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Abstract: Developing a model for a signalling pathway requires several iterations of experimentation and model refinement to
obtain an accurate model. However, the implementation of such an approach to model a signalling pathway induced by a
poorly-known stimulus can become labour intensive because only limited information on the pathway is available beforehand to
formulate an initial model. Therefore, a large number of iterations are required since the initial model is likely to be erroneous. In
this work, a numerical scheme is proposed to construct a time-varying model for a signalling pathway induced by a poorly-
known stimulus when its nominal model is available in the literature. Here, the nominal model refers to one that describes the
signalling dynamics under a well-characterised stimulus. First, global sensitivity analysis is implemented on the nominal model
to identify the most important parameters, which are assumed to be piecewise constants. Second, measurement data are
clustered to determine temporal subdomains where the parameters take different values. Finally, a least-squares problem is
solved to estimate the parameter values in each temporal subdomain. The effectiveness of this approach is illustrated by
developing a time-varying model for NF-κB signalling dynamics induced by lipopolysaccharide in the presence of brefeldin A.

1 Introduction
Through various intracellular signalling pathways, cells are able to
modify their gene expression, metabolism, or other regulatory
actions in order to sense and respond to perturbations in their
environment [1]. Due to intrinsic complexity of the signalling
pathways, a systems biology approach, which integrates
experimental measurements and mathematical modelling, has
become indispensable to gain a system-level understanding of the
signalling dynamics [1–4]. Specifically, a priori knowledge about a
signalling pathway is formulated into a mathematical model,
usually in the form of a system of ordinary differential equations,
and the model is subsequently calibrated by experimental
observations. The resulting model is then used to analyse the
underlying mechanisms and generate new hypotheses to be tested
in new experiments. Previously, this systems biology approach has
been implemented to gain new insights into various signalling
pathways such as the nuclear factor κB (NF-κB) signalling pathway
[5, 6], Janus family of kinases – signal transducer and activator of
transcription signalling pathway [7], and mitogen-activated protein
kinase signalling pathway [8].

Ideally, one would like to develop a comprehensive signalling
pathway model that can predict the signalling dynamics under
various conditions. However, this can be a difficult task as a single
signalling pathway can be activated by many stimuli with different,
usually unknown, corresponding reaction mechanisms. For
example, out of around 100 different stimuli of the NF-κB
signalling pathway [9], only a handful, such as tumour necrosis
factor-α (TNFα) and lipopolysaccharide (LPS), and their reaction
mechanisms are well characterised. Consequently, investigating
and modelling a signalling pathway induced by a stimulus, which
has not been well studied, is non-trivial. Specifically, as the
pathway is only partially known beforehand, a number of different
model structures need to be formulated and discriminated, which
can become very challenging. In the literature, different approaches

have been proposed and implemented for solving this problem.
First, extensive experiments are performed to characterise as many
reactions as possible between intracellular molecules, which in
practice is nearly impossible due to the large number of
interactions to be studied. Second, the aforementioned iterative
approach between modelling and experiments can be implemented
to improve the model gradually [2, 10, 11]. However, as the initial
model is likely to be erroneous, this approach may require a large
number of iterations between experiments and model refinement to
reach a relatively satisfying model. Third, a number of different
initial models, each of which corresponds to a different hypothesis
on the signalling pathway structure, are synthesised from the
beginning, and the best model structure is selected by solving an
optimisation problem against experimental observations [12–14].
Although the optimisation-based approach is promising, it has
several numerical and algorithmic challenges such as efficiently
finding a global optimal solution for a large system [12–16].

Alternatively, when an accurate model for describing a
signalling pathway under one stimulus is available, we can modify
that model to describe the same signalling pathway under a lesser-
known stimulus [17, 18]. Hereafter, we refer to the model
constructed for the well-studied stimulus as the nominal model.
The rationale for using the nominal model is two-fold. First, the
nominal model already contains a number of important pathway
components as well as their interactions, which are likely to be
important under the lesser-known stimuli as well. Second, this
approach avoids the lengthy model selection procedure, which
requires a number of different candidate models to be synthesised,
calibrated, and compared [17]. On the other hand, the structure of
the nominal model is likely to be insufficient to describe the
signalling dynamics under the lesser-known stimulus due to
unincorporated and unknown reactions and components specific to
this stimulus [17]. Therefore, a poorly characterised signalling
pathway induced by a lesser-known stimulus needs to be described
by a data-driven approach to complement the inaccuracy of the
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nominal model. Here, we choose to introduce time-varying
parameters to the nominal model, which is usually time-invariant,
based on the available experimental measurements [18, 19].
Through this data-driven approach, a more accurate model for the
lesser-known stimulus can be derived based on the nominal model
and the available data.

Motivated by the above considerations, we propose a numerical
scheme to construct a time-varying model to simulate an
intracellular signalling pathway with a lesser-known stimulus
based on a nominal model. First, global sensitivity analysis (SA) is
performed on the nominal model to identify a set of parameters that
are identifiable given the model structure and experimental
observations, and only these parameters are assumed to vary with
time. Next, the temporal profiles of the model parameters are
partitioned into several temporal subdomains whose boundaries are
determined by clustering the experimental observations. And the
parameters determined by the SA have fixed values in each
temporal subdomain. Finally, a least-squares problem is solved to
estimate the values of the parameters in each temporal subdomain
by minimising the difference between the model predictions and
the experimental data.

The paper is organised as follows: first, the motivation for
formulating a time-varying signalling model is presented. Second,
the proposed methodology that consists of the optimal temporal
clustering and the global SA to construct a time-varying model is
presented in details. Finally, the proposed methodology is
implemented to develop the model for a time-varying NF-κB
signalling pathway induced by LPS in the presence of brefeldin A
(BFA) to assess the efficiency and accuracy of the proposed
scheme.

2 Background
2.1 System description

Consider an intracellular signalling pathway initiated by an
external stimulus, u, which has been well characterised by the
following model:

ẋ = f x, θ, u; t , x(0) = x0

y = g x, θ, u; t
(1)

where x ∈ ℝnx is the state vector, θ ∈ ℝnθ is the parameter vector,
x0 is the initial value of the state vector x, and y ∈ ℝny is the output
vector.

When a lesser-known stimulus, ua, is added to a cell, the
signalling dynamics deviate significantly from those predicted by
(1). Due to the disparity in our understanding of the roles of ua, u,
and their interplay in the signalling dynamics, little information on
the signalling dynamics is available a priori. Consequently, the
construction of a high-fidelity model, which faithfully simulates
the signalling dynamics initiated by ua and u, requires iterative
experimentation and model refinement, which can be an arduous
and lengthy process [10, 20, 21].

A more viable alternative is to approximate the dynamics
induced by ua through introducing a time-varying model where θ in
(1) changes with time so that the well-defined model (1) can be
used to describe the signalling dynamics under the two stimuli
[19]. To this end, the temporal profile of θ is described as piece-
wise constant functions. Under this representation, the entire
temporal domain is split into several temporal subdomains, each of
which has its own parameter values. Consequently, the following
modified form of (1) is used to describe the signalling dynamics
under two stimuli:

ẋ = f x, θσ(t), u; t , x(0) = x0

y = g x, θσ(t), u; t
σ(t) = i if t ∈ T i, i = {1, …, nσ}

(2)

where θi ∈ ℝnθ, where i = 1, …, nσ, is the vector of parameter
values used when the current time t belongs to the temporal

subdomain, T i, nσ is the number of temporal subdomains, and σ(t)
is the discrete variable to denote which θi is used at the time t.
Under this formulation, the overall temporal domain is partitioned
into nσ subdomains, where different values of θ are used. From
here on, ua is neglected since the use of θσ(t) implies the presence of
ua.

2.2 Experimental measurements

In order to train and validate (2), y is measured experimentally
under different conditions. Here, nu different values of u with a
fixed value of ua are used. Due to the technical and economic
constraints in a biology experiment, y can be measured at only a
few sampling time instants, tl, l = 1, …, Nt, where Nt is the number
of sampling instants [22]. Also, it should be noted that commonly
used biochemical assays such as Western blots, flow cytometry, or
microarrays typically give qualitative or semi-quantitative datasets,
which measure relative but not absolute concentrations of
biomolecules [23]. In other words, the measured output is defined
as

zi
s(tl) = ci ⋅ y^i us; tl + νi (3)

where zi
s, i = 1, …, ny, is the relative measured output that is

corrupted with measurement noise under the input us, s = 1, …, nu,
y^i is the output in absolute concentration that is not directly
measurable in the experiments, ci is the proportional constant
relating zi

s and y^i, and νi is the measurement noise. Here, it is
assumed that the mean value of νi can be inferred during the
equipment calibration procedure [24].

Since the values of c are not usually known beforehand, an
alternative quantity is computed to facilitate the comparison
between the model and the experimental measurements.
Specifically, fold changes in the measurements are calculated as
follows [21]:

ȳi
s(tl) = zi

s(tl) − ν̄i

zi
s(t1) − ν̄i

= y^i(us; tl)
y^i(us; t1)

(4)

where ȳi
s(tl) is fold change of zi

s at the time instant at tl, t1 is the first
sampling instant (usually t1 = 0), and ν̄i is the average
measurement noise that can be obtained by performing a negative
control measurement without reagents.

2.3 Problem statement

In this study, we seek to construct a time-varying model (2) by
estimating the temporal dynamics of θ, and this can be achieved by
addressing the following two problems:
 

Problem 1: Given the model (2) and the experimental
measurements (3) and (4), determine the number of temporal
subdomains, nσ, as well as the temporal subdomains,
T i, ∀i = 1, …, nσ.

Since nσ and T i are not known a priori, the experimental
measurements are clustered to estimate the value of nσ and the
temporal subdomains, T i.
 

Problem 2: Given the model (2), the experimental
measurements (3), and the temporal subdomains of the parameters
T 1, …, Tnσ , estimate the values of parameters, θi, i = 1, …, nσ, in

each temporal subdomain.
For many intracellular signalling pathways, only a small subset

of θ is identifiable from the experimental measurements [22, 25].
As a result, the additional parameters introduced in the time-
varying model (2), which increases the size of the parameter space
by nσ-fold, are likely to be even more unidentifiable. Hence, a
sequential parameter selection methodology is implemented to
identify the most important parameters in θ, and the values of these
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parameters in each temporal subdomain are estimated. The
resultant model then can be used to investigate the system
dynamics and design the optimal experiments for future studies to
advance our understanding.

3 Temporal clustering
Since the intracellular signalling dynamics are described by the
time-varying model (2) with the piecewise constant θ, the value of
nσ and all the temporal subdomains, T i, need to be determined. In
this work, they are inferred by clustering the experimental
measurements into several temporal subdomains in a way that the
data points contained in each subdomain exhibit similar temporal
behaviours [26]. This inference assumes that the time-invariant
parameters in one temporal subdomain, T i, result in the relatively
uniform dynamics in y.

For the given experimental measurements D ∈ ℝNc × Nt, where
Nc = nu ⋅ ny,

D =

ȳ1
1(t1) ⋯ ȳ1

1 tNt

⋮ ⋱ ⋮
ȳ1

nu(t1) ⋯ ȳ1
nu tNt

ȳ2
1(t1) ⋯ ȳ2

1 tNt

⋮ ⋱ ⋮
ȳ2

nu(t1) ⋯ ȳ2
nu tNt

⋮ ⋱ ⋮
ȳny

nu(t1) ⋯ ȳny
nu tNt

(5)

a clustering algorithm will assign Nt column vectors of D into nσ
different temporal subdomains by minimising the distance between
vectors in a subdomain and the centre of the subdomain, which is
measured by the following intra-cluster error sum [26]:

Λ = ∑
i = 1

Nt

∑
k = 1

nσ

zik∥ Di − ck ∥2
2 (6)

where Di is the ith column of D, zik is a binary variable indicating
whether Di is in the kth subdomain, and ck ∈ ℝNc is the centre of the
kth cluster.

Since a value of nσ is not known a priori, a clustering method is
implemented with all possible number of subdomains 1, …, Nt  to
find an optimal nσ by computing and comparing the values of Λ as
well as the inter-cluster error sum, Γ, which is defined as follows
[26]:

Γ = ∑
k = 1

nσ

∥ c∘ − ck ∥2
2 (7)

where c∘ ∈ ℝNc is the global cluster centre, which is defined as

cj
∘ = 1

Nt
∑
i = 1

Nt

Dji (8)

where cj
∘ is the jth element of c∘. When an optimal clustering

configuration is achieved, the value of Λ is minimised while the
value of Γ is maximised to achieve the maximum intra-cluster
similarity and inter-cluster dissimilarity [26, 27]. Mathematically,
this is quantified by the clustering balance, ϵ, which was proposed
in [27], as follows:

ϵ = 0.5Γ + 0.5Λ (9)

where 0.5 in front of Γ and Λ is a weight coefficient, which can be
adjusted based on the problem [28]. As Λ and Γ are expected to

decrease and increase, respectively, with the increase in the number
of subdomains, a turning point in the value of ϵ determines the
optimal value of nσ [26]. Once the value of nσ is determined, all the
T i can also be determined by clustering D into nσ temporal
subdomains.

4 Parameter estimation
The aim of the parameter estimation is to quantitatively calibrate a
model so that it can make an accurate and robust prediction of the
system, which then can be used to analyse underlying mechanisms
and design optimal experiments [4, 20]. We can formulate a
parameter estimation for (2) as a least-squares problem to minimise
the difference between model predictions and measurements as
follows:

min
c, θ1, …, θnσ

∑
s = 1

nu

∑
i = 1

ny

∑
l = 1

Nt

yi(us; tl) − ȳi
s(tl)

2
(10a)

s . t . ẋ = f x, θσ(tl), us; tl , x(0) = x0 (10b)

y = g x, θσ(tl), us; tl (10c)

σ(tl) = k if tl ∈ T k, k = {1, …, nσ} (10d)

θlb ≤ θk ≤ θub (10e)

where θlb and θub are lower and upper bounds for the values of the
model parameters, respectively.

It should be noted that the parameter estimation (10) is often ill-
conditioned and results in a non-unique solution [29]. This is
especially problematic for calibrating biological models since
biological systems are often partially observable and over-
parameterised (i.e. ny ≪ nθ) [25]. As the time-dependency of the
model parameters is introduced, the issue of the non-uniqueness in
the parameter estimation exacerbates since the number of
parameters increases by nσ-fold. In order to handle this issue, we
assume that only identifiable parameters, which is a subset of θ,
vary with time while the remaining parameters are time-invariant
and fixed at their nominal values. Consequently, this study carries
out the parameter selection methodology before the parameter
estimation to determine the identifiable parameters and estimate
their values in each T i by solving the least-squares problem.

4.1 Parameter selection

The objective of the parameter selection procedure is to determine
the identifiable parameters that will be estimated in the parameter
estimation step. In this study, two global SA techniques are
implemented to determine which parameters are identifiable.

4.1.1 Sensitivity analysis: In the literature, several analytical
methods have been proposed to determine the parameter
identifiability, including Taylor series expansion [30], differential
algebra [31], or similarity transformation [32]. But these methods
require symbolic manipulation and thus only applicable to a
relatively small system (for nθ + ny ≤10) due to the computational
requirements of these methods [33].

Alternatively, the parameter identifiability can be assessed by
SA, which evaluates the importance of the model parameters by
quantifying changes in model outputs due to changes in model
parameters. A common method is the local SA method that is
based on the direct differentiation of a system model with respect
to its parameters. However, the evaluation of the system model as
well as its derivatives with respect to its parameters depends on the
values of the model parameters, which are unknown before the
parameter estimation. Therefore, a result of the local SA method is
local in nature and likely to be unreliable, particularly when the
parameter values are largely uncertain [34, 35].
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In this study, two global SA methods, Morris method [36] and
Sobol’ method [37], are implemented sequentially to determine the
most important parameters. Even though the parameters take
different values in each temporal subdomain, the model structure
remains the same. Hence, the results of global SA on the time-
invariant model will be valid for the time-varying one because the
global SA computes the importance of model parameters over the
entire parametric domain. Therefore, all the analysis in the
following sections is conducted based on the time-invariant model
(1).

4.1.2 Morris method: The Morris method computes the average
sensitivity of a model parameter by calculating the average change
in model outputs due to changes in its value. Specifically, the value
of a parameter θ j ∈ θ, j = 1, …, nθ, is perturbed by Δ j to compute
its effect on an output yi, which is quantified as follows [38]:

di j us; tl =
yi(x, θ1, …, θ j + Δ j, …, θnθ, us; tl) − yi(x, θ, us; tl)

Δ j
(11)

where di j(us; tl) is called the elementary effect of θ j on yi at a time
instant tl, l = 1, …, Nt. By calculating Nm different di j with Nm
different values of Δ j, the average sensitivity measure of the
parameter θ j, which is denoted as si j, is computed as follows:

si j(us; tl) = 1
Nm

θ j

yi(x, θ, us; tl)
∑
k = 1

Nm

di j
(k)(us; tl)

= 1
Nm

θ j

yi(x, θ, us; tl)

× ∑
k = 1

Nm yi(x, θ1, …, θ j + Δ j
(k), …, θnθ, us; tl) − yi(x, θ, us; tl)

Δ j
(k)

(12)

where Δ j
(k) is the kth perturbation applied to the parameter θ j. Here,

the term di j(us; tl) is normalised by θ j/yi(x, θ, us; tl) to eliminate
possible scaling effects [38]. And, the suggested value for Nm is
r(nθ + 1), where r is usually around six [39].

Then, the final scaled sensitivity of all the model outputs with
respect to a parameter across all the time instants is defined as
follows:

S j = 1
ny

∑
i = 1

ny

si j u1; t1 ⋯ si j u1; tNt ⋯ si j unu; tNt

2

(13)

where si j(us; tl) is the average sensitivity computed under an input
us, s = 1, …, nu, at a time instant tl.

Although the Morris method is conceptually simple and easy to
be implemented, it has a limited capability in capturing the non-
linear output behaviour and the dependency among parameters
[38]. Therefore, this study utilises the Morris method as a
screening tool to reduce the number of parameters to be analysed
by the Sobol’ method, which overcomes the problems of the
Morris method but is computationally more expensive.

4.1.3 Sobol’ method: Once the Morris method screens out less
important parameters from θ, the importance of the remaining
parameters, which are denoted as θ̄ ∈ ℝnp, np < nθ, is analysed via
the Sobol’ method. Different from the local SA method or the
Morris method, the Sobol’ method is a variance-based method.
Specifically, the sensitivity of a parameter is computed by
quantifying how much each parameter contributes to the output
variance. A brief overview on the Sobol’ SA method is presented
below, and further details can be found elsewhere [37, 39, 40].

The main idea of the Sobol’ method is the decomposition of the
model output into summands of increasing dimensionality.
Specifically, a model output y can be decomposed as follows:

y(θ̄) = y0 + ∑
i = 1

np

yi(θ̄i) + ∑
i = 1

np − 1

∑
j > i

np

yi, j(θ̄i, θ̄ j)

+ ∑
i = 1

np − s + 1
… ∑

j > i + s − 2

np

yi, …, j θ̄i, …, θ̄ j + y1, …, np(θ̄)
(14)

where s, where 3 ≤ s ≤ np, is the number of parameters involved in
a summand yi, …, j θ̄i, …, θ̄ j , and y0 is defined as follows:

y0 = ∫ y(θ̄)dθ̄ (15)

Here, we assume y0 is a constant and the integrals of every
summand over any of its variables are zero, i.e.

∫ yi1, …, ir(θ̄i1, …, θ̄ir)dθ̄k = 0

∀k = i1, …, ir, 1 ≤ i1 < ⋯ < ir ≤ np

(16)

in order for the decomposition of y as (14) to hold [22, 37].
Then, by assuming that y is square integrable, its variance can

be expressed as follows:

V = ∫ y2(θ̄) − y0
2 dθ̄

= ∫ ∑
i = 1

np

yi
2(θ̄i) + ∑

i = 1

np − 1

∑
j > i

np

yi, j
2 (θ̄i, θ̄ j) + ⋯ + y1, …, np

2 (θ̄) dθ̄

= ∑
i = 1

np

Vi + ∑
i = 1

np − 1

∑
j > i

np

Vi, j + ∑
i = 1

np − s + 1
⋯ ∑

j > i + s − 2

np

Vi, …, j + V1, …, np

(17)

where V is the total variance of a model output y, and Vi, …, j is the
partial variance of the output due to the parameters θ̄i, …, θ̄ j.

Based on the V and Vi, …, j, the importance of a parameter, θ̄ j,
can be quantified by the first order and total sensitivity indices,
which are defined as follows [41]:

SS j = V j
V

ST j = 1
V V j + ∑

k ≠ j

np

V j, k + ⋯ + V1, …, np = 1
V (V − V ∼ j)

(18)

where SS j and ST j are the first-order and total sensitivity indices,
respectively, of the model parameter θ̄ j, V j is the partial variance of
a model output due to θ̄ j, and V ∼ j is the partial variance of a model
output due to join effects of the model parameters θ̄ except θ̄ j.
Here, SS j refers to the main effect of the parameter θ̄ j, and ST j

measures the importance of a parameter θ̄ j by taking into account
the direct effect SS j  as well as its joint effects with other
parameters. It should be noted that the difference between ST j and
SS j indicates how much θ̄ j is involved in interactions with other
parameters in terms of changing the model output [40].

In this study, a Monte Carlo method proposed by Homma and
Saltelli [41] is implemented to estimate the total sensitivity indices.
First of all, two matrices (A and B ∈ ℝNint × np) are generated
randomly from the parameter space via a Sobol' sequence to
produce parameter samples without overlapping [37, 42]. Here,
Nint is the sample size for the Monte Carlo estimation, which is
typically around a few hundreds to thousands [39]. Then, another
set of matrices C j ∈ ℝNint × np, ∀ j = 1, …, np, can be defined for
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every parameter, θ̄ j, by replacing the jth column of B with the jth
column of A. Next, the model outputs can be computed for all the
sampled parameter values in the matrices A, B, and C j. Finally, the
first-order and total sensitivity indices in (18) can be approximated
as follows:

SS j(us; tl) ≃
1/Nint∑i = 1

Nint y(us, a(i); tl) ⋅ y(us, cj
(i); tl) − f 0

2(us; tl)
1/Nint∑i = 1

Nint (y(us, a(i); tl)
2 − f 0

2(us, tl)

ST j(us; tl) ≃ 1 −
1/Nint∑i = 1

Nint y(us, b(i); tl) ⋅ y(us, cj
(i); tl) − f 0

2(us; tl)
1/Nint∑i = 1

Nint (y(us, a(i); tl)
2 − f 0

2(us, tl)

(19)

where a(i), b(i), and cj
(i) are ith rows of A, B, and C j, respectively,

and f 0
2(us, tl) is defined as follows:

f 0
2(us, tl) = 1

Nint
∑
i = 1

Nint

yi(us, a(i); tl)
2

(20)

Since the proposed model (2) has ny outputs obtained under nu
values for u sampled at Nt time instants, a lumped sensitivity
metric for the total sensitivity index is defined to ease the
parameter selection process:

STi j = 1
Nc

∑
s = 1

nu

∑
l = 1

Nt

Si, T j(us; tl) (21)

where STi j is the sensitivity of yi with respect to θ̄ j, which will be
used to select the most influential parameters, and Si, T j is the total
sensitivity index, ST j, computed for an output, yi, i = 1, …, ny.
Similarly, a lumped sensitivity metric for the first-order sensitivity
index is defined as follows:

SSi j = 1
Nc

∑
s = 1

nu

∑
l = 1

Nt

Si, S j(us; tl) (22)

where SSi j is the sensitivity of yi with respect to θ̄ j, which will be
used to select the most influential parameters, and Si, S j is the first-
order sensitivity index, SS j, computed for an output, yi, i = 1, …, ny.

Based on the values of STi j and SSi j, a set of identifiable
parameters, Θ ∈ ℝnps, where nps ≤ np, can be identified from θ̄.
And the final parameter estimation problem (4) is reformulated as
follows:

min
Θ1, …, Θnσ

∑
s = 1

nu

∑
i = 1

ny

∑
l = 1

Nt

yi(us; tl) − ȳi
s(tl)

2
(23a)

s . t . ẋ = f x, Θσ(tl), us; tl , x(0) = x0 (23b)

y = g x, Θσ(tl), us; tl (23c)

σ(tl) = k if tl ∈ T k, k = {1, …, nσ} (23d)

θlb ≤ Θσ(tl) ≤ θub (23e)

The computational time required for the SA depends on the sample
size, the number of parameters, and the time for running a model.
For the Morris and Sobol’ methods, the number of simulations
required to compute the sensitivity indices are nθ × Nm × nu and
np + 2 Nint × nu, respectively, which shows that the computational

cost will increase linearly. Moreover, the computational cost of
solving (23) depends on the time required for running a model, the
number of the model parameters, the number of the temporal
subdomains, and the number of different initial guesses to solve
(23).

5 Application to NF-κB signalling
In this section, we applied the proposed methodology to model the
NF-κB signalling dynamics in RAW murine macrophages induced
by LPS in the presence of BFA.

5.1 NF-κB signalling pathway

NF-κB is an important regulator of inflammation and immune
responses in various immune cells such as macrophages [43].
Under homeostatic conditions, the activity of NF-κB is minimal
because it is sequestered by isomers of IκB (inhibitors of κB)
proteins such as IκB-α, -β and -ϵ [43]. In the classical NF-κB
activation pathway, an external stimulus (e.g. LPS) activates IκB
kinase (IKK), which leads to degradation of IκB and thus activates
NF-κB [43]. Then, the derepressed NF-κB protein translocates to
the nucleus and upregulates the expression of various target genes
such as IκB, and pro-inflammatory cytokines such as TNFα, which
propagates the inflammatory signals to adjacent cells and tissues
[44, 45].

As a component in gram-negative bacteria's outer membranes,
LPS is a potent activator of the NF-κB signalling pathway in
macrophages through Toll-like receptor 4 (TLR4) [46]. By forming
a complex with LPS, TLR4 and its accessory molecules activate
NF-κB signalling through the classical activation pathway as
described earlier. In contrast, BFA activates NF-κB through an
alternate signalling pathway [47, 48]. Since exposure to BFA leads
to the Golgi apparatus fusing with the endoplasmic reticulum (ER),
normal intracellular trafficking is disrupted, which leads to the
accumulation of proteins in the ER. This, in turn, initiates the ER-
stress pathway and leads to the activation of NF-κB [21, 47, 49].

Although several mechanisms have been proposed to explain
how NF-κB activity is induced by the ER-stress pathway,
mechanistic details have not been fully elucidated yet due to the
complexity of the ER-stress signalling pathway [50, 51].
Furthermore, recent studies demonstrated that interactions between
the ER-stress and NF-κB signalling pathways are bidirectional,
which further complicates the system analysis (see [48] and
references therein). To unravel the complexity of the ER-stress
signalling pathway, several computational models [50–52] have
been proposed; however, they have not been validated thoroughly
under various physiological conditions, whereas the NF-κB
signalling pathway model has been continuously tested and
improved since the early 2000s [53–55]. Furthermore, few studies
have attempted to model the crosstalk between the ER-stress and
NF-κB signalling pathways. Consequently, this study chose to use
the time-varying model to represent the LPS-induced NF-κB
signalling dynamics in the presence of BFA because the detailed
model structure is still not known fully. The proposed model can be
used to design future experiments that can help elucidate the
underlying molecular interactions in future studies.

Motivated by the above considerations, we considered the LPS-
induced NF-κB signalling model as the well-characterised model
(1) while the model for the NF-κB signalling dynamics induced by
LPS in the presence of BFA is considered as the unknown high-
fidelity model, which would be approximated by the LPS-induced
signalling model with time-varying parameters.

5.2 Dynamic model of LPS-induced NF-κB signalling

The schematic diagram for the NF-κB signalling pathway and the
TNF-α production induced by LPS in the presence of BFA is
shown in Fig. 1. 

The starting point of the model is the LPS-induced NF-κB
signalling model developed by Hoffmann et al. [56, 58], where the
LPS-NF-κB signalling pathway model was adopted from Caldwell
et al. [58], and a model describing the regulation of the TNF-α
production by internalised LPS-TLR4 complexes was adopted
from Junkin et al. [56]. Lee et al. [21] further updated the model by
incorporating a new role for A20 protein as an inhibitor of LPS-
induced signalling. Also, the well-known effect of a BFA addition
on the collapse of Golgi apparatus was taken into account by
introducing time-dependent decays in rate constants associated
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with protein secretion and protein translocation to the membrane
[21]. The model outputs are the dynamics of IκBα protein and
intracellular TNF α-protein (i.e. ny = 2), and the updated model
contains 49 states and 146 parameters (i.e. nx = 49 and nθ = 146,
and see [21] for the details on the model).

The datasets obtained through flow cytometry in our previous
study [21] were used to perform the temporal clustering as well as
the parameter estimation required in the proposed methodology. As
discussed earlier, the datasets obtained through flow cytometry are
relative data, which will not give the measurements in absolute

concentrations, so the fold changes were computed based on (4).
Therefore, the model output functions y = g x, θσ(t), u; t  are also
defined as the fold change of the two states with respect to their
initial conditions as follows:

y1(tl) = IκBαtotal(tl)
IκBαtotal(t1)

y2(tl) = TNFα(tl)
TNFα(t1)

(24)

y1(tl) and y2(tl) are the predicted fold changes of IκBα and
intracellular TNFα concentrations, respectively, at the time tl, and
TNFα(tl) and IκBαtotal(tl) are the predicted IκBα and intracellular
TNF-α concentrations, respectively, by the model.

5.3 Temporal clustering

In the flow cytometry experiments described in our previous study
[21], the sampling time instants were 0, 10, 20, 30, 60, 120, 240,
360 min (i.e. Nt = 8) after LPS and BFA were added to the cell
culture. Two LPS concentrations (10 and 250 ng/ml) and one
concentration of BFA (1 µg/ml) were used to obtain the
experimental data sets (i.e. nu = 2). Then, the temporal clustering
methodology described in the preceding section was implemented
to partition the measurement data sets to determine the optimal
value of nσ as well as the corresponding temporal subdomains,
T i, ∀i = 1, …, nσ. In this work, the k-means clustering algorithm
was used via kmeans function available in MATLAB, and multiple
initial conditions were used to initialise the k-means clustering for
each number of subdomains.

Since the value of Nt is eight, the maximum number of possible
subdomains is eight in this work. Fig. 2 shows the changes in the
intra- and inter-cluster error sums (Λ and Γ, respectively) for all
possible number of subdomains. As expected, the value of Λ
decreases with the number of subdomains, while the value of Γ
increases. Based on these two values, the cluster balance (ϵ)
defined in (9) can be computed for each number of subdomains and
plotted in Fig. 3. As described earlier, a turning point in Fig. 3 is
used to determine the optimal value of nσ, which is found to be
three. 

Based on nσ = 3, each temporal subdomain can be determined
by clustering the experimental datasets into three temporal
subdomains, which are shown in Fig. 4. Specifically, the first,
second and third subdomains contain the data points spanning from
0 to 60 min, 120 min, and 240 to 360 min, respectively. Each
temporal subdomain can be interpreted to represent a different
phase of the NFκB signalling pathway induced by LPS in the
presence of BFA. The first subdomain shows the early phase of the
NF-κB signalling, where IκBα is quickly degraded while TNFα has
not been synthesised. The second subdomain corresponds to the
transition from the late phase of the LPS-induced NF-κB signalling
pathway, where the rate of TNF-α synthesis accelerates and the IκB
α is being re-synthesised, to the BFA-dominated signalling. The
last subdomain can be seen as BFA-induced NF-κB dynamics,
where the IκBα concentration is sustained at a low level due to the
inhibition of its translation by the BFA [21]. 

5.4 SA result

The Morris and Sobol’ sensitivity methods were implemented as
described above, and all the sensitivity computation was performed
in parallel in the ADA supercomputing cluster at Texas A&M
University. The result of the SA via the Morris method is shown in
Table 1. For each parameter, six different values were randomly
sampled from its parameter domain ranging from 10 to 1000% of
its nominal value, and the average sensitivity of each parameter
with respect to the two outputs was computed (13). Table 1 only
lists the parameters whose sensitivity measures were at least 1% of
that of the most important parameter. Interestingly enough,
parameters whose normalised S j values are at least 0.1 are the ones
directly involved in the TNF-α dynamics such as synthesis rate

Fig. 1  Schematic diagram for the LPS-induced NFκB signalling pathway
(adapted from [21]). Due to space limitation, TRIF-dependent regulation of
TNF-α production [56] and the feedback regulation between NF-κB and Iκ
B-β and -ϵ are not illustrated. Also, the NF-κB activation induced by TNF-
α-TNFR is not shown in details due to the limited space (see [57] for
details). Coloured arrows indicate the processes affected by the addition of
BFA (see text for details)

 

Fig. 2  Values of the intra-cluster error sum (Λ) and inter-cluster error sum
(Γ) with different number of subdomains (nσ). Each error sum is normalised
by its maximum value

 

Fig. 3  Change in the cluster balance value (ϵ) with the change in the
number of subdomains (nσ). The cluster balance value is normalised by its
maximum value
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constants and degradation rate constants of TNF-α transcripts and
proteins. On the other hand, the parameters involved in the IκBα
dynamics appear to be less important. This is probably because of
the intrinsic property of the NF-κB reaction network. Specifically,
the existence of the feedback loop formed between NF-κB and IκB
proteins, where the activation of one will be inhibited by the other
[5], ensures that an abrupt change in a reaction rate relevant to IκB
α is less likely to result in an abrupt change in the overall IκBα
dynamics. 

Out of 22 parameters selected from the Morris method, the first
11 parameters were further analysed by the subsequent SA through
the Sobol’ method [38]. Here, the parameters after the 11th
parameters were not further analysed as their significance became
negligible since the cumulative sum of the normalised S j value
does not increase >1% after the eleventh parameter [34]. Same as
the Morris method, the values of these eleven parameters were
varied from 10 to 1000% of their nominal values, and the sample
size for the integration approximation Nint  was 5000. It should be
noted that two different sensitivity indices were computed for each
parameter with respect to each output separately through the Sobol’
method, and parameters that are important to at least one output
were selected for the subsequent parameter estimation.

Based on the values of STi j and SSi j computed with respect to
the IκBα dynamics (21) and (22), the top four parameters were
selected for the subsequent estimation since the values of both
sensitivity measures were one order of magnitude larger than the
remaining ones (Table 2). With respect to the TNF-α dynamics, the
STi j values are relatively large while the SSi j values are quite small
for all the parameters. This means that the parameters are highly
dependent on each other in terms of making changes in the TNF-α
dynamics while one parameter has a little effect in changing the
TNF-α dynamics. Therefore, only one parameter, the Hill

coefficient for TNF-α transcription, was selected for the parameter
estimation as it has the highest sensitivity measures. In summary,
five parameters were selected to vary with time, and their values in
each temporal subdomain were determined in the following
parameter estimation step (Table 3). 

5.5 Parameter estimation

With the results from the temporal clustering and SA, the
parameter estimation problem (23) was solved to obtain the values
of these parameters in each temporal subdomain (Table 3). Here,
the model evaluation and the parameter estimation were performed
via MATLAB built-in functions, ode15s and fmincon, and the
multistart function available in MATLAB was used to solve the
optimisation problem multiple times with different initial values.

Figs. 5 and 6 show the predicted dynamics of TNF-α and IκBα
after the parameter estimation. In order to show the improvement
of the prediction accuracy, the predicted dynamics after the
parameter estimation were compared with the experimental
measurements [21] and those predicted before the estimation. The
prediction accuracy for the dynamics of the proteins was
significantly improved. In particular, the model was able to track
the TNF-α dynamics very accurately under both conditions
(Fig. 5). Although there was some discrepancy between the model
prediction and the experimental measurements for the IκBα
dynamics under 10 ng/ml LPS, the overall prediction was
improved. 

In order to further validate the resulted model, the prediction
accuracy of the resulted model was assessed with the experimental
dataset, which was not used to train the model. In Fig. 7, the TNF-
α and IκBα dynamics predicted by the model under 50 ng/ml LPS
in the presence of BFA were plotted and compared with the
corresponding experimental dataset. As shown in Fig. 7, the
resultant model was able to accurately predict the TNF-α and IκBα

Fig. 4  Temporal subdomains of the measured (a) IκBα and (b) TNF-α
dynamics from [21]. The data points in black diamonds and red circles
were measured under 10 and 250 ng/ml of LPS, respectively, in the
presence of 1 μg/ml of BFA, and three different temporal subdomains are
separated by blue dash lines

 

Table 1 Result of Morris SA
Rank Parameter Normalised S j

1 Hill coefficient for TNF-α transcription 1.00
2 constant for TRIF∗-induced 0.99

TNF-α production enhancement (Ka0)
3 constant for TRIF∗-induced 0.29

TNF-α production enhancement (Ka)
4 TNF-α protein synthesis rate constant 0.28
5 TNF-α nascent mRNA processing rate

constant
0.16

6 TNF-α protein degradation rate constant 0.12
7 maximum degradation rate constant for TNF-

α transcript
0.089

8 IKK∗-mediated degradation rate constant for I
κBα in NF-κB-IκBα

0.081

9 IKKK∗-mediated IKK activation rate constant 0.053
10 constitutive IKKK activation rate constant 0.032
11 IκBα transcript degradation rate constant 0.032
12 IκBα translation rate constant 0.025
13 IκBα degradation rate in nucleus 0.023
14 IκBα degradation rate in cytoplasm 0.023
15 EC50 constant for TNF-α transcription 0.022
16 constitutive IκBα transcription rate constant 0.021
17 hill coefficient for IκBα transcription 0.021
18 NF-κB-induced TNF-α transcription rate

constant
0.015

19 constitutive IKKK deactivation rate constant 0.012
20 rate constant for IκBα and NF-κB association

in nucleus
0.011

21 constitutive rate constant for IKK inactivation
(IKK→IKKi)

0.011

22 constitutive rate constant for IKK activation 0.010
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dynamics reasonably well even though the 50 ng/ml dataset was
not used in the model calibration, which demonstrated the
robustness of the calibrated model and thus validates the proposed
methodology. 

Lastly, the resulted model was compared with our previous
model, which partially incorporated the ER-stress signalling
pathway through further experimentation and literature survey.
Figs. 8 and 9 compare the model performance of these two models
by comparing their temporal dynamics under two different LPS
concentrations. In general, both models were similar in terms of
reproducing the IκBα dynamics while the model developed in this
work predicted slightly more accurately in terms of root-mean-
squares (RMS) of the parameter estimation: the normalised RMS
of the parameter estimation for the presented model is 1.75 while
the RMS value for the previous model is 2.29, which showed the
improved model accuracy by implementing the proposed approach.
It should be noted that the development of the previous model went

through the iterative implementation of experiments and
modelling, which can be time-consuming. However, through the
proposed approach, one can get a model with a reasonable
prediction accuracy in a shorter amount of time. 

Since intracellular signalling pathways regulate various cellular
behaviours, their dynamics and outcomes bear great importance for
studying and predicting the tissue-level responses in vivo. One
important factor dictating the signalling pathways is different
stimuli that initiate the pathways. As discussed in the paper, there
can be multiple stimuli for one signalling pathway, and the number
of stimuli is likely to be higher for those with highly complex
network structures. For example, it has been found that there are
around 100 stimuli that can trigger the NF-κB signalling pathway.
Moreover, the dynamics of one signalling pathway induced by
different stimuli can be very different since these stimuli activate
the intracellular signalling pathway through different mechanisms.
Again, with the NF-κB signalling pathway as an example, TNF-α
and LPS, two well-known stimuli of the NF-κB signalling pathway,
activate the signalling pathway through two different molecules
(TNF-α receptor and TLR4, respectively), resulting in the
distinctive signalling dynamics.

Therefore, the comprehensive characterisation of an
intracellular signalling pathway is non-trivial since each stimulus
of the signalling pathway has its own distinct activation mechanism
and corresponding dynamics. Under this circumstance, a model-
based approach can be implemented to facilitate the study.
However, this model-based approach is often feasible only for a
handful of well-characterised stimuli such as TNF-α and LPS for
the NF-κB signalling pathway since the underlying signalling
mechanisms induced by these stimuli are relatively well studied.
Motivated by the above considerations, the current study proposes
a methodology to construct a data-driven mechanistic model for

Table 2 Result of SA by the Sobol’ method
Rank Parameter STi j SSi j

With respect to IκBα
1 IKK∗-mediated degradation rate constant for IκBα

in NFκB-IκBα
0.49 0.30

2 IKKK∗-mediated IKK activation rate constant 0.36 0.19
3 constitutive IKKK activation rate constant 0.31 0.10
4 IκBα transcript degradation rate constant 0.30 0.15
5 Ka0 0.075 0.02
6 TNF-α protein degradation rate constant 0.075 0.02
7 maximum degradation rate constant for TNF-α

transcript
0.075 0.02

8 TNF-α nascent mRNA processing rate constant 0.075 0.02
9 TNF-α protein synthesis rate constant 0.075 0.02
10 Hill coefficient for TNF-α transcription 0.075 0.02
11 Ka 0.075 0.02
With respect to TNF-α
1 Hill coefficient for TNF-α transcription 0.95 0.08
2 Ka 0.85 0.03
3 TNF-α nascent mRNA processing rate constant 0.79 0.00
4 IKK∗-mediated degradation rate constant for IκBα

in NFκB-IκBα complexes
0.78 0.00

5 Ka0 0.76 0.01
6 maximum degradation rate constant for TNF-α

transcript
0.46 0.00

7 TNF-α protein degradation rate constant 0.43 0.01
8 Constitutive IKKK activation rate constant 0.41 0.00
9 IκBα transcript degradation rate constant 0.25 0.00
10 IKKK∗-mediated IKK activation rate constant 0.22 0.00
11 TNF-α protein synthesis rate constant 0.21 0.00

 

Table 3 Result of the parameter estimation
Parameter Parameter values in each

temporal subdomain
T 1 T 2 T 3

IKK∗-mediated degradation rate
constant for IκBα in NFκB-IκB
α, /(μM⋅min)

2.59 0.23 0.04

IKKK∗-mediated IKK activation
rate constant, /(μM⋅min)

5200 52 4230

constitutive IKKK activation rate
constant, /min

5× 10−6 1.3× 10−7 4.9× 10−6

IκBα transcript degradation rate
constant, /min

0.33 0.18 0.12

Hill coefficient for TNF-α
transcription

3.73 1.96 2.02

 

Fig. 5  Result of parameter estimation. The predicted dynamics of TNFα
before (dash line) and after (solid line) the parameter estimation were
compared with the experimental observations under
(a) 10 ng/ml and, (b) 250 ng/ml of LPS in the presence of BFA
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those less-studied stimuli, whose corresponding signalling
dynamics are less characterised. This is feasible since the
mechanisms of the signalling pathway induced by different stimuli
overlap with each other. For example, the NF-κB signalling
pathway network induced by TNF-α and LPS will converge at the
IKK level, which frees the NF-κB proteins from their inhibitors.
Therefore, for a new or less-studied stimulus of an intracellular
signalling pathway, its corresponding signalling dynamics can be
described by modifying the nominal model into a time-varying one
as discussed in the paper. Then, the constructed model can be used
for the optimal experimental design to enhance our understanding.

It should be noted that the proposed methodology is a semi-
data-driven approach, where the model construction is guided by
both the available experimental data and the mechanistic model.
Specifically, based on the experimental data, the temporal profiles
of the model parameters are inferred to complement the model
mismatch due to the use of a nominal model. As a result, the
resultant model can provide relatively accurate predictions in spite
of the incomplete knowledge of the underlying system. At the same
time, the use of the mechanistic model allows the resultant model
to be used in the detailed analysis of the underlying mechanisms,
which is difficult to be performed through a data-driven model.

Additionally, the proposed time-varying model was able to
robustly predict the dynamics of IκBα and TNF-α proteins, which
are the core components in the NF-κB signalling pathway, under
the various conditions although the detailed ER-stress signalling
mechanisms were not incorporated into the model. Due to the
accuracy and robustness of the model, it can be used in future
studies to design optimal experiments to enhance our
understandings on how BFA can activate the NF-κB signalling
pathway.

Although the proposed methodology can be used to obtain a
more accurate and predictive model as described above, it has the
following limitations. First, the increase in the number of
parameters to be estimated due to the temporal partitioning the
parameters may exacerbate the unidentifiability issue in the model
calibration. This can be a severe issue since a signalling pathway
model is often over-parameterised while the available experimental
measurements are limited. Second, the identified model may not
reflect the true mechanisms associated with the less-studied
stimulus. Specifically, the proposed method relies on the global SA
to identify which parameters are time-varying, but it does not
consider any biological significance while selecting the parameters.
Therefore, the identified temporal profiles of the parameters may
not have the biological relevance, which will constrain the process
analysis based on the resultant model. It should be noted that this
limitation can be mitigated by adding additional constraints into the
minimisation problem (23) so that the resultant parameters retain
their biological significance.

6 Conclusion
In this work, we presented a methodology for constructing a time-
varying model for an intracellular signalling pathway when its
reaction network is not fully known a priori. First, experimental
data were clustered through the k-mean clustering algorithm to
determine the temporal subdomains for the model parameters,
where the parameters have different values in each temporal
subdomain. Next, the global SA, which uses the Morris and Sobol’
methods in sequence, was carried out to identify the most
important parameters with respect to the model outputs. And only

Fig. 6  Result of parameter estimation. The predicted dynamics of IκBα
before (dash line) and after (solid line) the parameter estimation were
compared with the experimental observations under
(a) 10 ng/ml and (b) 250 ng/ml of LPS in the presence of BFA

 

Fig. 7  Validation of the parameter estimation results with an independent
data set, which was not used in the model calibration. The predicted
dynamics of
(a) TNFα and, (b) IκBα before (dash line) and after (solid line) the parameter
estimation were compared with the experimental observations under 50 ng/ml of LPS
in the presence of BFA
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these parameters were determined to be time-varying while the
remaining parameters were fixed at their nominal values. Finally,
the least-squares problem was solved to estimate the values of five
parameters in each temporal subdomain to construct an accurate
time-varying model. The proposed methodology was implemented
to model the NF-κB signalling pathway induced by LPS in the
presence of BFA to predict the dynamics of IκBα and TNF-α
proteins. The prediction accuracy of the resulted model was
comparable to that of a more detailed model proposed by Lee et al.
[21], which demonstrated the performance of the proposed
methodology. In summary, the proposed methodology speeds up
the overall model development process without losing the
prediction accuracy by avoiding the time-consuming procedure of
experimentation and literature survey for developing a high-fidelity
model.
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