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Scale and translation-invariance for 
novel objects in human vision
Yena Han1*, Gemma Roig   1,2, Gad Geiger1 & Tomaso Poggio1

Though the range of invariance in recognition of novel objects is a basic aspect of human vision, its 
characterization has remained surprisingly elusive. Here we report tolerance to scale and position 
changes in one-shot learning by measuring recognition accuracy of Korean letters presented in a flash 
to non-Korean subjects who had no previous experience with Korean letters. We found that humans 
have significant scale-invariance after only a single exposure to a novel object. The range of translation-
invariance is limited, depending on the size and position of presented objects. To understand the 
underlying brain computation associated with the invariance properties, we compared experimental 
data with computational modeling results. Our results suggest that to explain invariant recognition 
of objects by humans, neural network models should explicitly incorporate built-in scale-invariance, 
by encoding different scale channels as well as eccentricity-dependent representations captured by 
neurons’ receptive field sizes and sampling density that change with eccentricity. Our psychophysical 
experiments and related simulations strongly suggest that the human visual system uses a 
computational strategy that differs in some key aspects from current deep learning architectures, being 
more data efficient and relying more critically on eye-movements.

Invariance to geometric transformations can be a huge advantage for a visual recognition system. It is important 
to distinguish between invariance due to the underlying representation, which we refer to as intrinsic invariance, 
and example-based invariance for familiar objects that have been previously seen under several different view-
points. The latter is computationally trivial and is available to any recognition system with sufficient memory and 
large training data. The first one, which may be hardwired or learned during a developmental period, provides a 
learning system the ability to learn to recognize objects with a much smaller sample complexity, that is with much 
smaller training sets1,2. This is not only a big advantage for any recognition system but it is also a key difference 
between today’s best deep learning networks and biological vision systems: the most obvious advantage of chil-
dren versus deep networks is the ability to learn from a (labeled) training set that is several orders of magnitude 
smaller3. The prototypical observation is that we can easily recognize a new object, such as a new face – seen only 
once – at a different scale.

Current deep networks exploit architectural priors for intrinsic invariance. For instance, Convolutional 
Neural Networks, which are widely used in computer vision, have an architecture hard-wired for some 
translation-invariance while they rely heavily on learning through extensive data or data augmentation for 
invariance to other transformations4. Networks that incorporate a larger set of intrinsic invariances, such as 
rotation-invariance, have been proposed5–7. Nevertheless, it is not clear which type of intrinsic invariance should 
be encoded in more biologically plausible models. As a consequence, it is important to characterize the degree 
of invariance in human vision, starting from the simplest invariances– scale- and translation-invariance– and 
evaluate models that reproduce them.

Surprisingly, the available psychophysical results are often incomplete and inconclusive. Most experiments 
have targeted only translation-invariance, and a review8 states that based on experimental data, the role of object 
position is not well understood and there is little evidence supporting the idea that human object recognition is 
invariant to position. Findings from previous studies range from “This result suggests that the visual system does 
not apply a global transposition transformation to the retinal image to compensate for translations”9. to “For 
animal-like shapes, we found complete translation invariance”10, and finally to “Our results demonstrate that posi-
tion invariance, a widely acknowledged property of the human visual system, is limited to specific experimental 
conditions”11. Furthermore little research was conducted on scale-invariance with regard to unfamiliar stimuli 
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(see12,13 for studies on scale-invariant recognition of familiar objects. Although a new set of objects different from 
those in the training phase was tested, the images are still of common objects13).

Physiological data on monkeys, on the other hand, give more consistent results on intrinsic invariance in 
the visual system. A few authors14,15 reported that IT responses were invariant to scale and translation, once the 
monkeys learned a novel object under a single viewpoint. In humans, however, the extent of intrinsic invariant 
recognition is still unknown (see16–18 for studies on primate invariant recognition and19 for human invariant 
recognition of familiar objects).

In the experiments on translation-invariance, it is important to take into account that primate visual acu-
ity depends strongly on eccentricity. Historically the eccentricity-dependence of visual acuity has been studied 
extensively (see20 for a review). In particular, previous studies using letter stimuli21,22 found that visual acuity 
decreases linearly with eccentricity. Therefore, if we consider the range of visual angle in which objects are recog-
nizable for each size, we can define a window of visibility which lower bound is a linear relation between objects’ 
size and position. The linear relation between recognizable scale and position of an object is also consistent with 
the physiological data that shows that the size of receptive fields in the primate visual cortex increases with eccen-
tricity23. The results imply that fine details, as required for instance to recognize letters at a distance, are visible 
only to the small receptive fields in the foveola, whereas coarser details, such as those associated with larger let-
ters, are also visible to the larger receptive fields present at greater eccentricities.

The main questions of this paper can thus be phrased as follows. Does a window of invariance exist within the 
window of visibility? What is its geometry and size? In particular, for visibility there is a linear relation between 
scale and position. Is the same linear relation also valid for the window of invariance? We investigate these issues 
by examining human invariant recognition in the one-shot learning scheme, using previously unfamiliar visual 
stimuli. We also ask whether hierarchical Convolutional Neural Networks can account for the experimental data. 
In particular, we consider Eccentricity-dependent Neural Networks (ENN). ENNs – described more thoroughly 
later – implement the hypothesis that the human visual system has hardwired scale-invariance with the size of the 
receptive fields of the model neurons increasing with eccentricity2. These experiments, together with simulations, 
allow us to characterize invariant recognition arising from intrinsic brain representations.

Results
To study intrinsic invariance we analyzed results for recognition of unfamiliar letters in one-shot learning. For the 
one-shot learning task, we flashed a target Korean letter and then a test Korean letter, which was either the same as 
the target or a different distractor, to non-Korean subjects who were unfamiliar with Korean letters. To investigate 
invariant recognition to transformations, we varied scale and position of the letters. When testing recognition in 
the peripheral visual field, we randomized to which side of the visual field letters were presented to prevent that 
subjects predict the letters’ position, fixate on the stimuli, and observe them with their foveal vision. We limited 
the presentation time to 33 ms to avoid eye movements. In Fig. 1 we depict the experimental set-up and a set of 
Korean letters used.

Experiment 1: Scale-invariance.  We tested scale-invariant recognition by flashing both target and test 
Korean letters at the fixation point in the center of the screen. First, we used 30′ and 2° letter size. In Fig. 2 we 

Figure 1.  (A) Sample stimuli. Top row: shows target letters, and Bottom row: shows distractor letters paired with 
the target above. (B) Experimental design. Top: illustrates a sample trial of scale-invariance experiments, and 
Bottom: illustrates a sample trial of translation-invariance experiments. The test letter was either the same as the 
target or its pairing distractor letter. (C) Experimental procedure. Each target and test letters was presented for 
33 msec after a fixation dot was presented for 1 sec at the center of the screen.
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compare the three conditions when the size of target and test letters were (30′, 30′), (30′, 2°), and (2°, 30′), respec-
tively, in which the first number of the pair refers to the size of the target letter and the second indicates the size of 
the test letter. Mean accuracy under all three conditions was higher than 0.85, which is significantly above chance 
(0.50). Changing the letter size did not have any statistically significant effect on performance 
( = . = .F p(2, 18) 0 94, 0 41).

We performed a second set of experiments with a greater range of change in scale, in which we tested invari-
ance of recognition with respect to 10-fold increase and decrease of letter size with 30′ and 5° letters. Results were 
similar to those from the first setting. Mean accuracy was above 0.83, which is significantly higher than chance, 
and the difference in accuracy among the three presentation conditions was statistically non-significant 
( = . = .F p(2, 18) 0 80, 0 46).

After observing that visual recognition is robust to scale change in one-shot learning, to compare the range of 
invariant recognition with that of recognition of familiar objects, we tested native Koreans under the same condi-
tions. The results confirmed that the task was not challenging to Koreans. Mean accuracy for all conditions was 
above 0.92 (Fig. 2 bottom). When these results were compared with non-Koreans’ data, we did not find any sig-
nificant interaction between presentation conditions and whether the subjects were Koreans or not (combinations 
of 30′ and 2° letters: = . = .F p(2, 22) 0 03, 0 97; combinations of 30′ and 5° letters: = . = .F p(2, 22) 0 23, 0 80). 
We report results using another behavior performance metric d′ in Fig. S3, which were consistent with the accu-
racy results.

Experiment 2: Translation-invariance.  Next, we investigated translation-invariance by shifting the posi-
tion of test letters from target letters. We divided the conditions into two categories: learning at the central visual 
field and learning at the peripheral visual field, based on the position where the target object is learned. We show 
recognition accuracy at different positions for each scale, which displays the relationship between scale, position, 
and degree of invariance in Fig. 3 (performance d′ is reported in Fig. S4). More details on the experimental set-up 
are provided in the SI methods section. Recognition accuracy is shown as bar plots in Fig. S1. We also performed 
similar analyses as for scale-invariance by comparing invariant recognition accuracy with baseline conditions 
(same position). Unlike scale-invariance experiments, this yielded statistically significant differences in some 
cases, which suggests limited translation-invariance. We report these results in Fig. S1 and here we further analyze 
the properties of translation-invariance.

Since in a natural setting, humans are able to observe the unknown objects with their fovea, we first focus on 
analyzing the central learning condition (Fig. 3 top). For all scales, recognition accuracy was the highest at the 
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Figure 2.  Scale-invariance experimental results. Target and test letters were always shown at the center of the 
screen, only their size was varied, and subjects responded same or different. Error bars represent standard error 
(Number of subjects n = 10 for non-Koreans and n = 3 for Koreans conditions).
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center, when there was no displacement, and decreased with increasing distance from the center of the visual 
field. In addition, the range of translation-invariance increased with the scale of stimuli. While recognition accu-
racy was maintained high at a position as far as 7° in the periphery for 2° letters, it dropped significantly even at 
1° for 30′ letters. Considering the area where recognition accuracy is above a threshold (e.g. 0.85) as the range 
of invariance, we observed a roughly V-shaped area. We found the same tendency that recognition accuracy 
depends on eccentricity and scale in peripheral learning conditions.

Additionally, overall recognition accuracy was significantly lower under peripheral learning than under cen-
tral learning, particularly when there was a change in resolution of test letters from that of target letters (Fig. 3 
Peripheral window) i.e. translation-invariance was more limited under peripheral learning. In a related setting 
with peripheral learning, when target letters are learned in the peripheral visual field and test letters are pre-
sented at the same distance from the center but in the opposite side of the visual field, the range of invariance 
was less limited. Note that under this condition, the resolution of letters did not change and only their position 
was changed to the opposite side of the visual field. The corresponding window of invariance (Fig. 3 Opposite 
window) was still more limited than the results from central learning conditions.

Does the range of invariance extend with experience?  To compare the properties of intrinsic translation-invariance 
with those observed in subjects with experience, we tested native Korean subjects with the same experimental set-up 
as for the above experiments, displayed in Fig. 1 (performance d′ is reported in Fig. S5). For Korean subjects, we 

Figure 3.  Windows of invariance for different conditions. Recognition accuracy from translation-invariance 
experiments is shown in a color scale. The central window (top) indicates results for learning target letters at the 
center of the visual field and being tested at another position in the peripheral visual field. Recognition accuracy 
is shown at corresponding scales and eccentricities of test letters. The peripheral window (bottom left) is for 
the reverse order where target letters are learned in the peripheral visual field and tested at the center. For this 
condition, as the position of target letters is varied and test letters are fixed at the center, we plot recognition 
accuracy at the learned scales and eccentricities of target letters. The opposite window (bottom right) shows 
results for learning target letters at a position in the peripheral visual field and being tested at the same distance 
from the center but in the opposite side of the visual field. In all plots, the tested conditions are marked with 
circles and other data points are estimated using natural neighbor interpolation (Number of subjects n = 9 for 
30′ letter, n = 11 for 1° letter, and n = 10 for 2° letter size conditions).
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measured their recognition accuracy using the furthest position tested for each size among the conditions used for 
non-Korean subjects (30′ letters at eccentricity D = 3°, 1° at D = 2.5°, and 2° at D = 7°). The mean accuracy perfor-
mance for all three letter sizes was higher than 0.85 (Fig. S2), which confirms that the conditions for which we tested 
translation-invariance become trivial when the subjects have previous experience.

The above set of experiments suggest that the range of recognition is wider when the stimuli are familiar than 
in one-shot learning, and that recognition performance improved with experience and exposure to the stimuli at 
different positions. To further investigate the properties and tendency of visibility window, we tested eccentricities 
D = 5°, 7° for 30′ letters. Compared to non-Koreans’ results, we can confirm that overall recognition accuracy of 
Korean subjects is higher in Fig. 4. In addition, as in the case of testing non-Korean subjects, the range of visibility 
window was wider for central learning than for peripheral and opposite learning conditions.

Do Deep Neural Networks capture the properties of invariant recognition?  To understand the underlying 
brain computation that enables human invariant recognition characterized in psychophysical experiments, we 
compared the experimental data with computational modeling results. In particular, we investigated whether 
invariance properties observed in human one-shot learning can be learned by examples seen by the model or 
alternatively, requires an intrinsic architecture for them. We used Convolutional Neural Networks (CNN) to 
simulate the experimental results, as these models showed a significant success in explaining visual processing in 
the primate ventral stream24–27 and matching behavioral patterns of object recognition with humans28,29. A trivial 
way to achieve invariant recognition, widely adopted in computer vision field, is to use data augmentation to train 
CNNs4. Although models can reach human-level invariant recognition performance for familiar objects with this 
method, the strategies of CNNs in using diagnostic features were shown to be different from humans30. Moreover, 
it is unknown whether invariant recognition can be transferred to a new category of stimuli, unseen in the train-
ing phase. To show the limitation of this example-based invariance in one-shot learning, we compared CNNs 
with Eccentricity-dependent Neural Networks (ENN)31–33. ENNs, depicted in Fig. 5, are modified from CNNs 
to have scale-invariance built into their architecture and have dependence of receptive field size on eccentricity, 
consistently with physiology data23.

Figure 4.  Windows of visibility. They are computed in a similar way as the windows of invariance (Fig. 3), but 
obtained from testing Korean subjects who are familiar with the visual stimuli (Number of subjects n = 3).
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Both CNNs and ENNs were trained on MNIST handwritten digit dataset34 with data augmentation of various 
scales and positions. With this training, the networks should develop top-layer features capable of processing 
character-like stimuli. Those features are then used to evaluate the similarity of two Korean letters, as in the psy-
chophysics experiments. Two Korean letters are considered to have the same identity if their associated features 
have Pearson correlation higher than a threshold. Here, we report results from applying a different threshold that 
maximizes accuracy for each condition. We also included distractor letters in testing so that we evaluate selectiv-
ity of the models.

Simulation 1: Scale-invariance.  As described earlier, the psychophysical experiments show that the human visual 
system is immediately invariant to scale change in one-shot learning. We first tested whether the results with 
ENNs, which are of course designed to be scale-invariant, fit the data. We evaluated the degree of scale-invariance 
for Korean letters, which the models did not see during training. As expected, accuracy when the target and test 
letters are of different size turned out to be significantly higher than chance (Fig. 6 left). Although classification 
accuracy for testing invariant conditions was lower than that for the baseline condition, when the letter size 
does not change, this was partly due to the difference between biological systems and computational models. In 

Figure 5.  (A) Sampling points of the early visual cortex in the plane of eccentricity and scale, both in visual 
degrees, reproduced from32. Each ball represents a neuron, and there is the same number of neurons at all scales. 
The neurons at a larger scale cover a larger eccentricity than those at a lower scale. (B) Multi-scaled centered 
crops of an input image. The figure shows 4 crops among 10 that are used as the input to Eccentricity-dependent 
Neural Network. From the left to the right, the scale of input crops becomes larger, which are seen by larger 
receptive fields. (C) Eccentricity-dependent Neural Network. The input to the model is simulated visual field 
sampled at multiple resolutions as shown in (B), and the model is composed of convolutional layers followed by 
spatial and scale pooling. For simplicity, we visualize a model with one convolutional and pooling layer.
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simulations, since there was no noise, the input images for target and test letters were exactly the same under the 
baseline condition, which resulted in 1.0 classification accuracy. Overall high accuracy in the testing shows that 
scale-invariance properties of ENN are consistent with the human data.

We then asked whether a model which has scale-invariance (example-based) for familiar objects shows intrin-
sic scale-invariance for a new set of objects. To test this hypothesis, we evaluated CNNs for Korean letters. Note 
that these models were scale-invariant for the trained MNIST dataset. The results obtained with the CNN model 
(Fig. 6 right) show that classification accuracy when the letter size changes was higher than chance but signif-
icantly lower than accuracy for ENN and psychophysical data. This limitation suggests that CNNs with data 
augmentation cannot account for scale-invariance in one-shot learning.

Simulation 2: Translation-invariance.  In our psychophysical experiments, the degree of translation-invariance 
increases with letter size, both under central and peripheral learning. In our simulations (Fig. 7 bottom), 
CNNs were not able to replicate the property of limited translation-invariance. Accuracy for larger stimuli was 
higher than that for smaller stimuli, but it did not decrease with eccentricity. These results were expected due to 
translation-invariant model prior of the CNNs. For ENNs (Fig. 7 top), on the other hand, accuracy decreases 
with eccentricity while the range of invariant recognition increases with the size of letters, consistently with the 
psychophysical results. As in psychophysical results, if we choose a threshold classification accuracy and draw 
an accuracy contour, we can observe a V-shaped area of invariance. (We report raw data in Fig. S7. Window of 
invariance for ENN (Fig. 7 top) is based on the linear regression of the raw data).

Furthermore, we investigated whether the models can reproduce the asymmetry in recognition rates between 
central and peripheral learning. The first idea we explored is that the one-shot learning stage stores templates 
obtained from processing the visual field at multiple scales. Thus, when target letters are presented at the center 
of the fovea, the associated templates contain all the full range of spatial frequencies. However, when target letters 
are shown at an eccentricity, since only the central visual field is sampled at high resolution, the templates are 
effectively low-pass versions of the foveal ones. Therefore, an explanation of the asymmetry between central and 
peripheral learning may start with the different range of resolutions available for templates memorized in the two 
situations of foveal vs. “peripheral” learning.

Since CNNs process images at one resolution only, they are unable to account for positional asymmetry in 
learning, as shown in Fig. 7. In our simulations, features extracted by a CNN by removing the fully connected 
layer were used to compute Pearson correlation between target and test presentations to evaluate the identity of 
letters. Thus, there cannot be any asymmetry as a function of the order of the presentations. Within the class of 
ENN models, we use a network that uses features extracted from all scale channels to “learn” the representation 
for target letters. In Fig. 5C, these features are the output of convolution and spatial pooling. For the test it uses 
pooling over the scale channel features. The comparison between stored template and new image is then carried 
out as follows. The scale channel of the stored letter that has the highest correlation with the test letter is chosen, 
and then a threshold is applied. The idea is that once we view a target letter with a specific cutoff in spatial fre-
quencies, templates at multiple resolutions lower than that resolution in memory become available: each one can 
then be compared with the features of the test letter. Clearly the computation of the similarity between target and 
test is now asymmetric, unlike the original model of using features pooled over different scales and positions for 
the learning stage32 (Results from using the original model are provided in Fig. S8. Scale-invariance simulations 
using the modified metric are shown in Fig. S6; results are consistent with the conclusion from simulation 1). The 
results of the simulation showed that accuracy for peripheral learning conditions was lower than that for central 
learning conditions, similarly to the psychophysical data.

Figure 6.  Simulation results on scale-invariance. Scale-invariant representation is assessed by comparing the 
features of two Korean letters, unseen by models in the training phase, and classifying the letters the same or 
different, independent from their size. Both ENN and CNN are trained on MNIST handwritten digit dataset34 
with data augmentation of various scales and shifts. The trained models are used to extract features for Korean 
letters. Two Korean letters are considered to have the same identity if their associated features have Pearson 
correlation higher than a threshold. For each condition, we select a threshold that maximizes the classification 
accuracy.
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One may consider it may be the case that our method finds the optimal threshold that differentiates letters of 
the same or different identity, even when the underlying representation between translated objects are actually 
not being more dissimilar with eccentricity. We additionally confirmed that this is not the case by assessing the 
raw data, which is Pearson correlation between the same Korean letters at different positions (Fig. S9). The results 
verified that correlation between the representation becomes lower with eccentricity.

Discussion
While it is widely agreed that humans are able to process complicated visual information invariant to transforma-
tion, so far it remained rather unclear whether this is possible because of previous exposure to the specific visual 
stimuli at different viewpoints or whether the visual system computes invariant representations for novel objects. 
To address the issue, we characterized the degree of invariance to transformation in one-shot learning, using 
stimuli for which the subject had no previous experience. We found that there is significant scale-invariance in 
recognition. We also found limited translation-invariance that increases with decreasing spatial frequency con-
tent of the stimuli, as expected (see for instance1). Overall, as a function of eccentricity, the window of invariance 
is narrower than the window of visibility (i.e. acuity). Further, we observed an asymmetry between learning in the 
fovea and testing in the periphery with respect to the opposite sequence of training and testing.

Our experimental settings controlling familiarity to the objects as well as position and size of them clarify 
and extend previous studies on invariant recognition. Previous studies9–11 examined invariant recognition to 
translation when visual stimuli were first learned with the peripheral vision. However, unlike those experimental 
conditions, humans can freely observe unknown objects, and they mostly use foveal vision for learning target 
objects, since it is almost exclusively in a laboratory setting that peripheral training may happen. Therefore, our 
results on the asymmetry between central and peripheral one-shot training suggests a difference between natural 
and unnatural conditions (we refer as natural condition when the object is centered at the fixation point, and 
unnatural otherwise). While conclusions from previous studies on very limited position-invariance are drawn 
from peripheral training condition only, we observed stronger invariant representations in a more natural setting. 
Also, by testing two subject groups who differed in familiarity to the visual stimuli, we confirmed that invariance 
depends on familiarity with the visual stimuli, consistent with10.

We compared the experimental results with computational models based on neural networks. One of our key 
contributions is that we conclude that standard CNNs cannot account for these experimental data on invariance, 
whereas a related class of neural networks, that we call ENNs, can. This suggests that ENNs might be better suited 

Figure 7.  Windows of invariance for ENN and CNN. We test Korean letters in a same-different task, where 
the position of the letters varies. Top row: shows classification accuracy for ENN and bottom row: shows that for 
CNN in an interpolated color scale. For both models, the central window indicates results for using features of 
target letters placed at the center of the visual field and using features of test letters at a position in the peripheral 
visual field. The peripheral window shows results for the reverse order of testing. Conditions we tested are 
marked with circles.
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for computationally modeling the visual cortex than CNNs, which have been widely used for modeling the ven-
tral stream24–27. Furthermore, our results suggest a rather different computational strategy from the one used in 
these models. In particular, the limited invariance to eccentrically located targets implies that several quite small 
“effective images” at different resolutions are available to later visual processing rather than a single large image at 
a fixed resolution32,35. If objects are recognized at multiple resolutions in these effective images – i.e. they are not 
bound to any specific resolution– the models become scale-invariant.

The limitation of CNNs in contrast with ENNs in explaining scale-invariant recognition highlights the signif-
icance of an architectural prior (innate or developed during an early stage of visual experience, see1,2). CNNs are 
designed under the assumption that objects should have the same features regardless of their position (assuming 
antialiasing is taken care of properly as convolutional architectures designed without considering the classical 
sampling theorem can also suffer from aliasing effect36). For other transformations, it is in principle possible that 
the models learn an invariant representation through rich training data. They would then be able to extract fea-
tures invariant to transformations. A theory describing architectures capable of this feature was in fact developed 
in1. We found that, however, invariant recognition in CNNs is highly constrained to the exact type of dataset that 
are used for training, and there is very limited transfer invariance to other datasets, even when they are similar. 
This suggests that CNNs mainly develop example-based invariance, limited to a memorized set of data. Our psy-
chophysical results, on the other hand, indicate that human invariant recognition supports an alternative design 
choice which is consistent with neural networks that enforce scale-invariant representation, as in ENNs.

Although our results support built-in scale-invariance for computational models, the exact implementation 
details of the ENNs architectures tested here need to be further verified. In particular, pooling all scales at the 
last layer gives a high degree of scale-invariance, but this may well be different from the operations performed 
in the visual system. The dynamics of invariant recognition of familiar objects in the human visual system were 
studied in19, and the study suggested that the human visual system develops invariant representation in stages 
corresponding to different visual areas in the ventral stream. Thus, comparing neural recordings from the ventral 
stream with different layers in the models will be necessary for refining models that are fully consistent with the 
brain computation.

Additional future direction of the study would be investigating diagnostic critical spatial frequency in ENNs 
for object recognition. It was previously observed that critical bands of spatial frequency were scale-dependent 
except for face images37. The critical spatial frequency was measured by testing visual recognition of objects 
embedded in noise. Though the scale channel selected in ENNs depends on the object size, our results predict 
that critical frequency is scale-invariant since spatial frequency is normalized by the object size. Due to the dif-
ferent experimental setup, however, it is hard to directly compare our results with previous studies on spatial 
frequency. In particular, it is unclear how a background of noise would affect the scale channel selection in ENNs. 
Recognition of such images may involve multiple frequency channels to separate target objects from background. 
Therefore, analyzing the behavior of ENNs for more complex images will be relevant.

Our work on ENNs have implications for eye-movements. ENNs show greater positional invariance to 
low-resolution images, which suggests a particular strategy for driving saccades, from low to high frequency 
channels. Although for each fixation only a small fragment of the input image is processed at high-resolution, 
information about the peripheral visual area extracted by low-resolution channels enables the models to plan the 
next saccade towards an informative position in the visual field. In this way an image can be efficiently processed 
without the need of processing the entire visual field at high-resolution38.

The computational strategy of ENNs also implies more robustness to clutter and attention to small parts of 
an image. It was showed33 that a model similar to ENNs does not suffer from crowding at the fovea, regardless 
of background. On the contrary, CNNs fail to recognize the target if the background at testing is different than 
the background used at training. This suggests that ENNs in foveal learning condition are able to learn the target 
object independently of the background, and thus are more robust to clutter. In fact, for detection tasks, where 
localizing a small target in complex scenes is important, extracting features at multi-scale has proven particularly 
useful39. Due to the nature of the detection networks which are biased to identify only familiar object catego-
ries39–41, this class of models are not comparable with human psychophysical data obtained from one-shot learn-
ing (of course, another discrepancy is that these models do not have resolution decreasing with eccentricity). 
However, we expect that if the models are modified to learn new additional categories easily, those with explicit 
multi-scale sampling39 would require fewer examples than uniform sampling to learn to detect a new object as in 
ENNs. Moreover, after some training period of the object, multi-scale channels open up the possibility of select-
ing the channel that is the most relevant to the contextual information, as suggested by the human behavioral 
studies by Eckstein et al.42.

Methods
Psychophysical Experiments.  Stimuli and Setup.  To create the stimuli set we used 27 Korean letters as 
target objects, each of them paired with another Korean letter as distractor, depicted in Fig. 1A. For each trial, a 
sequence of one of the 27 target letters was shown first as target, followed by the test letter, which is the same letter 
or its pairing distractor. The letters were black Arial presented in different positions and sizes on a uniform white 
background in a 60 Hz Dell U2412M monitor. We used the Psychophysics Toolbox43 for MATLAB44 running on a 
Linux computer. Subjects were seated at a distance of 1.26 m with a chin rest for stable viewing.

Experimental Design.  The experimental protocol was approved by the Massachusetts Institute of Technology 
Committee on the Use of Humans as Experimental Subjects (COUHES), and all experiments were carried out 
in accordance with the approved guidelines and regulations. Subjects provided informed written consent before 
the experiment.
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Scale-invariance Experiment.  To test scale-invariance, both target and test letters were presented at the 
center of the monitor, and the size of letters was varied. We pursued two blocks of experiments to test invariance 
to scale in recognition. In the first scale experiment block we tested letter sizes of 30′ and 2°. Specifically, the 
combinations set of target and test letter sizes were (30′, 30′), (30′, 2°), and (2°, 30′), in which the first element 
represents the target letter size, and the second the test letter size. Similarly, in the second scale experiment block 
we used letter sizes of 30′ and 5° with combinations of target and test sizes (30′, 30′), (30′, 5°), and (5°, 30′), respec-
tively. The same group of subjects participated in both blocks of scale experiments, with at least a day apart to 
ensure that the subjects did not remember the stimuli set.

Translation-invariance Experiment.  Translation-invariant recognition was evaluated by keeping the size of 
target and test letters constant and changing the position of test letters with respect to the position of target letters. 
We divide the tested conditions into two categories:

	(1)	 Learning in central vision, where target letters were presented at the subject’s visual fixation point, which 
was in center of the monitor. In this condition, test letters were presented in the same position as the target 
(represented as (0 → 0)) or at the subject’s visual periphery. We indicate the latter as (0 → D), in which 0 is 
the target position at the center of the screen, and D indicates the eccentricity in visual degrees of the test 
letter position from the fixation point.

	(2)	 Learning in peripheral vision, where target letters were presented at the subject’s visual periphery. Then, 
the test letter appeared at the same eccentricity as the target letter (represented as (D → D)), at the center, 
(D → 0), or at the opposite side with the same eccentricity as the target letter, represented as (D → Opp).

We tested both conditions of central and peripheral vision with: i) eccentricities D = 1, 2, 3° with constant 
letter size of 30′, ii) eccentricities D = 2, 2.5° with letter size of 1°, iii) eccentricities D = 2, 4, 5, 7° with letter size of 
2°. We tested larger letters for a wider range of displacement to reflect that the range of visibility increases linearly 
with the letter size21.

Since translation-invariance experiments had more conditions than scale-invariance experiments, and the 
same set of 27 Korean letters was used, the set was repeated in two separate sessions. First, subjects were tested on 
27 trials and instructed to come back for the second session after taking a break of at least 40 minutes, to ensure 
that they did not remember the letters.

Also, we designed translation-invariance experiments such that the same group of subjects participated in 
two or three eccentricities of displacement for the same letter size, again with at least a day apart between two 
displacement conditions. The repetition was limited to three times to prevent subjects from developing familiarity 
with the stimuli, while enabling us to isolate the effect of displacement on the degree of invariance from subjects’ 
individual difference. Specifically, the same group of subjects participated in all conditions for 30′ letter size, and 
another group in all conditions for 1° letter size. For 2° letters, the same subject group was tested for D = 2° and 7°, 
and another group for D = 4° and 5°. The subjects that participated in translation-invariance experiments were 
different from the group participated in the scale-invariance experiments.

Participants.  In order to examine the degree of invariance in a one-shot learning task, it is crucial that the 
stimuli were novel objects to subjects. We recruited participants in the experiments who were not famil-
iar with Korean letters. All subjects had normal or corrected-to-normal vision. We tested 10 subjects for the 
scale-invariance experiments, and between 11 and 12 subjects for the translation-invariance experiments (for 30′ 
letter conditions: 12 subjects, 1° letter conditions: 11 subjects, 2° letter conditions for D = {2°, 7°} and D = {4°, 5°}: 
12 and 11 subjects, respectively). If a subject performed worse than 0.6 accuracy performance for the trivial con-
dition, where target and test letters were the same size presented at the center, (0 → 0), the subject was excluded 
from further analyses. Since the same group of subjects participated in two or three displacement conditions for 
comparison, if a subject performed below the baseline criteria for one displacement condition, the subject was 
excluded from other displacement conditions as well. After excluding the subjects below the baseline criteria, for 
scale-invariance experiments, 10 subjects were included. For translation-invariance experiments, 9 subjects per 
condition were included for 30′ letter conditions, 11 subjects per condition for 1° letter size, and 10 subjects per 
condition for 2° letter size.

We also tested 3 Korean subjects to confirm that the designed task is trivial and find the range of visibility 
window for subjects who have prior experience and memory of Korean letters. Note that for Koreans, we used the 
same experimental setup and task; yet, it was not testing invariant object recognition in one-shot learning, but 
visibility of the letters in different sizes and positions.

General Experimental Procedure.  Accuracy for recognizing letters was measured in a same-different task. 
Subjects were instructed to first fixate a black dot at the center of the screen. After 1 sec, the fixation dot disap-
peared and a target letter was presented for 33 msec, followed by a white screen for 1 sec. Then, the fixation dot 
reappeared for 1 sec, followed by a test letter for 33 msec, again followed by a white screen for 1 sec. Finally, the 
question of the task appeared, in which the subject was asked if the target and test letters displayed previously 
were the same or different. In Fig. 1C a sample sequence of letter presentations is shown. Every trial was com-
posed of new letter pairs, and randomly choosing if the test letter was the same as the target or the distractor. The 
presentation time was limited to 33 msec to avoid eye movements, which ensured that the subjects would view 
the letters at the designed eccentricity.

In both scale- and translation-invariance experiments, the order of stimuli was randomized. The number of 
same and different trials as well as presentation on the left and right visual field was balanced. Each condition had 
the same number of trials.
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Model Experiments.  To contrast the human behavioral data on invariance with computational modeling 
results, we evaluate Eccentricity-dependent Neural Network (ENN), which was proposed by32 and previously 
studied in31,33. In particular, we demonstrate that ENN is robust to change in scale, and validate that it captures the 
major characteristics of translation-invariance observed from human experimental data. We test a Convolutional 
Neural Network (CNN) as a control to show that invariance properties of ENN, especially scale-invariant rep-
resentation of novel stimuli, are derived from the architectural design of the model rather than a consequence of 
training with multiple scales and positions.

Models.  Eccentricity-dependent Neural Network (ENN).  ENN (depicted in Fig. 5) builds on two key prop-
erties of retinal sampling32. One is that there are receptive fields of different sizes for a specific position45, and the 
other one is that the size of receptive fields for each position increases with eccentricity23. The model achieves 
invariance through weight-sharing and pooling across different positions and scale channels. As we hypothesized 
that the model captures invariant representations to transformations, we tested this model for the comparison 
with behavioral data on invariant object recognition.

On the implementation level, ENN is based on a CNN.  The primary difference between ENN and CNN 
is that the input to ENN is multi-scaled centered crops of the input images. Figure 5B shows an example set of 
multi-scaled crops of input images. This way, the center of an image, which corresponds to the foveal region, is 
sampled at multiple resolutions. The peripheral part of an image is sampled only at a low resolution. Different 
scale channels have shared weights and in addition to spatial pooling, the model has pooling over different scales. 
For the results of simulations we partly used the implementation provided by33.

ENN that we tested has four layers and a fully connected layer at the end, resembling V1-V2-V4-IT-PFC 
in the human ventral stream. The size of stimuli or receptive fields are measured in pixels, so we introduced a 
hyperparameter for the conversion between number of pixels and visual angle, which is 450 pixels to 1°. With 
this correspondence, we could compare modeling results with human data more directly. For instance, to extract 
features of 30′ letters, we placed letters of size 225 pixels in the simulated visual field for the model. As discussed 
previously, the input to the model is multi-scaled centered crops of images, and we use 10 crops, increased in size 
exponentially by a factor of 1.5. The entire visual field processed by the model is approximately 19°.

We tested different convolutional and pooling schemes over space and scale, and here we have reported the 
one that matched human behavioral data most closely. The first layer has a kernel size of 11 × 11 pixels convo-
lution with a stride of 4 pixels and 5 × 5 pixels spatial pooling with a stride of 2 pixels. Other layers have a con-
volutional kernel size of 5 × 5 pixels with a stride of 1 pixel and a pooling kernel size of 5 × 5 pixels with a stride 
of 2 pixels. When scale-pooling was used on top of spatially pooled features i.e. to explain scale-invariance or to 
extract features of the test letters, 10 scale channels were max-pooled at the last layer.

When choosing parameters of the network, we confirmed that ENN and human pyschophysical data empir-
ically matched by comparing the window of visibility for digit recognition. For 30′ digits, it was measured that at 
around 10° from the center of the fovea, recognition accuracy was 67% for humans22. If we do a linear interpo-
lation for approximation, accuracy would be about 77% at around 7° for the same size of digits. Using our con-
version ratio between pixels and visual angle, we observed accuracy of 72% for 30′ MNIST digits at 7° for ENN, 
roughly matching the human accuracy. This conversion ratio together with the parameters in the network are also 
consistent with the theoretically estimated size of the smallest receptive fields46.

Convolutional Neural Network (CNN). The parameters used in CNN were the same as ENN, except that 
there was no multi-crop input channels or pooling over scales, since the model had only one scale channel. The 
resolution of the input to the model was chosen such that it matched that of the 5th scale channel in ENN, which 
is its mid-resolution.

Statistical Analysis.  No statistical methods were used to predetermine sample sizes (number of subjects), but 
our sample sizes are similar to those reported in previous studies using similar experimental procedures (studies 
testing recognition of familiar letter stimuli21,22,47 and testing invariant recognition of objects10,13). We analyzed 
the percentage of correct responses, combining both same and different trials. For all parametric tests, data dis-
tribution was assumed to be normal, but this was not formally tested. To analyze the difference in mean accuracy 
among three or more conditions, we computed analyses of variance (ANOVAs) or repeated measures ANOVAs, 
depending upon whether the data were acquired from different group of subjects or the same groups, respectively. 
Correlation between features in simulations was Pearson’s r.

Data availability
The data and the code supporting the findings of this study are available from the corresponding author upon 
reasonable request.
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