflammatory response is an essential process for nerve

repair [67]. After peripheral nerve injury, SCs are activated to
release chemokines and pro-inflammatory cytokines through a
pro-neuroinflammatory response. Subsequent aggregation of
macrophages and some peripheral immune cells to the site of
injury accelerates further clearance of myelin sheath and axon
debris [68]. MSCs-Exo has similar anti-inflammatory effects to
parent cells, which plays an important role in nerve repair and
regeneration. MSCs-Exo contains transforming growth factor-b,
interferon g, prostaglandin E2 and other inflammatory regulators,
which are involved in the process of mediating the immune in-
flammatory response. Exosomes also alter the polarization of
macrophageM1 toM2 phenotypes, which helps to inhibit excessive
inflammatory responses. There is evidence that GMSCs-Exo regu-
lates the inflammatory response by secreting biologically active
factors with immunosuppressive and anti-inflammatory functions,
exerting powerful therapeutic potential in peripheral nerve injury
[69]; DPSCs-Exo inhibits inflammation by reducing protein
expression of IL-6, IL-1b, and TNF-a to slow brain edema and nerve
damage in mice [70]. In addition, there is a close relationship be-
tween angiogenesis and nerve repair [71] More and more evidence
shows that exosomes can participate in angiogenesis of damaged
peripheral nerves, which is conducive to tissue regeneration and
repair of the nervous system [65]. For example, LPS-treated DPSC-
EXO has been shown to promote the proliferation, migration, and
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tube-forming capacity of HUVECs in vitro by altering miRNA
expression profiles and levels of VEGF, thereby promoting angio-
genesis [52]; PDLSC-Exo and GMSC-Exo also play an important role
in angiogenesis [14,54].

Odontogenic stem cells are derived from neural crest, so they
seem to have more prominent neurogenesis potential than stem
cells from other sources [9]. Similarly, exosomes derived from
odontogenic stem cells can play a tissue repair and regeneration
function similar to stem cells, which can deliver a variety of neu-
rotrophic factors, proteins and miRNAs to axons, restore microen-
vironment homeostasis, and show stronger nerve regeneration and
neuroprotection [72]. In summary, exosomes, as key molecules for
intercellular communication, are involved in a series of interacting
mechanisms in the process of neural repair, including axon
regeneration, activation of SCs, angiogenesis and inflammation
regulation, which is conducive to the establishment of the micro-
environment required for peripheral nerve repair. The vasculari-
zation and neuralization of the pulp allow the tooth to produce a
protective response to external stimuli such as machinery, tem-
perature or chemistry, and supports the formation of dentin.
Although exosomes have been poorly studied in promoting pulp
nerve regeneration, existing studies have shown that odontogenic
exosomes have strong therapeutic potential in pulp nerve protec-
tion and regeneration.

3.4. Immune regulation and anti-inflammation

Inflammation has been underestimated in pulp healing and
regeneration, and in the past was only considered an undesirable
effect. There is now evidence that pulp inflammation is a prereq-
uisite for the regeneration of the dentin-pulp complex [73]. Early
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studies attributed the anti-inflammatory and immunosuppressive
effects of MSCs to direct contact with immune cells [74]. However,
MSCs survive less than a week after systemic administration, but
their therapeutic effect persists, suggesting that the immune
function of MSCs is at least partly due to its paracrine effects, and
exosomes may be the main active substance [75,76]. Similarly,
exosomes derived from odontogenic stem cells have also shown
properties such as anti-inflammatory and immunomodulatory
properties. DPSCs-Exo have been shown to have stronger immu-
nomodulatory abilities than BMMSCs-Exo, which may be beneficial
in the treatment and prevention of pulp inflammation [77]. Exo-
somes derived from odontogenic stem cells exerts anti-
inflammatory immunomodulatory effects mainly through four as-
pects: 1. Reduce inflammatory response; 2. Regulate macrophage
phenotype and function; 3. Regulate T cells and B cells; 4. Regulate
DC phenotype and NK proliferation (Fig. 4).
3.4.1. Macrophages
When the dentin-pulp complex is stimulated externally, the

immune response is activated, and the relative immune cells are
concentrated at the site of inflammation by the chemotaxis of
chemokines secreted by macrophages. Macrophages play an
important role in the inflammatory environment and tissue
regeneration. The transformation of macrophages from pro-
inflammatory M1 to anti-inflammatory M2 is essential for tissue
regeneration. M1 macrophages produce pro-inflammatory factors
such as TNF-a, IL-6 and IL-1b to promote inflammation, and M2
macrophages produce IL-10, TGF-b and other anti-inflammatory
factors to relieve inflammation. Exosomes derived from odonto-
genic stem cells exert its anti-inflammatory and
Fig. 4. Immune regulation and anti-inflammation. Exosomes derived from Odontogenic stem
cell-derived exosomes promote the transformation of macrophages to the M2 type, whi
stimulated by inflammation, stem cells may produce more immunoreactive exosomes. Ex
apoptosis of CD8þ T cells, and promote the transformation of CD4þ T lymphocytes to Tregs. In
inflammatory factors, and reduce the production of promoting factors by inhibiting dendri
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immunomodulatory effects by modulating the transformation of
macrophages from pro-inflammatory M1 or anti-inflammatory M2
phenotypes. Recent studies have shown that miRNAs contained in
exosomes play an important role in regulating the phenotype of
macrophages. DPSCs-Exo can promote the transformation of
macrophage M1 to M2 type, which is achieved by DPSCs-Exo by
inhibiting the TLR and NFkB pathways. The high expression of miR-
125a-3p in exosomes inhibits of NFkB and TLR pathways by tar-
geting IKKBB, while DPSCs-Exo and the miR-125a-3p contain pro-
mote macrophages to release BMP-2, which in turn activates the
odontogenic differentiation of DPSCs through the BMP-2 pathway
[78]. The transformation of macrophages from M1 phenotype to
M2 phenotype in pulp tissue creates a suitable microenvironment
for repair and regeneration [79]. Since exosomes contain a large
number of bioactive molecules, such as proteins, mRNA, miRNAs,
and lipids, MSCs may produce more immunoreactive exosomes
under inflammatory stimulation. There is substantial evidence that
the microenvironment modulates the effects of exosomes on
macrophages. For example, under inflammatory conditions,
GMSCs-Exo can promote the transformation of macrophages from
M1 phenotype to M2 phenotype and reduce the pro-inflammatory
factors produced by M1 macrophages [80]; GMSCs-Exo inhibits the
inflammatory response of M1 macrophages and reduces lipid
accumulation in M1 macrophages in a high-lipid microenviron-
ment [81].
3.4.2. T cells and B cells
T lymphocytes are the main effector cells of acquired immunity

and are involved in multiple immune response processes. Differ-
entiated and mature in the thymus, the largest number is in
cells also have immunomodulatory and anti-inflammatory effects. Odontogenic stem
ch produces anti-inflammatory factors to relieve inflammation. What's more, when
osomes can inhibit B lymphocyte differentiation, activation and proliferation, induce
addition, exosomes can also inhibit lymphocyte activity, promote the secretion of anti-

tic cell maturation.



J. Zou, H. Xia, Q. Jiang et al. Regenerative Therapy 24 (2023) 135e146
lymphocytes. According to the different expression of CD4 and CD8,
T cells can be divided into CD4þ T lymphocytes and CD8þ lym-
phocytes. Exosomes can play similar biological roles to parental
cells, inhibiting the differentiation, activation and proliferation of T
cells, inducing T cell apoptosis, and promoting the production of
Treg [82]. Studies have shown that SCAPs-Exo can promote the
transformation of CD4þ T cells to Tregs through exosomes in the
paracrine pathway, promote the secretion of the anti-inflammatory
cytokine IL-10, regulate the immune microenvironment, and
effectively reduce pulp inflammation [83,84]. Similarly, DPSCs, as
an important stem cell involved in the regeneration of the dentin-
pulp complex, DPSCs-Exo reduces the secretion of pro-
inflammatory factors IL-17 and TNF-a by inhibiting the differenti-
ation of CD4þ T cells into T helper 17 cells (Th17), while promoting
the polarization of CD4þ T cells into Treg, and increasing the release
of anti-inflammatory factors IL-10 and TGF-b [74]. In addition,
PDLSCs-Exo exert anti-inflammatory effects by regulating
microRNA-155-5p to mediate Th17/Treg balance [85]. However, B
lymphocytes are not detected in normal pulp, and the number of T
and B lymphocytes increases in inflammatory pulp, so B
lymphocyte-mediated humoral immunity does not participate in
the early immune response of the local pulp. B lymphocytes can
activate complement to function in the immune response by
secreting antibodies. There is evidence that odontogenic stem cells,
such as GMSCs, inhibit B cell proliferation, differentiation, and
activation in vivo and in vitro [86]. BMMSCs-Exo regulates cell
function by influencing mRNA expression in B lymphocytes [87].
However, studies have also shown that the regulation of B cells by
mesenchymal stem cells is independent of extracellular vesicles
[88]. Although the ability of odontogenic stem cell-derived exo-
somes to inhibit B-lymphocyte-mediated immune responses has
not been well understood, the potential of their immunomodula-
tion remains promising.

3.4.3. Dendritic cells
Dendritic cells (DCs) are the most potent antigen-presenting

cells (APCs), which can effectively stimulate the activation of T
lymphocytes and B lymphocytes. In the dentin-pulp complex, DCs
are often arranged along blood vessels, concentrating around the
blood vessels of the internal pulp and next to the dentin cell layer
on the periphery of the pulp. Some cytoplasmic protrusions pro-
trude into the dentin tubules and perform immune surveillance
functions [89,90]. Several reports have shown that MSCs-Exo are
able to inhibit dendritic cell maturation, inhibit lymphocyte activ-
ity, promote the secretion of IL-10 and TGF-b, and reduce the
secretion of IL-6 [91,92]. This means that exosomes have the fate of
regulating DC, exerting immunomodulatory and anti-inflammatory
effects.

The dentin-pulp complex has its unique immune microenvi-
ronment and immune defense system, containing complex cell
composition. Exosomes derived from odontogenic stem cells has
immunomodulatory properties and low immunogenicity [93].
Relying on the immunomodulatory and anti-inflammatory effects
of exosomes derived from odontogenic stem cells, an appropriate
immune microenvironment can be created in the root canal to
promote the regeneration of the dentin-pulp complex.

4. Application of exosomes in regeneration of dentin-pulp
complex

Exosomes can be combined with biomaterials for application
and retention in damaged tissues, especially in the field of tissue
engineering, such as collagen, matrix, chitosan, hydrogel, etc.
Exosomes bind to matrix proteins and thus to biological materials.
Some biomaterials change the release rate of exosomes by
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adjusting molecular weight, crystallinity or mixing ratio to main-
tain stability, which helps exosomes to function. Choosing the right
scaffold to deliver exosomes to the site of action is important. The
geometry and mechanical properties of the stent can influence
behavior and adhesion of cell to the scaffold surface [94].

Experiments in animal models have shown that combining
exosomes to collagen membranes is used in root canal therapy.
DPSCs-Exo and DPSCs-OD-Exo can induce pulp-like tissue regen-
eration in tooth root section models [34]. Exosomes derived from
epithelial root sheaths are loaded in the collagen gel, which can
play a role in increasing the survival of papilla cells. In root sections,
epithelial root sheath cell-derived exosomes attach to collagen gels
and are slowly endocytosis and release by papillary cells, thereby
promoting the regeneration of restorative dentin, vessel and nerve
[46]. In addition, exosomes bind to type I collagen and fibronectin
in a dose-dependent and saturated manner, and this connection
can be degraded by RGD peptide integrin [34]. Swanson et al.
designed an amphiphilic polymer carrier synthesized from a tri-
block copolymer and placed in a model of pulp incision in rat
molars. Encapsulate exosomes by polymer self-assembly with slow
release at the site of action for 8e12 weeks. The results show that
after six weeks, the controlled release of exosomes derived from
odontogenic stem cells leads to the formation of restorative dentin,
and it is more effective than the use of glass ionomer cement in vivo
[33].

In addition to the above methods, exosomes can be directly
dissolved in PBS/normal saline and injected into the site of action,
or directly injected intravenously after dissolution to enter the
blood circulation and act on the site of injury [95]. Exosomes are
small in size and can avoid phagocytosis by monocytic macro-
phages. Compared with liposomes, exosomes have better biocom-
patibility and lower immunogenicity, are well tolerated, and can be
repeatedly injected without significant side effects.

5. Discussion and future outlook

Functional pulp is indispensable for the long-term generation of
teeth, and ideal pulp-dentin complex regeneration should achieve
vigorous regeneration of the whole tooth and restore the normal
function of the tooth [96]. Regeneration strategies for the dentin-
pulp complex can be achieved with cell therapy or cell-free ther-
apy. However, the clinical translation of MSCs is limited by storage,
transportation, and ethical issues. As a current hot spot, exosomes
have received extensive attention from researchers at home and
abroad. Current evidence suggests that exosome-based cell-free
therapies are superior to cell therapies. Compared with odonto-
genic stem cells, odontogenic stem cell-derived exosomes have the
advantages of strong drug carrying ability, high specificity, low
immunogenicity, good biocompatibility, easy to obtain, small side
effects, and nanoscale size [97]. Odontogenic stem cell-derived
exosomes play an important role in enhancing receptor cell func-
tion, such as proliferation, dentinogenesis/osteogenic differentia-
tion, anti-inflammatory, etc. Exosomes are expected to replace
stem cells in clinical practice in the future. Notably, there is evi-
dence that donor age, health, sex, number of parental cell passages,
cell culture conditions, etc. are critical to function [98,99].

In addition to tissue repair and regeneration, exosomes can also
be used as drug carriers to achieve targeted drug delivery. Exo-
somes have the ability to load “cargo” and deliver them to target
cells for cell-to-cell communication. The phospholipid bilayer of
exosomes protects the contents from rapid decomposition and
crosses the blood-brain barrier [100]. Exosomes carrying drugs can
be used in the treatment of cardiovascular and cerebrovascular
diseases, autoimmune diseases, neurodegenerative diseases. In
recent years, artificial exosomes with higher drug loads have been
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prepared to overcome the shortcomings of natural exosomes in
clinical applications. Artificial exosomes have high drug-carrying
capacity, high targeting, similar physicochemical and biological
characteristics to natural exosomes, and have higher yields than
natural exosomes [101].

However, there is no standardized isolation method for exo-
somes, and there are disadvantages such as insufficient number of
exosomes. The two major technical obstacles restricting the basic
research and application of exosomes include: (1) how to simplify
the process of exosome extraction and improve the extraction ef-
ficiency; (2) How to effectively distinguish exosomes from other
extracellular vesicles. In recent years, a combination of several
separation methods has been used to improve efficiency. In addi-
tion, the mechanisms of exosome secretion and fusion have not
been clarified [25]. Regarding the use of exosomes, dose control is
critical. There are two routes of administration of exosomes, one is
to load exosomes into biomaterials, such as collagen membranes,
hydrogels, gelatin sponges, PLA scaffolds, etc., so as to slowly
release them to the site. Studies have shown that after dissolution
of exosomes directly subcutaneously or intravenously, exosomes
can be quickly removed from the blood, accumulate in the stomach,
liver, intestine, and finally be absorbed and excreted by macro-
phages [102]. For topical application of exosomes, it may be
removed by external factors more quickly, and sufficient time of
action cannot be guaranteed.

Currently, there is still insufficient evidence to evaluate and
compare the molecular differences, biological functions, and clin-
ical applications between odontogenic exosomes of different ori-
gins, and between odontogenic stem cells-derived exosomes and
exosomes derived from other types of mesenchymal stem cells.
There is no standardized unification for the isolation, storage,
transportation and large-scale production of exosomes derived
from odontogenic stem cells, and unnecessary tissues such as the
third molar cannot be effectively and stably stored for a long time.
Therefore, the clinical application of exosomes derived from
odontogenic stem cells cannot be promoted on a large scale. In
order for the exosomes to play an ideal role, the dose of exosomes,
the treatment method of the parental cells of exosomes and the
efficient purification need to be further studied.

6. Conclusion

In conclusion, exosomes derived from odontogenic stem cells
have many advantages in biocompatibility, drug loading ability and
other aspects. Exosomes derived from odontogenic stem cells can
regulate many important biological processes, including dentino-
genesis, angiogenesis, neuroprotection and immune regulation,
and can be used to regenerate the dentin-pulp complex. Although
exosomes have become the focus of research in the past decade,
their role in the regeneration of dentin-pulp complex is still in its
infancy. There are many challenges to be overcome before exo-
somes derived from odontogenic stem cells can be widely used in
the clinic.
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