Gongora et al. BMC Medical Imaging (2016) 16:59
DOI 10.1186/512880-016-0163-7

Characterization of ten white matter tracts

BMC Medical Imaging

@ CrossMark

in a representative sample of Cuban

population

D. Géngora?’, M. Dominguez® and M. A. Bobes'

Abstract

Background: The diffusion tensor imaging technique (DTI) combined with tractography methods, has achieved the
tridimensional reconstruction of white matter tracts in the brain. It allows their characterization in vivo in a non-
invasive way. However, one of the largest sources of variability originates from the location of regions of interest, is
therefore necessary schemes which make it possible to establish a protocol to be insensitive to variations in
drawing thereof. The purpose of this paper is to stablish a reliable protocol to reconstruct ten prominent tracts of
white matter and characterize them according to volume, fractional anisotropy and mean diffusivity. Also we
explored the relationship among these factors with gender and hemispheric symmetry.

Methods: This study aims to characterize ten prominent tracts of white matter in a representative sample of Cuban
population using this technique, including 84 healthy subjects. Diffusion tensors and subsequently fractional anisotropy
and mean diffusivity maps were calculated from each subject’s DTl scans. The trajectory of ten brain tracts was
estimated by using deterministic tractography methods of fiber tracking. In such tracts, the volume, the FA and MD
were calculated, creating a reference for their study in the Cuban population. The interactions between these variables
with age, cerebral hemispheres and gender factors were explored using Repeated Measure Analysis of Variance.

Results: The volume values showed that a most part of tracts have bigger volume in left hemisphere. Also, the data
showed bigger values of MD for males than females in all the tracts, an inverse behavior than FA values.

Conclusions: This work showed that is possible reconstruct white matter tracts using a unique region of interest
scheme defined from standard to native space. Also, this study indicates differing developmental trajectories in white
matter for males and females and the importance of taking gender into account in developmental DTl studies and in

underlie gender-related cognitive differences.
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Background

The ability to identify and characterize the nerve fiber
tracts that connect nodes (functional areas) is crucial to
advance the understanding of brain function in both
normal and pathological conditions. Nuclear Magnetic
Resonance conventional techniques are able to distinguish
specific white matter tracts only in small and restricted
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areas of the brain [1, 2]. However, using Diffusion
Tensor Images (DTI) and processing techniques devel-
oped for the layout of the fibers, it has been possible to
delineate and reconstruct three-dimensional fiber tracts
of white matter, with a good agreement with anatomical
data [3, 4]. This procedure, known as tractography, has
opened a new window on the important topic of brain
connectivity [5].

Based on DTI and applying a deterministic method
dubbed Fiber Assignment by Continuous Tracking
(FACT), the tractography allows the approximated re-
construction of white matter fibers, advancing from
voxel by voxel, according to an estimate of the local
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orientation of nerve fibers [4]. Here, the aforementioned
estimation of the fiber path stops when it reaches the
outer volume limits, a region where fractional anisotropy
or some index of inter-voxel coherence is less than cer-
tain threshold values for which the uncertainty is consid-
ered high by taking a direction to follow, or up to a pre-
selected region of interest [6].

The FACT method allows a good characterization of
white matter tracts. In healthy subjects, this
characterization is required to permit patterns analysis
of brain connectivity, and to make comparisons with
pathological conditions. The main white matter tracts
have been successfully reconstructed in healthy subjects.
However, it was used small samples (less than 30 sub-
jects), mostly Caucasian populations without emphasis
in variables that characterize the peculiarities of each
tract [7-9].

In tractography, one of the largest sources of variabil-
ity originates from the location of regions of interest
(ROIs). ROIs are defined a priori as anatomical regions
from which identify specific tracts [10]. It is therefore
necessary ROIs schemes which make it possible to estab-
lish a protocol to be insensitive to variations in drawing
thereof. This problem has been addressed in previous
studies that have defined a set of tract-specific ROIs
allowing the reproducible reconstruction of white matter
tracts [7-9].

Practical applications of tractography have unques-
tionable value, for example in case of neurosurgery,
where it provides guidance in preoperative planning
[11, 12]. In this regard, to establish and validate re-
construction procedures of trajectories of white mat-
ter tracts in humans, reproducible between subjects,
is crucial to allow an understandable use of this
technique.

Given this background and the fact that there are vari-
ations in brain anatomy in terms of factors such as
hemispheric symmetry, gender and studied population
[13], the purpose of this paper is to reconstruct ten
prominent tracts of white matter and characterize them
according to volume, Fractional Anisotropy (FA) and
Mean Diffusivity (MD). Also we explored the relation-
ship among these factors with gender and hemispheric
symmetry.

Methods

Sample

The sample included 84 healthy subjects who are part of
the Cuban Project of Human Brain Mapping. This sam-
ple was made up of randomly selected subjects of the
population of the municipality of La Lisa, Havana. This
population is considered representative in terms of eth-
nic and gender distribution of the Cuban population.
Participants were included in the study after reading,
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accepting and sign an informed consent, in accordance
with the ethical standards of the Declaration of Helsinki
[14], and the experimental protocols were approved by the
Ethics Committee of Cuban Neuroscience Center. A stat-
istical description of the sample is presented in Table 1.

The total sample consisted of right handed subjects
with an intelligence quotient (IQ) within the range re-
ported as normal. IQ was obtained for each subject
using the Spanish language version of the Wechsler
Adult Intelligence III Scale [15].

Each subject underwent an interview and medical
examination with Neurology and Psychiatry specialists,
in order to rule out any pathology of the nervous system
to invalidate their participation in the study. Neuro-
logical examination was performed following the proced-
ure described in guidelines published by the Department
of Health and Human Services U.S. in 2003. Mini-
International Psychiatric Interview was used for psy-
chiatric evaluation [16].

Acquisition of images

Using a scanner Siemens Symphony 1.5 T (Erlangen,
Germany) was acquired for each subject a T1 anatomical
image of high resolution 3D, and a standard scheme of
diffusion gradients. The T1 anatomical image was re-
corded with the following characteristics: 160 contiguous
sagittal slices 1 mm thick, field of view (FOV) =256 x
256 mm?, corresponding to a resolution in sagittal plane
of 1x1 mm? echo time (ET)=3.93 ms, repetition
time (RT)=3000 ms. Using a single echo planar im-
aging (EPI) sequence, twelve diffusion-weighted im-
ages were obtained (b=1200 s/mm?) and a reference
T2 weighted image (b0 image) with no diffusion
weighting (b=0 s/mm?). The acquisition parameters
were: FOV = 256 x 256 mm?, acquired matrix = 128 x 128,
corresponding to a resolution in the axial plane of 2 x 2
mm?, ET/RT =160/7000 ms. The slice number was
adapted to cover the whole brain with a slice thickness of
3 mm. The acquisition scheme was repeated 5 times to
average the corresponding images and thus improving the
signal/noise ratio.

In order to correct the distortions caused by magnetic
field inhomogeneities in the series of diffusion-weighted
images, phase and magnitude maps were obtained. The
parameters used were: voxel size of 3.5 mm; ET; =
7.71 ms, ET5 = 12.47 ms and RT = 672 ms.

Table 1 Statistical description of the sample

Subjects (n) School level® Age® Intelligence quotient®

Women 44 1244 +246 38.75+9.95 91.14+11.87
Men 40 1178 £244 31.00+897 90.72 £ 1144
Total 84 1212+£246 3506+ 1021 90.94 +11.60

®Mean values * standard deviation
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Processing diffusion weighted images

On b0 images was detected the presence of Gibbs ar-
tifacts around the ventricles. To correct these artifacts
a Hanning filter was applied to these images. Then,
Eddy currents correction was made by linear record-
ing of weighted images to b0. Using the images of
magnitude and phase, and Unwarping package of
SPM5 program (http://www fil.ion.ucl.ac.uk/spm/) the
effects of main magnetic field inhomogeneities were
corrected [17].

Estimation of the diffusion tensor and fiber tracking

The toolbox DTI & Fiber Tools v.3.0 [18] was utilized
to estimate at each voxel the six elements of the dif-
fusion tensor as formulated by Basser et al. [19].
After tensor diagonalization, three eigenvalues and
eigenvectors were obtained and calculated FA and
MD maps.

Three-dimensional reconstruction of the tracts was per-
formed using FACT, a deterministic tractography method
[4]. The parameters used in tracts reconstruction were for
the beginning of traced FA threshold = 0.15 and Trace =
0.0016, and as a stop criteria FA = 0.10, Trace = 0.002 and
maximum bending angle of 53.1 °.

The fiber tracking was performed in all brain voxels,
and fibers that penetrated the previously defined ROIs
were assigned to specific tracts associated with them.
ROIs were defined for the following tracts: anterior thal-
amic radiation (ATR), cingulate gyrus associated cingu-
lum (CGC), hippocampal gyrus associated cingulum
(CGH), cortico-spinal tract (CST), inferior fronto-
occipital fasciculus (IFOF), inferior longitudinal fascic-
ulus (ILF), superior longitudinal fasciculus (SLF), uncin-
ate fasciculus (UNC), forceps major (Fmj) and forceps
minor (Fmn). The resulting path of these tracts were
visually inspected and corrected in cases where neces-
sary, by the exclusion of fibers that do not belongs ana-
tomically to tracts.

Definition of ROIs in standard space and space
transformation procedure to each subject anatomical
space

Definition of ROIs for studied tracts was made by repli-
cating a set of predefined ROI by Mori et al. [8] that was
employed successfully in subsequent work [7, 9, 20, 21].
These ROIs were drawn using the program MRIcron
(http://www.mccauslandcenter.sc.edu/crnl/mricron/) on
a reference anatomical image with spatial resolution of
1x1x1 mm® in stereotactic space of the Montreal
Neurological Institute (MNI) [22]. The ROIs were then
transformed to each individual brain space automatic-
ally, using a programmed routine in MatLab v.7.7
(MathWorks, Inc.).
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Parameter estimation

Voxels that conformed each one of the estimated tracts
were extracted. The volume of each tract was estimated
by multiplication of the total number of voxels of each
tract by a voxel volume (0.012 cm?®). The FA and MD
was obtained as an estimate of the average in each tract,
which resulted from the superposition of the specific co-
ordinates for each tract on the corresponding maps of
FA and MD.

Statistical analysis

The tracts were explored according to volume, FA and
MD values using the Statistica software v.10.0 (StatSoft,
Inc.) and was considered a level of significance of o = 0.05
in all cases. The differences between hemispheres and
gender were assessed using the General Lineal Model
(GLM) for Repeated Measure Analysis of Variance
(rmANOVA), considering the factors Gender, Age,
Tracts and Hemisphere; the last two factors were
used as within effects, Gender as categorical predictor
and Age as continuous predictor. A Greenhouse and
Geisser [23] correction was applied. Planned compari-
sons were performed subsequently by specific con-
trasts. The inter-hemispheric tracts (Fmj and Fmn)
were excluded from hemispheric asymmetries analysis.

Results

Reconstruction of the tracts of interest

The reconstruction of the tracts of interest was possible
using the deterministic method FACT and ROIs ob-
tained for each subject by the transformation proceeding
of reconstruction of the trajectory proposed for ten
tracts of interest in each of the 84 subjects enrolled in
the study. These tracts were classified for description in
four functional categories: brainstem fibers and projec-
tion, association fibers, tracts of the limbic system and
commissural fibers (See Additional file 1).

Characterization of reconstructed tracts

White matter tracts were characterized anatomically
estimating the volume, FA and MD for each tract.
The mean values in each tract are presented in
Table 2. The average volume of studied tracts ranged
from 5 to 38 c¢m® in correspondence with the ana-
tomical characteristics of each one. The FA values in
the sample ranged from 0.34 to 0.58. The MD, mean-
while, it was distributed in a range of values from
0.54x107% to 0.7 x 10>mm?>s ™.

Gender differences and hemispheric asymmetries

In this paper we assessed if volume, FA and MD values
had the same statistical behavior regarding hemisphere
and gender using the GLM for rmANOVA, also the age
was used as continuous predictor. However, no effect of
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Table 2 Statistical description of Volume, FA and MD in the sample
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Volume (cm?)? FA? MD (x10>mm?s™")?
Anterior thalamic radiation (ATR) Left 16.18 £ 6.04 044 +0.07 063+0.14
Right 11.93+443 048 +0.08 059+0.15
Cingulate gyrus associated cingulum (CGQ) Left 6.62 +3.00 042 +0.07 0.58+0.16
Right 542+297 040 £0.05 0.60+0.14
Hippocampal gyrus associated cingulum (CGH) Left 569+3.11 0.36+0.09 068+021
Right 6.52+430 035+0.08 070£0.19
Cortico-spinal tract (CST) Left 593 +3.39 0.56 +0.08 064 +0.15
Right 513+£3.07 0.58+0.10 062+0.18
Forceps major (Fmj) 2298 +989 0.52 +0.06 061+0.16
Forceps minor (Fmn) 38.27 +£10.90 045 +0.07 062+0.17
Inferior fronto-occipital fasciculus (IFOF) Left 23.88+£859 0.48 £0.09 058+0.16
Right 2696 +8.18 045 +0.07 060+0.15
Inferior longitudinal fasciculus (ILF) Left 1259+ 554 047 +0.09 059+0.17
Right 9.97 £4.57 046 £0.09 0.60£0.15
Superior longitudinal fasciculus (SLF) Left 16.87 +5.79 047 +0.09 0.54+0.16
Right 1240+6.22 046+ 0.08 055+0.15
Uncinate fasciculus (UNC) Left 781+337 037 +£0.08 062+0.17
Right 711£374 038+0.07 063+0.17

“Mean values * standard deviation

age was found in the analysis. Subsequently, multiple
comparisons were performed across specific contrasts of
significant parameters in the model.

Volume

The GLM Repeated Measure ANOVA using Tracts
volume as repeated measures, Gender as categorical
predictor and Age as continuous predictor showed
that exist a main effect of Tracts volume (F = 26.40,
df=17, p<0.001, € = 0.425) and Gender (F=11.98, df=1,
p =0.001) (Fig. 1). The double interaction Tracts x Gender
was significant (F=5.929, df=17, p<0.001, € =0.425).
The planned comparison analysis showed that the volume
in female are significant larger than males for left ATR
(F(1,81) =22.366; p <0.001), right ATR (F(1,81) =7.958;
p =0.006), right CGH (F(1,81) =5.609; p =0.020), Fmj
(F(1,81) = 21.654; p<0.001) and Fmn (F(1,81) = 12.896;
p <0.001). The remaining tracts had larger volumes in
females than males with no significant differences,
with the exception of right CST and right UNC which
presented larger volume for males (Fig. 1).

Excluding the commissural tracts, Fmj and Fmn,
hemispheric asymmetries in volume were assessed by
GLM Repeated Measure ANOVA using Tracts volume
and Hemisphere as repeated measures, Gender as cat-
egorical predictor and Age as continuous predictor,
showed that exist a main effect of Tracts (F=19.69,
df=7, p<0.001, £¢=0.618) and Hemisphere (F=11.9,

df=1, p<0.001). The double interaction Tracts x
Hemisphere (F=2.041, df=7, p<0.05) were signifi-
cant. Planned comparison showed that the volume in
the left hemisphere is larger than the right in both genders
for the following tracts: ATR (F(1,81) = 52.461; p < 0.001),
CGC (F(1,81) =15.28; p<0.001), CST (F(1,81) =4.608;
p=0.035), ILF (F(1,81)=18.968; p<0,001) and SLF
(F(1,81) = 34.558; p <0.001).0On the contrary, the volume
in the right hemisphere was larger in CGH (F(1,81) =
5.624, p = 0.02) and the IFOF (F(1,81) = 12.377; p < 0,001).
No significant differences between hemispheres in the vol-
ume of UNC were founded.

Fractional anisotropy

The GLM Repeated Measure ANOVA using FA values
(of each tract) as repeated measures, Gender as categor-
ical predictor and Age as continuous predictor (Fig. 2)
showed that exist a main effect of FA values (F = 10.489,
df =17, p<0.001, € = 0.562) and Gender (F=47.31, df=1,
p<0.001), with a significant interaction FA values x
Gender (F=4.15, df=17, p<0.001, £ =0.569). The data
showed bigger values of FA for females than males in all
the tracts. By planned comparison analysis were found
significant differences for left ATR (F(1,80) =39.628;
p<0.001) and right ATR (F(1,80) =33.143, p <0.001),
left CGC (F(1,80) =38.909; p <0.001) and right CGC
(F(1,80) = 24.015; p < 0.001), left CGH (F(1,80) = 30.044;
p<0.001) and right CGH (F(1,80) = 31.322; p <0.001),
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Fig. 1 Volume of studied tracts by gender. Vertical bars denote 0.95 confidence intervals. (L: left hemisphere; R: right hemisphere)

left CST (F(1,80)=30.110; p<0.001) and right CST
(F(1,80) = 24.472; p<0.001), Fmj (F(1,80) =38.574; p<
0.001) and Fmn (F(1,80) = 40.929; p < 0.001), left IFOF
(F(1,80) =44.069; p <0.001) and right IFOF (F(1,80) =
41.909; p <0.001), left ILF (F(1,80) =39.534; p <0,001)
and right ILF (F(1,80) = 34.545; p<0.001), left SLF
(F(1,80) =45.333; p<0.001) and right SLF (F(1,80)=
48.343; p <0,001), left UNC (F(1,80) =47.514; p <0.001)
and right UNC (F(1,80) = 46.738; p < 0.001) (Fig. 2).
Excluding the commissural tracts, Fmj and Fmn,
hemispheric asymmetries in FA values were assessed by

GLM Repeated Measure ANOVA using FA values (of
each tract) and Hemisphere as repeated measures,
Gender as categorical predictor and Age as continu-
ous predictor showed that exist a main effect of FA
(F=28.629, df =7, p<0.001, £ =0.769) and no effect for
Hemisphere (F=0.134, df=1, p=0.516, € =1); however,
de double interaction FA values x Hemisphere was signifi-
cant (F=4.787, df =7, p <0.001, &€ = 0.709). Planned com-
parison showed that CGC (F(1,80)=8.237, p<0.005),
CGH (F(1,80) =7.916; p <0.005), IFOF (F(1,80) = 92.369;
p<0.001), ILF (F(1,80) =7.492; p<0.005) have a left
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Fig. 2 Mean fractional anisotropy of studied tracts by gender. Vertical bars denote 0.95 confidence intervals. (L: left hemisphere; R: right hemisphere)
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asymmetry (FA in left hemisphere >FA in the right
hemisphere). On the contrary ATR (F(1,80) = 115.629;
»<0.001) and CST (F(1,80) = 20.621; p <0.001) showed a
right asymmetry. No significant differences between hemi-
spheres in the FA values of SLF and UNC were founded.

Mean diffusivity

The GLM Repeated Measure ANOVA using MD values
(of each tract) as repeated measures, Gender as categor-
ical predictor and Age as continuous predictor (Fig. 3)
showed that exist a main showed that exist a main effect
of MD values (F=10.069, df =17, p<0.001, & =0.382)
and Gender (F=5540, df=1, p<0.001) with a signifi-
cant interaction MD values x Gender (F=9.000, df =17,
p<0.001, £ =0.382). The data showed bigger values of
MD for males than females in all the tracts.

By planned comparison analysis were found significant
differences for left ATR (F(1,80) = 48.650; p <0.001) and
right ATR (F(1,80) =50.375; p<0.001), left CGC
(F(1,80) =54.193; p<0.001) and right CGC (F(1,80) =
50.140; p <0.001), left CGH (F(1,80) = 50.333; p < 0.001)
and right CGH (F(1,80) =43.136; p<0.001), left CST
(F(1,80) =42.762; p<0.001) and right CST (F(1,80)=
41.220; p <0.001), Fmj (F(1,80) =56.279; p <0.001) and
Fmn (F(1,80) =57.800; p <0.001), left IFOF (F(1,80)=
55.654; p < 0.001) and right IFOF (F(1,80) =56.077; p <
0.001), left ILF (F(1,80) = 51.929; p < 0.001) and right ILF
(F(1,80) =59.954; p <0.001), left SLF (F(1,80)=57.911;
p<0.001) and right SLF (F(1,80) =61.; p<0.001), left
UNC (F(1,80)=61.483; p<0.001) and right UNC
(F(1,80) =57.729; p <0.001) (Fig. 3).

Excluding the commissural tracts, Fmj and Fmn,
hemispheric asymmetries in MD values were assessed by
GLM Repeated Measure ANOVA using MD values (of
each tract) and Hemisphere as repeated measures showed
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that exist a main effect of MD values (F = 14.643, df =7,
p<0.001, £=0476) and no effect for Hemisphere (F=
0.805, df =1, p=0.372, £ =1); however, de double inter-
action FA values x Hemisphere was significant (F=
4.175, df=7, p <0.001, € = 0.599).

Planned comparison showed that CGC (F(1,80) =
31.748; p<0.001), CGH (F(1,80)=15.253; p<0.001),
IFOF (F(1,80) =97.012; p <0.001), ILF (F(1,80) = 5.320;
p<0.023) have a right asymmetry (MD in the right
hemisphere > MD in left hemisphere). No significant
differences between hemispheres in the MD values,
SLF and UNC were founded despite of their right
asymmetry. On the contrary ATR (F(1,80) = 122.194;
p<0.001) and CST (F(1,80) =7.333; p =0.008) showed
a left asymmetry.

Discussion

Reconstruction of the tracts of interest

The tridimensional reconstruction of ten tracts of white
matter was achieved in a representative sample of Cuban
population. The protocol included ROIs in a native
space of each individual and the tractography method
known as FACT. The trajectories obtained agree with
neuro-anatomic descriptions derivate from post-morten
and other tractographic studies [8, 21, 24, 25].

The ROIs that defined tracts’s trajectories were drawn
on anatomical reference image from MNI steoreotaxic
space according to the anatomical description reported
for Mori et al. [8] and validated for Wakana et al. [7, 21].
Our data probed their reliability. These authors drawn the
ROIs on each individual brain; however, we drawn the
ROIs on MNI space and automatically were transformed
to native space of each individual allowing the
optimization of ROIs procedure and diminish the time
needed for their analysis and the inter-subject variability.

~
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Fig. 3 Mean diffusivity of studied tracts by gender. Vertical bars denote 0.95 confidence intervals. (L: left hemisphere; R: right hemisphere)
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Also this analysis begins from the total tracking of the all
brain, and posteriorly the tracts were select using the
ROIs. This approach produces a nice balance of fibers
density [26] along the resultant tract giving reliability to
the results.

The tracking method used (FACT) has been previously
validated in several studies but they mostly use this algo-
rithm as a tool for study white matter tracts in patho-
logical conditions (e.g. [27—-29]). Only a few reports have
been dedicated to standardize and reproduce a method-
ology using this method for study many tracts at the
same time and in healthy subjects [7-9, 21]. In cases
where this kind of study was made, the sample used was
small (less than 30 subjects). In this work it was achieve
to replicate the reconstruction of several white matter
tracts in a wide sample of healthy subjects (n = 84).

Characterization of reconstructed tracts

Previously, the parameters volume, FA and MD have
been used to characterize white matter tracts [21, 30],
being this paper a reference of these parameters in
Cuban population.

The volume of studied tracts include a wide range of
values (from five to 38 cm®) as has been describe anteri-
orly [31]. The values of FA can vary widely according to
register parameters and methodology applied, however
the values of this study (0.34 FA 0.58) agree with
the range of values reported for this variable in white
matter tracts reconstructed by Wakana et al. [21]
(0.42 FA 0.60). The values of MD varied between
18x 107 and 23x107° also were included in re-
ported values [32].

All the reconstructed tracts show an inverse relation-
ship pattern between FA and MD. This situation is not a
trivial issue due to the MD value is similar between
white matter of high anisotropy and gray matter of low
anisotropy [33] moving into a narrow range of values.
Only in case of cerebrospinal fluid take high values
[34, 35] due to isotropic diffusion and free of barriers,
producing high autovalues of diffusion tensor in all
directions of water molecules [36, 37]; this phenomenon
does not occur in gray matter where the water is restricted
because of tissue properties. However, in white matter, the
diffusion is anisotropic because of the packing of fibers
and myelin presence [5], remaining MD low due to the
small diffusion values in the perpendicular axis to the fiber
directionality compensate that high diffusion in parallel
axis to the fiber directionality. In this way, the mean of the
autovalues of diffusion tensor remains low in white matter,
because of that the MD can be used as a measure of pres-
ence of tissue. Otherwise, tracts constituted for fiber with-
out an orientation pattern, myelin or packing structure
will have low FA and high MD favoring the free diffusion.
The unified using of FA and MD can be used as diagnostic

Page 7 of 11

tools in assess micro and meso-structural characteristic of
brain tissue [38].

The tractography method FACT has some restrictions
such as the acceptable angle between one voxel and the
next one for a fiber trajectory, that can produce an
underestimation in curved tracts (e.g. SLF and UNC) af-
fecting the volume values. Also the volume estimation
can be affected in fibers with bifurcation areas (e.g.
IFOF) because the method can fail in estimate the way
of the fibers. A presence of partial volume effects could
affect the diffusion index due to mix of different kind of
tissue in a voxel.

Gender differences and hemispheric asymmetries

Volume

Several studies have demonstrated the existence of
differences in hemispheric symmetry of the volume of
gray matter structures and gender differences in the
adult population [39-41]; however, there are limited
studies that have addressed these issues to the white
matter [21, 42].

Statistical analysis showed gender differences with lar-
ger volume in females than males for left and right ATR,
right CGH, Fmj and Fmn, and right ILF. However, previ-
ously studies described a higher volume of white matter
in males than females [43, 44]. In these studies, were
compared the segmentations of white matter from T1
images and not the specific tract volume, therefore the
differences in white matter volume between gender
seems to be heterogeneous along each tracts of brain.
Because of that, the study of specific tracts using DTI
can be a more accurately approach to this matter. On
the other hand, a global analysis of white matter volume
shows bigger values in males [41], using correction for
total intracranial volume, although was founded a paral-
leled slope for grey and white matter with cranial vol-
ume, whereas in women the increase in white matter as
a function of cranial volume was at a lower rate. How-
ever, voxel-based morphometry studies revealed signifi-
cant main effects of sex but no significant effects of
brain size in white and gray matter analysis [45]. In spite
of the fact that we did not find gender differences for
SLE, there is a report about left asymmetry in males
while in females this tract has a more bilateral distribu-
tion [46].

A decrement in commissural tracts (Fmj and Fmn)
has been associated to a diminished interhemispheric
connectivity with brain size, which can explain the less
volume in males. This hypothesis is supported by studies
of delay of information conduction and cellular cost of
the process [47].

A left asymmetry was detected for ATR, CGC, CST,
ILF and SLF; while CGH and IFOF showed a right one.
The fact that a great number of tracts have bigger
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volume in left hemisphere agree with left dominance is
expected in our right-handed sample. Our data showed
a left asymmentry for tracts involve in motor control
(CST) and language (SLF) [48—51]. This left asymmetry
for CST has been previously reported by Rademacher et
al. [52] and Thiebaut de Schotten et al. [46] and con-
firmed by post-mortem studies [31], but White et al.
[53] suggest that there is not such asymmetry. Also, left
asymmetry in volume of SLF [46, 54], CGC and ILF [21]
has been reported previously. On the contrary, there is
evidence of no significant differences for ATR between
hemispheres [21]. Moreover, have been described a right
lateralization for CGH [21] and IFOF [21, 46] as same in
our results. These facts suggest that right hemisphere
seems to be specialized in more general functions that
require integration of information, such as visual-spatial
processing [55]. Specifically, CGH is involve in memory
associative learning and episodic processing [56], while
IFOF connects functional areas of visuo-spatial process-
ing [57]. The UNC did not show differences between
hemispheres, however in literature there are conflicting
reports. Highley et al. [58] found that this fasciculus had
bigger volume in right hemisphere, while Wakanana
et al. [21] described left asymmetry. This inconsistency
in the results may be due to different methodologies
employed or small samples (N < 30).

In our analysis we included age as continuous pre-
dictor but we did not find any effect of that factor, prob-
ably because of the sample age is very homogenous and
included mostly young adults. Nevertheless, several re-
ports evince a global white matter volume increase from
childhood to adultness [59, 60], and a further declination
after maturation [61]. Generally, aging is associated with
a reduction in white matter volume [62, 63] that seems
to be more pervasive at times than even the gray matter
decline [64], and generally involve a reduction in the in-
tegrity of white matter tracts [65, 66]. Also, it has been
reported that males had more prominent age-related
gray matter decreases and white matter volume and cor-
pus callosal area increases compared with females what
suggest that there are age-related sex differences in brain
maturational processes [67].

Fractional anisotropy and mean diffusivity

In previous studies have been described differences by
gender in FA in specific tracts [21, 30, 32], meanwhile
our data exhibited greater values of FA for all tracts in
females. Sexual dimorphism has been demonstrated in
microstructural white matter organization in precentral,
cingulate, and anterior temporal areas, but reporting
lower values for females [68]. In specific tracts in fe-
males such as CST, which is involved in motor function,
have been reported highest values, while males may
undergo relatively more microstructural change in

Page 8 of 11

projection and association fibers [69]. In another hand,
Schmithorst et al. [70] had reported greater FA values in
females for Fmj and Fmn, however when the entire cor-
pus callosum has been studied the males happen to have
the greatest values.

The FA showed significant left asymmetries for CGC,
CGH, IFOF and ILF. Greater values of FA on lefts hemi-
sphere have been describe previously for CGC [21],
IFOF [21, 30, 71], ILF [21, 71], while CGH reported sig-
nificant right asymmetry [21]. This lateralization was as-
sociated with higher microstructural integrity on the left
side of limbic tracts (CGC and CGH) [72]. The ATR and
CST had right asymmetries, which means in the ipsilat-
eral hemisphere to handedness. That is an unexpected
find because does not agree with postulation that right
handed subject must have greater values of FA in
contralateral hemisphere [49, 50], where have been ob-
served better packing and arrangement of fibers that are
involve in voluntary control of movement in contralat-
eral hemisphere [40]. However the values are include in
reported data for this index [30].

The data showed bigger values of MD for males than
females in all the tracts, an inverse behavior than FA
values. This higher MD values for females have been re-
ported since adolescence for ILF and Fmj [69] and for
CST in males [70]. However, in a study performed by
Eluvathingal et al. [71] was not found gender effect over
MD for any tracts except ILF, where girls had it lower
values than males. The MD showed significant right
asymmetries for CGC, CGH, IFOF and ILF, that means
MD values have an inverse pattern than FA according to
hemispheric asymmetries, besides gender asymmetry.
The CGC and CGH have been previously reported with
right-greater-than-left MD values, which remain for
CGC even after normalization procedure [72]. Also data
from IFOF and ILF have been reported with this asym-
metry [71]. Besides the variety of reports some studies
analyzing MD have revealed that it is a sensitive measure
when were compared controls and pathological subjects
[73]. No difference between hemispheres or gender for
SLF and UNC were found, either FA or MD measures.
This does not agree with previous results were a right-
higher-than-left anisotropic asymmetry was found [74]
for these tracts, however Biichel et al. [40] reported a left
asymmetry for SLF. Also Kitamura et al. [75] had
detected gender difference in the FA values for the right
UNC.

As well as in statistical analysis of volume, neither FA
or MD showed any effect of age probably due to the age
of the sample is around young adultness. However, these
index have been used to explain the changes in white
matter integrity that occurs across life spam. Previous
reports of DTI studies have shown an increased FA [76]
throughout brain white matter during childhood,
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adolescence, and young adulthood [71, 77-79] and later
elderly adults have displayed a significant decline in sev-
eral white matter tracts [80]. On the other hand, Inano
et al. [81] suggest there are no sex differences in the
aging process of the white matter in a sample with an
age range from 24.9 to 84.8 years.

Limitations

The resolution is limited due to the voxel size employed
in diffusion imaging series. Also it is possible the modifi-
cation of diffusion indexes by noise, partial volume effect
and crossing fibers regions, which can miss estimate the
parameters.

The tract volume was not normalized according to
intracranial volume. However, is postulated that differ-
ences in hemispheric symmetry and gender are not
modified for normalization procedure [21, 82].

Conclusions

Our work shows that is possible reconstruct white mat-
ter tracts using a unique ROIs scheme defined on a
standard space, that can be transformed automatically to
individual anatomy, minimizing the effect of investiga-
tor’s manipulation. Also, allows the creation of a data-
base of volume and diffusion parameters in Cuban
population that can be used as normative sample in
others studies. The volume values showed that a most
part of tracts have bigger volume in left hemisphere.
The data showed bigger values of MD for males than fe-
males in all the tracts, an inverse behavior than FA
values. These results indicate differing developmental
trajectories in white matter for males and females and
the importance of taking gender into account in devel-
opmental DTI studies and in underlie gender-related
cognitive differences. This study will provide the oppor-
tunity to analyze gender-specific nature of brain diseases
supported by a control sample that allows the compari-
son between normal and pathological status.
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