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Abstract: Cheeses produced from unpasteurized milk by traditional production methods may contain
many groups of microorganisms, including Staphylococcus aureus. The aim of this study was to
determine the occurrence of S. aureus in the artisanal cheese production chain from unpasteurized
milk. We investigated the prevalence of S. aureus strains isolated from various stages of artisanal
cheese of unpasteurized milk production from farms in the northeastern and southern parts of
Poland and characterized them. Characterization included antimicrobial susceptibility by microbroth
dilution and biofilm formation by in vitro assay. Among all strains, the presence of enterotoxigenic
genes and genes involved with biofilm formation and antibiotic resistance were screened by PCR-
based methods. A total of 180 samples were examined. A high percentage of strains were resistant
to penicillin (54/58.1%) and tobramycin (32/34.4%). Some tested isolates also showed resistance
to the macrolide class of antibiotics: azithromycin, clarithromycin, and erythromycin at 17/18.3%,
15/16.1%, and 21/22.6%, respectively. Among tested isolates, we also found phenotypic resistance
to oxacillin (9/9.7%) and cefoxitin (12/12.9%). The blaZ gene encoding penicillin resistance was the
most common gene encoding antibiotic resistance among the tested strains. All isolates showing
phenotypic resistance to cefoxitin possessed the mecA gene. The study also evaluated the prevalence of
biofilm-associated genes, with eno the most frequently associated gene. Eighty-nine out of 93 S. aureus
isolates (95.7%) possessed at least one enterotoxin-encoding gene. The results of this study showed
that production of raw milk cheeses may be a source of antibiotic resistance and virulent S. aureus.
Our results suggest that artisanal cheese producers should better control production hygiene.

Keywords: S. aureus; staphylococcal enterotoxins genes; antimicrobial resistance; virulence; raw
milk cheese

1. Introduction

The consumption of milk and dairy products has a long tradition in human nutri-
tion [1]. Milk production is one of the most important branches of the agricultural economy
in Poland, and each year production increases. Milk and dairy products have been shown
to have a positive impact on human health due to the abundance of nutrients present
within them, such as calcium, potassium, proteins, fat and vitamins [2]. In recent years,
traditional foods such as farmhouse artisanal cheese have become increasingly popular
with consumers in Poland [3]; an upward trend in the consumption of raw milk and raw
milk processed products purchased in local markets and/or farms has been observed.

Cheeses produced from unpasteurized milk by traditional production methods may
contain very diverse microbiota, which impacts their unique organoleptic characteristics [4].
However, due to their rich source of chemical compounds, these cheeses are also an
excellent environment for the development of many groups of microorganisms, including
S. aureus [5].

The occurrence of S. aureus in an artisanal cheese production chain may be due to the
fact that milk is subjected to low-temperature processing without the pasteurization process,
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which creates the risk of the occurrence of S. aureus in finished products. Furthermore,
artisanal production involves the risk of contamination of finished products at various
stages of production [6] due to unhygienic practices. In addition to low milk quality,
each further processing step facilitates the entrance of S. aureus in the dairy chain. One
possible source of contamination of finished products is the people involved in cheese
manufacturing, since S. aureus is frequently present on the skin of cheesemakers [4]. Along
with this human-to-food contamination route, several other entrance points of S. aureus
into the dairy chain have been described previously [7]. One factor allowing S. aureus to
grow during cheese production is insufficient acidification by the starter cultures of the
lactic acid bacteria. In addition, biofilm formation on dairy equipment allows niches to
grow and contaminate the processing line [7,8].

S. aureus is one of the most important causative agents of food poisoning worldwide.
S. aureus strains are known to be resistant to several types of antibiotics [9]. Overuse of
antibiotics causes selective pressure in animals and humans to develop antibiotic resis-
tance [10]. Nowadays, the most severe types of antibiotic-resistant S. aureus are methicillin-
resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) [11]. MRSA strains
are of great importance in public health and can pose a zoonotic risk to humans. S. aureus
can be transmitted by contaminated food and cause food-borne outbreaks, which are mostly
caused by toxins. On the other hand, S. aureus can also lead to severe diseases, e.g., sepsis,
endocarditis, and necrotizing pneumonia [12]. Methicillin resistance of S. aureus, important
in farming and food-processing plants, stems from the possibility of zoonotic infection of
consumers and workers involved in animal husbandry [13]. Global surveillance has shown
that MRSA is a problem in some continents and countries where studies have been carried
out, increasing mortality and the need to use expensive last-resource antibiotics [14–17].
MRSA strains are those that carry the mecA and/or mecC gene and are resistant to all
penicillins, cephalosporins, and carbapenem [18]. Vancomycin is an important antibacterial
agent used to treat serious infections caused by MRSA [19]. It is worth noting that, at
present, the emergence and spread of VRSA strains remains a challenge to the global health
crisis due to the lack of effective control and treatment efficacy [20].

Some S. aureus isolates are capable of producing enterotoxins, which are potent emetic
agents. Staphylococcal food poisoning (SFP) is caused by the consumption of products
containing enterotoxins known as superantigens (SAgs) [4]. Consumption of products
containing enterotoxins may cause a diverse range of gastrointestinal symptoms, including
nausea, violent vomiting, and abdominal cramping, with or without diarrhea [21]. The
ability to form biofilm among S. aureus strains is also known. In the food industry, S. aureus
biofilm may be distributed throughout the dairy food chain by the food raw products, raw
milk tanks, and the food processing environment and equipment [22]. Microbial biofilms
that form on the surfaces of machinery and equipment in food processing plants affect not
only the safety and quality of the final product, but also the technological process flow [23].
This ability is mediated by many genetic determinants, including operon icaADBC, which
encodes the synthesis of the polysaccharide intercellular adhesin (PIA) molecule, the
agr locus, and different genes recognized as microbial surface components recognizing
adhesive matrix molecules (MSCRAMMs) [22].

Nowadays, studies on the prevalence and characterization of S. aureus isolated from
final dairy products available for consumers are very common, with examples from China,
Norway, and Greece, among other countries [24–29]. In addition, numerous articles have
been published on the prevalence and characterization of S. aureus in raw milk, especially
in China, Iran, and Australia [30–34]. It is worth emphasizing that S. aureus may enter the
food chain during processing and preparation of the products [35]. Despite this, few data
are available on the prevalence and characteristics of S. aureus in the food production chain,
especially in Poland [4,36].

Therefore, the aim of the study was to determine the occurrence of S. aureus in an
artisanal cheese production chain from unpasteurized milk. Moreover, the antibiotic
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resistance, enterotoxicity, and biofilm formation and slime production, as well as the
frequency of virulence-related genes among S. aureus strains were investigated.

2. Results
2.1. Occurrence of S. aureus Strains along the Cheese Production Chain

In the current study, the presence of S. aureus was found in 93/180 (51.7%) of all
samples tested for S. aureus (Table 1). S. aureus was isolated from raw material, semi-
products, and in the final product. S. aureus was also found on food contact surfaces—form
(9/50.0%), tank (8/44.4%), and jar (8/44.4%)—and in a small percentage of non-food contact
surfaces: sinks (2/11.1%).

Table 1. Contamination with S. aureus at different stages of cheese production chain.

Source No. of Samples No. (%) of S. aureus-Positive Samples

Sample

Raw milk 18 10 (55.6%)

Heated milk 18 13 (72.2%)

Curd 18 15 (83.3%)

Whey 18 8 (44.4%)

Brine 18 10 (55.6%)

Cheese 18 10 (55.6%)

Swab

Tank 18 8 (44.4%)

Jar 18 8 (44.4%)

Form 18 9 (50.0%)

Sink 18 2 (11.1%)

Total 180 93 (51.7%)

2.2. Antibiotic Resistance Profiles among S. aureus Strains

In this study, all the S. aureus (n = 93) isolates were evaluated for the phenotypic
resistance to antibiotics and the presence antibiotic-resistant genes.

Resistance to benzypenicillin was the most common among the tested S. aureus strains
(54/93 (58.1%)), followed by tobramycin (32/93 (34.4%)). Isolates were also resistant to
macrolides: azithromycin, clarithromycin, and erythromycin: 17/93 (18.3%), 15/93 (16.1%),
and 21/93 (22.6%), respectively. Resistance to tetracycline and tigecycline belonging to
the tetracycline class was shown among 19/93 (20.4%) and 22/93 (23.7%) of isolates,
respectively. Among tested isolates, phenotypic resistance to oxacillin (9/93 (9.7%)) and
cefoxitin (12/93 (12.9%)) were also shown both in raw materials and in ready-to-eat cheeses.
The isolates’ resistance to the other tested antibiotics ranged from 1.1% to 16.1%, with
none of the isolates being resistant to gentamycin, clindamycin, rifampicin, moxifloxacin,
or chloramphenicol (Table 2). Multidrug-resistant (MDR) status of S. aureus isolates was
tested against 15 classes of antimicrobials. Multi-drug resistance in this study was taken as
resistant to at least three antibiotics from different chemical classes of antibiotic. Therefore,
among all isolates of S. aureus, 21/93 (22.6%) were defined as multidrug-resistant. It was
found that the multiple antibiotic resistance index (MAR) among isolates ranged from 0.04
to 0.43, with an overall mean of 0.12. In this study, 12/93 (12.9%) isolates were defined as
MRSA by the cefoxitin/oxacillin MIC test and were positive for the mecA gene, and two
strains 2/93 (2.2%) were classified as phenotypic VRSA based only on phenotypic results
using microdilution assay.
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Table 2. Antimicrobial resistance profiles of S. aureus against tested antimicrobial agents.

Samples Swabs

Antimicrobial
Class

Antimicrobial
Agent

Raw Milk
(n = 9)

Heated Milk
(n = 14)

Curd
(n = 15)

Whey
(n = 8)

Brine
(n = 10)

Cheese
(n = 10)

Tank
(n = 8)

Jar
(n = 8)

Form
(n = 9)

Sink
(n = 2)

Total
(n = 93)

Aminoglycosides

AK 0 4 (28.6%) 6 (40.0%) 4 (50.0%) 0 3 (30.0%) 3 (37.5%) 1 (12.5%) 2 (22.2%) 0 23 (24.7%)

TOB 4 (44.4%) 6 (42.9%) 5 (33.3%) 2 (25.0%) 2 (20.0%) 4 (40.0%) 3 (37.5%) 3 (37.5%) 2 (22.2%) 1 (50.0%) 32 (34.4%)

K 1 (11.1%) 0 1 (6.7%) 0 1 (10.0%) 1 (10.0%) 1 (12.5%) 0 0 1 (50.0%) 6 (6.5%)

Cephalosporins FOX 1 (11.1%) 1 (7.1%) 3 (20.0%) 1 (12.5%) 0 2 (20.0%) 1 (12.5%) 1 (12.5%) 2 (22.2%) 0 12 (12.9%)

Macrolides,
lincosamides and

streptogramins

AZM 0 3 (21.4%) 3 (20.0%) 2 (25.0%) 0 3 (30.0%) 1 (12.5%) 3 (37.5%) 2 (22.2%) 0 17 (18.3%)

CLM 2 (22.2%) 3 (21.4%) 2 (13.3%) 2 (25.0%) 0 3 (30.0%) 0 0 3 (33.3%) 0 15 (16.1%)

E 2 (22.2%) 5 (35.7%) 2 (13.3%) 2 (25.0%) 0 3 (30.0%) 2 (25.0%) 3 (37.5%) 2 (22.2%) 0 21 (22.6%)

β-lactams
BP 5 (55.6%) 8 (57.1%) 11 (73.3%) 7 (87.5%) 5 (50.0%) 6 (60.0%) 4 (50.0%) 4 (50.0%) 4 (44.4%) 0 54 (58.1%)

OXA 0(0.0%) 1 (7.1%) 1 (6.7%) 1 (10.0%) 1 (10.0%) 3 (30.0%) 1(12.5%) 0 1 (11.1%) 0 9 (9.7%)

Oxazolidinones LZD 0 0 0 0 0 1 (10.0%) 0 0 0 0 1 (1.1%)

Nitrofurantoins FT 1 (11.1%) 0 0 0 0 1 (10.0%) 0 0 0 0 2 (2.2%)

Tetracyclines
TE 2 (22.2%) 5 (35.7%) 2 (13.3%) 0 4 (40.0%) 2 (20.0%) 2 (25.0%) 2(25.0%) 0 0 19 (20.4%)

TGC 2 (20.0%) 3 (21.4%) 4 (26.7%) 2 (25.0%) 1 (10.0%) 3 (30.0%) 2 (25.0%) 3 (37.5%) 2 (22.2%) 0 22 (23.7%)

Sulfonamides
TMP 3 (33.3%) 2 (14.3%) 1 (6.7%) 2 (25.0%) 0 2 (20.0%) 1 (12.5%) 2 (25.0%) 2 (22.2%) 0 15 (16.1%)

SXT 1 (11.1%) 3 (21.4%) 3 (20.0%) 0 1 (10.0%) 2 (20.0%) 1 (12.5%) 0 0 0 11 (11.8%)

Glycopeptides VA 0 0 1 (6.7%) 0 0 1 (10.0%) 0 0 0 0 2 (2.2%)

Streptogramins QD 0 0 0 0 1 (10.0%) 0 0 0 1 (11.1%) 0 2 (2.2%)

Steroidal FD 1 (11.1%) 0 0 0 0 0 0 0 0 1 (50.0%) 2 (2.2%)

Abbreviations: n—number of S. aureus isolates; AK—amikacin; TOB—tobramycin; K—kanamycin; FOX—cefoxitin; AZM—azithromycin; CLM—clarithromycin; E—erythromycin;
BP—benzylpenicillin; OXA—oxacillin; LZD—linezolid; FT—nitrofurantoin; TE—tetracycline; TGC—tigecycline; TMP—trimethoprim; SXT—trimethoprim/sulfamethoxazole;
VA—vancomycin; QD—quinupristin/dalfopristin; FD—fusidic acid.
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The presence of tested resistance genes ranged from 12/93 (12.9%) to 89/93 (95.7%)
among all S. aureus isolates. The most prevalent gene encoding antibiotic resistance among
the tested isolates was blaZ (89/93 (95.7%)), encoding penicillinase. All isolates showing
phenotypic resistance to cefoxitin possessed the mecA gene (12/93 (12.9%)). Although a
small percentage of strains showed phenotypic resistance to tetracycline, a high percent-
age of strains possessing the tet(K), tet(L), and tet(M) genes were found (59/93 (63.4%),
16/93 (17.2%), and 76/93 (81.7%), respectively). The presence of aac(6′)-Ie-aph(2′′)-Ia and
aph(3′)IIIa genes, which determine aminoglycoside resistance, was also found among the
tested isolates, and were present among 56/93 (60.2%) and 86/93 (92.5%) of the isolates,
respectively. The tested strains also harbored an ermB gene in 27/93 (29.0%) (Table 3).

Table 3. Occurrence of antimicrobial resistance genes against tested antimicrobial agents in S. aureus.

Samples Swabs

Antimicrobial
Class

Antibiotic
Resistance

Gene

Raw
Milk

(n = 9)

Heated
Milk

(n = 14)

Curd
(n = 15)

Whey
(n = 8)

Brine
(n = 10)

Cheese
(n = 10)

tank
(n = 8)

Jar
(n = 8)

Form
(n = 9)

Sink
(n = 2)

Total
(n = 93)

Oxacillin mecA 1 (11.1%) 1
(7.1%) 3 (20.0%) 1

(12.5%) 0 2 (20.0%) 1 (12.5%) 1
(12.5%)

2
(22.2%) 0 12

(12.9%)

Penicillin blaZ 9 (100%) 13
(92.9%)

15
(100.0%)

8
(100.0%)

8
(80.0%)

10
(100.0%)

8
(100.0%)

8
(100.0%)

9
(100.0%)

1
(50.0%)

89
(95.7%)

Tetracyclines

tetK 5 (55.6%) 9
(64.3%)

10
(66.7%)

4
(50.0%)

5
(50.0%) 7 (70.0%) 5 (62.5%) 6

(75.0%)
6

(66.7%)
2

(100%)
59

(63.4%)

tetM 6 (66.7%) 12
(85.7%)

14
(93.3%)

6
(75.0%)

5
(50.0%) 9 (90.0%) 7 (87.5%) 7

(87.5%)
9

(100.0%)
1

(50.0%)
76

(81.7%)

tetL 1 (11.1%) 1
(7.1%) 3 (20.0%) 2

(25.0%)
1

(10.0%) 2 (20.0%) 1 (12.5%) 2
(25.0%)

2
(22.2%)

1
(50.0%)

16
(17.2%)

Macrolides,
lincosamides,

and strep-
togramins

ermB 2 (22.2%) 5
(35.7%) 5 (33.3%) 3

(37.5%)
1

(10.0%) 2 (20.0%) 3 (37.5%) 2
(25.0%)

3
(33.3%)

1
(50.0%)

27
(29.0%)

Aminoglycosides

aac(6′)-Ie-
aph(2′′)-Ia 3 (33.3%) 9

(64.3%) 8 (53.3%) 3
(37.5%)

8
(80.0%) 6 (60.0%) 8

(100.0%)
4

(50%)
7

(77.8%)
1

(50.0%)
56

(60.2%)

aph(3′)IIIa 9
(100.0%)

12
(85.7%)

12
(80.0%)

8
(100.0%)

10
(100.0%) 9 (90.0%) 8

(100.0%)
7

(87.5%)
9

(100.0%)
2

(100%)
86

(92.5%)

n—number of S. aureus isolates.

Statistical analysis showed a positive but not significant at p < 0.05 correlation between
occurrence of the erm(B) gene and phenotypically resistant clarithromycin (r = 0.2348),
azithromycin (r = 0.4943), and erythromycin (r = 0.5041) (p < 0.05). Further, we found
positive correlation between tet(K) and phenotypic resistance to tetracycline (r = 0.163)
and tigecycline (r = 0.265) (p < 0.05) and negative but not significant at p < 0.05 correlation
between tet(L) and phenotypic resistance to tetracycline among isolates (r = −0.090).

2.3. Presence of Virulence Factors in S. aureus Isolates

Among all isolates, including those from raw materials and swabs from surfaces,
the ability to form biofilm has been found. Biofilm formation by S. aureus included the
following: weak formers 33 (35.4%), intermediate formers 2 (2.2%), and strong formers
58 (62.4%). Table 4 summarizes the biofilm-forming strength of tested S. aureus isolates at
different stages of cheese production. There was no association between slime production
and the ability to form biofilm at p < 0.05 (p = 0. 0981026).
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Table 4. Virulence characteristics among S. aureus isolates.

Samples Swabs

Raw Milk
(n = 9)

Heated Milk
(n = 14)

Curd
(n = 15)

Whey
(n = 8)

Brine
(n = 10)

Cheese
(n = 10)

Tank
(n = 8)

Jar
(n = 8)

Form
(n = 9)

Sink
(n = 2)

Total
(n = 93)

Biofilm MTP method

strong 5 (55.6%) 9 (64.3%) 12 (80.0%) 4 (50.0%) 7 (70.0%) 9 (90.0%) 3 (37.5%) 3 (37.5%) 4 (44.4%) 2 (100%) 58 (62.4%)

intermediate 1 (11.1%) 1 (7.1%) - - - - - - - - 2 (2.2%)

weak 3 (33.3%) 4 (28.6%) 3 (20.0%) 4 (50.0%) 3 (30.0%) 1 (10.0%) 5 (62.5%) 5 (62.5%) 5 (55.6%) 33 (35.4%)

Slime production 4 (44.4%) 7 (50.0%) 9 (60.0%) 4 (50.0%) 4 (40.0%) 7 (70.0%) 3 (37.5%) 5 (62.5%) 3 (33.3%) 2 (100%) 48 (51.6%)

Biofilm-associated
genes

icaADBC 2 (22.2%) 4 (28.6%) 4 (26.7%) 3 (37.5%) 1 (10.0%) 4 (40.0%) 2 (25.0%) 2 (25.0%) 2 (22.2%) 1 (50.0%) 25 (26.9%)

bap 3 (33.3%) 7 (50.0%) 8 (53.3%) 2 (25.0%) 1 (10.0%) 5 (50.0%) 2 (25.0%) 1 (12.5%) 3 (33.3%) 0 32 (34.4%)

eno 9 (100%) 14 (100.0%) 15 (100.0%) 8 (100.0%) 10 (100%) 10 (100.0%) 8 (100.0%) 8 (100.0%) 9 (100.0%) 2 (100%) 93 (100.0%)

sigB 5 (55.6%) 6 (42.9%) 8 (53.3%) 4 (50.0%) 2 (20.0%) 6 (60.0%) 3 (37.5%) 5 (62.5%) 7 (77.8%) 1 (50.0%) 42 (45.2%)

sarA 7 (77.8%) 13 (92.9%) 12 (80.0%) 6 (75.0%) 8 (80.0%) 8 (80.0%) 6 (75.0%) 5 (62.5%) 7 (77.8%) 2 (100%) 74 (79.6%)

agrD 2 (22.2%) 6 (42.9%) 5 (33.3%) 4 (50.0%) 5 (50.0%) 3 (30.0%) 2 (25.0%) 3 (37.5%) 3 (33.3%) - 33 (35.5%)

Enterotoxigenic
genes

sed - 1 (7.1%) - - 1 (10.0%) 1 (10.0%) - - - - 3 (3.2%)

seg 4 (44.4%) 9 (64.3%) 8 (53.3%) 7 (87.5%) 5 (50.0%) 6 (60.0%) 5 (62.5%) 4 (50.0%) 5 (55.6%) 1 (50.0%) 54 (58.1%)

sei 2 (22.2%) 4 (28.6%) 1 (6.7%) 1 (12.5%) - - 2 (25.0%) 2 (25.0%) 1 (11.1%) - 13 (14.0%)

selj 1 (11.1%) 3 (37.5%) 4 (26.7%) 3 (37.5%) 2 (20.0%) 4 (40.0%) 2 (25.0%) 2 (25.0%) 3 (33.3%) - 26 (28.0%)

selk 7 (77.8%) 10 (71.4%) 10 (66.7%) 4 (50.0%) 4 (40.0%) 7 (70.0%) 3 (37.5%) 5 (62.5%) 5 (55.6%) 2 (100.0%) 57 (61.3%)

selm - 2 (14.3%) 3 (20.0%) 2 (25.0%) 3 (30.0%) 3 (30.0%) 3 (37.5%) - 1 (11.1%) 1 (50.0%) 18 (19.4%)

seln 2 (22.2%) 7 (50.0%) 4 (26.7%) 6 (75.0%) 4 (40.0%) 6 (60.0%) 4 (40.0%) 3 (37.5%) 5 (55.6%) 1 (50.0%) 42 (45.2%)

selo - 1 (7.1%) 3 (20.0%) 1 (12.5%) 2 (20.0%) 3 (30.0%) 3 (37.5%) - - 1 (50.0%) 14 (15.1%)

selp 2 (22.2%) - 4 (26.7%) 2 (25.0%) 3 (30.0%) 1 (10.0%) - 3 (37.5%) 1 (11.1%) - 16 (17.2%)

ser 1 (11.1%) 4 (28.6%) 3 (20.0%) 1 (12.5%) - - 2 (25.0%) 1 (12.5%) 1 (11.1%) 1 (50.0%) 14 (15.1%)

selq 3 (33.3%) 8 (57.1%) 8 (53.3%) 6 (75.0%) 2 (20.0%) 6 (60.0%) 3 (37.5%) 3 (37.5%) 3 (33.3%) 1 (50.0%) 43 (46.2%)

selu 5 (35.7%) 5 (33.3%) 3 (37.5%) 2 (20.0%) 4 (40.0%) 3 (37.5%) 2 (25.0%) 4 (44.4%) - 29 (31.2%)

eta - 1 (7.1%) - - - - - 1 (12.5%) 1 (11.1%) - 3 (3.2%)

etd - - - - 1 (10.0%) 1 (10.0%) - - - - 2 (2.2%)

tst-1 - - - 1 (10.0%) 1 (12.5%) 2 (22.2%) - 4 (4.3%)

(-) not detected. n—number of S. aureus isolates.
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The study also evaluated the prevalence of biofilm-associated genes, and it was shown
that the most frequent gene was eno (laminin-binding protein), which was observed among
all isolates. Moreover, bap (biofilm-associated protein) was found among 32/34.4% of all
isolates. The genes sigB, sarA, and agrD were found in 42/45.2%, 74/79.6%, and 33/35.5% of
isolates, respectively. After analyzing the relationship between virulence genes and biofilm
formation, it was shown that there were significant correlations between the occurrence of
agrD gene and biofilm formation (r = 0.3038). Among all isolates, we found a positive but
not significant correlation between the occurrence of agrD gene and sarA (r = 0.0414) and
sigB and sarA (r = 0.4055) (p < 0.05).

Each strain was tested for the presence of staphylococcal enterotoxins genes. Eighty-
nine out of 93 S. aureus isolates (95.7%) possessed at least one enterotoxin-encoding gene. It
was observed that genes encoding SEI (enterotoxin-like toxin) were more frequent than
genes encoding classical enterotoxins (SEs) among the isolates studied. Among the genes
encoding SEI, the presence of selk (61.3%) was recorded most frequently, followed by selg
(58.1%), seg (46.2%), seln (45.2%), selu (31.2%), selm (19.4%), and selj (28%). It is worth noting
that the highest percentage of the presence of enterotoxigenic genes was found among
strains isolated from finished products. Statistical analysis showed positive correlation
between co-occurrence of some enterotoxins genes, e.g., selp and selk (r = 0.0698), selp and
selu (r = 0.1061), selm and selk (r = 0.1709), selm and selo (r = 0.8582), and selm and seg
(r = 0.3676).

Statistical analysis showed no statistically significant differences between the source of
isolation of S. aureus and the ability to produce slime (p > 0.999), resistance to antimicrobial
agents (p = 0.4703), or occurrence of virulence genes (p > 0.999).

To systematically detect all such associations in an unbiased way, we analyzed all
potential pairs of variables (except those that were entirely present or completely ab-
sent among all (n = 93) isolates. Among the observed correlations, we found posi-
tive correlations between the ability of the strains to form biofilm and phenotypic re-
sistance to all the antibiotics tested. Interestingly, we found negative correlations be-
tween slime production and phenotypic resistance to trimethoprim, kanamycin, and quin-
upristin/dalfopristin (Figure 1).
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3. Discussion

In the current study, the occurrence, antibiotic resistance, and virulence of S. aureus
isolated at different production stages of raw milk cheeses were tested. There are currently
few studies focusing on assessing the whole production chain of cheeses from unpasteur-
ized milk [4,37,38]. Most studies have focused on the evaluation of S. aureus strains isolated
from raw milk from cows with clinical or subclinical mastitis or only in finished prod-
ucts [24,29,39–42]. Nevertheless, estimation of the prevalence and genetic determinants
of S. aureus is always important to facilitate the implementation of rational mitigation
strategies and to avoid the dissemination of this pathogen through the food chain [43].

Compared to the results obtained for the presence of S. aureus in unpasteurized milk
cheeses (finished products), previous studies reported percentages of samples in which
S. aureus was found as follows: 56.4% (44/78) in Mexico [44], 87.3% (62/71) in Serbia [45],
and 45% (31/69) in Norway [46]. The different results regarding the prevalence of S. aureus
in different countries may be related to differences in cheese production worldwide. It is
assumed that the presence of S. aureus in farmstead cheeses may be due to the low quality
of raw material, resulting from poor hygienic conditions during production and inadequate
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storage conditions, unclean hands of workers, and/or failure to follow basic GMP and
GHP principles.

In this study, we observed that among the tested S. aureus strains, resistance to β-
lactams (which include penicillin) was the most frequent. These observations are in line
with reports by other authors, who have reported in recent years on the worldwide increase
in S. aureus resistance to β-lactam antibiotics [9,41,47,48]. The high percentage of penicillin-
resistant strains may be due to the frequency of use of this antibiotic in the treatment of
cattle infections in Poland [4].

Tetracyclines are also commonly used to treat infections in cattle [49]. In the present
study, a lower incidence of tetracycline resistance was observed (19/93 (20.4%)) compared
to studies by other authors, which showed resistance to this antibiotic in S. aureus strains
ranging from 19–100% [50,51]. Another antibiotic against which the tested strains showed
resistance was erythromycin (21/93 (22.6%)), which is a macrolide antibiotic. Macrolides are
commonly used to treat mastitis in cattle. Erythromycin is also used to treat staphylococcal
infections in patients allergic to penicillin [41].

Nevertheless, compared to the present results, studies by other authors have shown
a higher percentage of strains resistant to this antibiotic (22.4% and 44%) [41,52]. The
erm genes confer cross-resistance to macrolides, lincosamides, and streptogramins B [53].
Antimicrobial resistance results obtained in this study correlate with antibiotics that are
used to treat cattle infections in Poland. According to a report by the European Medicines
Agency, in Poland in 2020, tetracyclines, penicillins, and macrolides represented over 70%
of total veterinary antimicrobial agents sold [54].

The study showed that a small percentage (21/93 (22.6%)) of the tested isolates were
multidrug-resistant (resistant to at least three antibiotics from different chemical classes of
antibiotic), with 19.4% of isolates having a MAR index of >0.20. Nevertheless, it is worth
emphasizing the need for constant prevention of excessive use of antibiotics in animal
treatment, and it is necessary to monitor the prevalence of antibiotic-resistant foodborne
pathogens, including S. aureus. It is worth noting that the high prevalence of S. aureus as
carriers of the blaZ gene and the identification of methicillin-resistant strains among isolates
from cheese pose a threat to the health of consumers of such products. It is important from
a public health perspective to continuously monitor S. aureus in milk and milk products
and their production environment. Continuous monitoring will allow the provision of
measures for mitigating the public health threat associated with this resistant pathogen [55].
According to obtained results and findings showed by Ammar et al. [56], it is important
to have comprehensive control measures during processing of handmade cheeses, and
judicious application of antibiotics should be adopted to overcome the spread of ARM and
minimalize the risk of human infection.

The ability to form biofilm is one of the hazards encountered not only in healthcare
facilities but also in the food industry. Pathogenic bacteria are able to form biofilms
inside processing equipment, leading to food spoilage and subsequent health risks to
consumers [57]. Biofilm formation by Staphylococcus spp. is an evolutionary advantage
for this microorganism, as bacterial cells are resistant to adverse environmental conditions
such as antimicrobial and sanitizing agents, desiccation, and UV radiation [58].

The obtained results showed that 59/93 (63.4%) of the isolates were able to produce
biofilm. A similar percentage of strains capable of producing biofilm was shown in a
study by Castro et al. (2020) [58], who classified 69.7% of isolates as biofilm-forming. The
main factor responsible for biofilm production among S. aureus is considered to be PIA,
which, together with other polymers such as teichoic acids, proteins, and extracellular
DNA (eDNA), constitutes the main part of the extracellular matrix of biofilm-forming S.
aureus. Genes contained in the ica locus are responsible for PIA biosynthesis and include
N-acetylglucosamine transferase (icaA and icaD), PIA deacetylase (icaB), and PIA exporter
(icaC) [59]. The presence of this operon was demonstrated among 26.9% of the tested
isolates. According to the literature, in addition to the phenotypic ability to produce biofilm
and the presence of the ica operon, this phenomenon may be related to the presence of
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other proteins (PIA-independent) that are independent of the ica operon [60]. In this regard,
it is necessary to determine the occurrence of other genes that were responsible for biofilm
formation and apply them to the study of biofilm formation on dairy farm equipment and
utensils [29].

The current study found that the majority of examined isolates carried genes encoding
for some of the studied enterotoxins. In the literature, other authors point to the co-
occurrence of sed and selj genes due to the common location of these genes on the same
plasmid [4,61], which was not confirmed by the results of the present study. However,
Jorgensen et al. [62] showed that more than 50% of S. aureus strains isolated from cow’s
milk and 14.7% isolated from different stages of cheese production possessed enterotoxin
genes, but only seg and sei markers were identified.

4. Materials and Methods
4.1. Sample Collection

A total of 180 samples from various stages of artisanal cheese production from unpas-
teurized milk were collected from farms in the northeastern and southern parts of Poland.
The samples were collected along the cheese production chain and included: raw milk,
semi-finished products (heated milk, curd, and formed cheese), final products, and swabs
from the production environment (from food and non-food contact surfaces).

The following samples were collected from cheese production stages: 18 of raw milk,
72 of semi-finished products (heated milk, n = 18; curd, n = 18; whey, n = 18; brine, n = 18),
18 of final products, and 72 swabs from the production environment, i.e., swabs from:
tank (n = 18), jar (n = 18), form (n = 18), and sink (n = 18). Fluid and solid samples
were collected at volumes of 100 mL or 100 g in sterile plastic tubes. Swab samples
were collected with sterile cotton swabs (Equimed, Cracow, Poland) that were moistened
in sterile peptone water, rolled on the test surface, and placed in tubes with transport
media. The samples were collected in sterile containers and transported immediately to the
microbiological laboratory.

4.2. Isolation and Identification of S. aureus Isolates

For isolation, Baird Parker agar (Merck Millipore, Darmstadt, Germany) was used.
After 48 h of incubation at 37 ± 1 ◦C, one colony with typical morphology for S. aureus
(black and shiny with a thin white border and surrounded by a light area) was selected for
further identification. Firstly, suspected bacterial colonies were subjected to conventional
methods such as Gram-stain, catalase test, and coagulase test.

Next, identification was performed using MALDI-TOF MS (Matrix-Assisted Laser
Desorption/Ionization Time-of-Flight Mass Spectrometry) analysis with a Vitek MS instru-
ment (bioMérieux, Marcy l’Etoile). Before the analysis, isolates were streaked on tryptic
soy agar (TSA) (Merck, Darmstadt, Germany) and incubated at 37 ± 1 ◦C overnight. One
colony was then applied to one spot of the test slide with an inoculating loop, covered with
1 µL of matrix solution (α-cyano-4-hydroxy- cinnamic acid) (bioMérieux, Marcy l’Etoile,
France), and completely air-dried [63].

4.3. Antimicrobial Susceptibility Testing by Microdilution Broth Assay

Antimicrobial susceptibility profiles for the S. aureus isolates were determined by
microbroth dilution in accordance with ISO 20776-1 “Susceptibility testing of infectious
agents and evaluation of the performance of antimicrobial susceptibility test devices. Annex
B: Solvents and diluents for making stock solutions of selected antimicrobial agents” [64]
using 96-well bottom polystyrene plates.

The study used amikacin, tobramycin clarithromycin, vancomycin (Sigma Aldrich,
Darmstadt, Germany), tigecycline, tetracycline, linezolid, nitrofurantoin, oxacillin,
benzylpenicillin, erythromycin, gentamycin, kanamycin, cefoxitin, azithromycin, quin-
upristin/dalfopristin, trimethoprim, trimethoprim/sulfamethoxazole, clindamycin, ri-
fampicin, fusidic acid, and moxifloxacin, chloramphenicol (TOKU-E; Bellingham, WA,
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USA). Stock antibiotic solutions were prepared using recommended solvents and diluents
according to ISO 20776-1, Annex B: “Solvents and diluents for making stock solutions
of selected antimicrobial agents” [1]. On each day of testing, stock antibiotic solutions
were diluted according to ISO 20776-1, Annex C: “Preparation of working dilutions of
antimicrobial agents for use in broth dilution susceptibility tests” [1] to appropriate starting
concentrations for serial dilution in the Mueller–Hinton broth. The concentration applied to
the plate was twice the target concentration. S. aureus isolates were plated on TSA (Merck,
Darmstadt, Germany) and incubated overnight. Next, single pure colonies from overnight
culture were suspended in 0.9% saline solution to obtain turbidity equal to the McFarland
0.5 turbidity. Turbidity was checked using a McFarland densitometer DEN 1B, Bioscan
(Bioscan, Riga, Latvia). Each 50 µL of antibiotic solutions and bacteria solutions was added
to the well of each row. One set of wells was left blank as media controls and another as
growth controls. The assay was performed in triplicate.

The 96-well plates (Promed®, Torreglia, Italy) were incubated at 35 ± 2 ◦C under
aerobic conditions for 20 h. At the end of the incubation, the turbidity of the medium was
observed. The lowest concentration at which no bacterial growth (medium turbidity) was
observed is the MIC. Results were interpreted as susceptible, intermediate resistant, or
resistant. Results were interpreted according to the criteria of the Clinical and Laboratory
Standards Institute guidelines CLSI 2022 [65]. Results were read only when there was
sufficient growth of the test organism (i.e., obvious button or definite turbidity in the
positive growth control) and when there was no growth in the un-inoculated or negative
growth control. The amount of growth in each well was compared with that in the positive
growth control, and the MIC recorded was the lowest concentration of agent that completely
inhibited visible growth. The antimicrobials, dilution ranges, and cut-off values used in the
study are described in Table 5. S. aureus strain ATCC 25923 was used as a quality control.

The Multiple Antibiotic Resistance (MAR) index was calculated and interpreted as
a/b, where “a” means the number of antibiotics to which the isolate was resistant, and “b”
means the number of antibiotics for which the isolate was tested. The calculated formula is
shown below [66]:

MARindex = a/b

4.4. In Vitro Biofilm Production Analysis

Biofilm production was tested using Congo red agar assay using the method described
previously by Arciola [39]. The strains were cultured on TSA plates (Merck, Darmstadt, Ger-
many) and supplemented with sucrose (Sigma Aldrich, Steinheim, Germany) and Congo
red (Sigma Aldrich, Steinheim, Germany). Sucrose was added due to its characteristic
of abundant exopolysaccharide synthesis among Staphylococcus spp. Based on colony ap-
pearance, strains were classified as slime-forming (black colonies) and non-slime-forming
(bordeaux or pink colonies). Additionally, biofilm-producing ability was evaluating using
the crystal violet assay method described previously by Kouidhi et al. [67].

4.5. Detection of Antibiotic Resistance, Enterotoxins, and Biofilm-Associated Genes among Isolates

The occurrence of tested genes was evaluated using a PCR assay with the specific
primers and PCR reaction conditions as described in Supplementary Table S1. For all
isolates, we tested for the presence of the following antibiotic resistance genes responsible
for resistance to cefoxitin: mecA [68], and mecC [69]; tetracyclines: tetM, tetK, and tetL [70,71];
macrolides and lincosamides: msr(A/B), ermA, ermB, and ermC [72]; β-lactams: blaZ [73];
and aminoglycosides: aac(6′)-Ie-aph(2′′)-Ia [74] and aph(2′′)-Ic [75].
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Table 5. Antimicrobials, dilution ranges, and cut-off values used for minimum inhibitory concentra-
tion (MIC) determination in S. aureus.

Antimicrobial Class Antimicrobials Agent Dilution Range
(mg/L)

Cut-Off Values
(mg/L); Resistant > R

Aminoglycosides

Amikacin (AK) 0.25–128 16

Tobramycin (TOB) 0.063–16 2

Gentamycin (CN) 1–4 2

Kanamycin (K) 0.25–128 16

Cephalosporins Cefoxitin (FOX) 1–32 4

Macrolides

Azithromycin (AZM) 0.25–16 2

Clarithromycin (CLM) 0.063–16 4

Erythromycin (E) 0.125–16 1

β-lactams
Benzylpenicillin (BP) 0.063–8 0.125

Oxacillin (OXA) 0.063–16 2

Oxazolidinones Linezolid (LZD) 0.5–16 4

Nitrofurantoins Nitrofurantoin (FT) 2–128 64

Tetracyclines
Tetracycline (TE) 0.063–32 2

Tigecycline (TGC) 0.016–8 0.5

Sulfonamides

Trimethoprim (TMP) 0.125–32 2

Trimethoprim/sulfamethoxazole
(SXT) 0.125:2.375–32:608 2

Glycopeptides Vancomycin (VA) 0.25–64 2

Streptogramins Quinupristin/dalfopristin
(QD) 0.125–8 2

Lincosamides Clindamycin (DA) 0.031–32 2

Rifamycins Rifampicin (RD) 0.002–8 0.06

Steroidal Fusidic acid (FD) 0.5–4 1

Fluoroquinolones Moxifloxacin (MXF) 0.004–8 0.25

Phenicols Chloramphenicol (C) 2–32 8

Genetic determinants responsible for the ability to form biofilm (icaABCD, eno, bap,
agrD, sarA, and sigB) were identified as described previously [76–79].

Among isolated strains, genes coding classical enterotoxins, enterotoxin-like toxins,
exfoliative toxins (eta and etd), and shock syndrome toxins (tstt-1) were evaluated as
described previously [80].

All PCR amplicons were electrophoresed on 1.5% (w/v) agarose (Agarose Basica
LE) in 1× TBE (Tris-borate-EDTA) buffer stained with 0.5 µg/mL Midori green (ABO,
Gdańsk, Poland) and visualized under ultraviolet light using the G-Box system (Syngene,
Cambrige, UK).

4.6. Statistical Analyses

All statistical analyses were performed using GraphPad Prism software version 8.0
(GRAPH PAD Software Inc, San Diego, CA, USA). To determine the relationship between
phenotypic and genetic determinants, the chi-square Pearson test was used. All correlation
analyses were calculated using Pearson correlation. The occurrence of genes was marked as
“1” when the gene was present, and “0” when it was absent, in which case the results of the
Pearson correlation are identical to the point–biserial correlation. Results were considered
statistically significant at p < 0.05. The R statistical platform (https://www.r-project.org)
(accessed on 13 September 2022) and RStudio program (https://rstudio.com/) (accessed
on 13 September 2022) were used for large-scale analysis and data visualization.

https://www.r-project.org
https://rstudio.com/
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5. Conclusions

In this study, it was found that artisanal cheese chain production might potentially lead
to contamination of finished cheeses with multidrug-resistant and virulent S. aureus. The
application of good manufacturing practices and standard sanitation operating procedures
in the farmhouse industry must be stricter. Occurrence of antibiotic-resistant strains in
the food processing chain implies the need to monitor S. aureus to identify patterns of
antimicrobial susceptibility to elucidate antibiotic-resistance transmission routes through
the food chain. In addition, the presence of enterotoxin genes among S. aureus may
be a health concern for consumers of artisanal cheeses. Our results showed that it is
necessary to follow up with hygienic measures to prevent or minimize the contamination
of handmade products.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27196569/s1, Table S1. List of primer sequences used in
PCR reactions. References [61,68,70–74,76–79,81,82] are cited in the Supplementary Materials.
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