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Mini Review (Part I): An Experimental 
Concept on Exercise and Ischemic 
Conditioning in Stroke Rehabilitation
Qingzhu Wang1, Melissa Wills2, Zhenzhen Han1,3, Xiaokun Geng1,2,3, Yuchuan Ding3,4

Abstract:
Stroke remains a  leading cause of adult death and disability. Poststroke rehabilitation  is vital  for 
reducing the long‑term sequelae of brain ischemia. Recently, physical exercise training has been 
well established as an effective rehabilitation tool, but its efficacy depends on exercise parameters 
and the patient’s capacities, which are often altered following a major cerebrovascular event. Thus, 
ischemic conditioning as a rehabilitation intervention was considered an “exercise equivalent,” but 
the investigation is still in its relative infancy. In this mini‑review, we discuss the potential for physical 
exercise or ischemic conditioning and its relation to angiogenesis, neurogenesis, and plasticity in 
stroke  rehabilitation. This allows  the  readers  to understand  the context of  the  research and  the 
application of ischemic conditioning in poststroke rehabilitation.
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Introduction

Stroke is a leading cause of adult death and 
disability worldwide.[1,2] Consequently, it 

is vital to improve the quality of life and 
functional prognosis of stroke victims. 
Stroke rehabilitation is the medical specialty 
that integrates a variety of techniques to 
maximize patient recovery following a 
stroke.[3,4] Recent research indicates that 
increases in angiogenesis, neurogenesis, and 
plasticity such as synaptogenesis, dendrite 
remodeling, and axonal reorganization 
occur during the recovery phase after a 
stroke.[5‑7] Modulating and optimizing 
these processes of the recovery phase can 
minimize functional loss and enhance 
rehabilitation in patients who have 
experienced stroke. Physical exercise is 
a behavioral intervention that is known 
to enhance stroke rehabilitation through 
biochemical mechanisms.[8,9] However, the 

benefits of physical exercise are variable 
and are highly dependent on the patient’s 
abilities, which can be limited by the early 
complications of a stroke. Moreover, 
ischemic conditioning has been proposed 
as an accessible therapy that could confer 
the benefits of exercise with minimal 
dependence on these limitations.[6] Both of 
these nonpharmacological techniques for 
rehabilitation are low cost and noninvasive, 
and therefore merit to have their benefits 
explored in great depth. This mini‑review 
intends to discuss the potential for physical 
exercise or ischemic conditioning and its 
relation to angiogenesis, neurogenesis, 
and plasticity in stroke rehabilitation, as 
well as elucidate the potential for clinical 
application.

Effect of Physical Exercise on 
Neurorehabilitation

Neurorehabilitation
Physical exercise can play a major 
nonpharmacological role in the rehabilitation 
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of the poststroke patient, as it can protect against 
plasticity impairments caused by the stroke as well 
as stimulate angiogenesis and neurogenesis.[10‑12] Ding 
lab reported that motor training, particularly motor 
skill training involving balance and coordination, 
facilitates a uniquely lateralized synaptogenesis in 
the thalamus. Analogously, involuntary, voluntary, 
and forced exercises induced high expressions of 
postsynaptic density 95 (PSD‑95), synapsin I (SYN), 
microtubule‑associated protein 2 (MAP‑2), and Tau, 
thereby reducing the loss of dendrons and neurons in the 
hippocampus after stroke and improving cognition.[13] 
PSD‑95, SYN, MAP‑2, and Tau were identified as the 
markers of synaptogenesis.[14‑16] In addition, Song‑Hee 
Cheon and Mizutani proposed that physical exercise 
increased the expression of growth‑associated protein 
43 (GAP‑43), a known plasticity protein,[17] in the 
hippocampus or cortex surrounding the ischemia and 
resulted in enhanced cognition and better functional 
rehabilitation.[18,19] Likewise, treadmill exercise promoted 
both synaptogenesis and axonal growth through 
synaptosomal‑associated protein‑25 and glial fibrillary 
acidic protein expression in the cerebellum and thereby 
improved motor coordination.[20] Previous studies have 
found that forced exercise at moderate to high intensity 
increases brain‑derived neurotrophic factor (BDNF), 
insulin‑like growth factor‑I (IGF‑I), nerve growth 
factor (NGF), and vascular endothelial cell growth 
factor (VEGF) in multiple brain regions at least in animal 
models of stroke.[21‑23] BDNF, IGF‑I, NGF, and VEGF 
confer neuroplasticity and promote neurogenesis and 
cerebral angiogenesis.[21,24] In addition, treadmill exercise 
was found to significantly the expression of CD200 and 
CD200R, which are known to inhibit microglial activation 
and inflammation and promote neurogenesis, within the 
hippocampus and cortex.[25] These findings highlight the 
benefit of physical exercise in poststroke rehabilitation 
and the nuances suggest that various forms of exercise 
may be beneficial for the rehabilitation of specific cerebral 
structures and may therefore be preferentially applied to 
patients depending on the nature of their cerebrovascular 
accident.

Double‑edge sword of exercise in rehabilitation
When the in vitro results are applied in the clinical 
setting, the efficacy of physical exercise rehabilitation is 
dependent on other variables, such as temporal measures 
and the types of training strategies employed.[26] For 
example, global indices of disability have shown a 
tendency to improve after cardiorespiratory training, 
which may be mediated by improved mobility and 
balance, whereas interventions that employ resistance 
training have less reliably shown benefits.[27]

Consequently, the volume, intensity, and exercise 
session frequency as well as initiation time must be 

optimized.[10] Our study recently suggested that the 
beneficial effect of intense exercise was not superior 
than its milder counterpart, thus mild exercise may 
be adequate and sufficient to elicit neurorehabilitation 
poststroke.[28] Our previous study underlined that 
too early poststroke exercise increased cell stress and 
expression of pro‑inflammatory cytokines, which 
amplified tissue damage, and suggests that exercise 
interventions between 24 h and 3 days may optimize 
rehabilitation benefit.[29] In addition, Yagita et al. 
suggested that running as a form of exercise may be too 
intense and cause spikes in endogenous corticosteroid 
levels that limit poststroke neurogenesis.[30] Moreover, 
complex and variable poststroke disability could limit 
patients’ participation.[31] The amenability of patients to 
poststroke physical activity may vary in relation to age, 
motivation, and other factors, and may be significantly 
affected by the level of disability conferred from the 
cerebrovascular accident. These differences within the 
patient population could limit efforts to standardize and 
optimize care for these patients. For example, patients 
with anterior cerebral artery infarcts may lose the ability 
to ambulate, whereas those with middle cerebral artery 
infarcts may be unable to move the upper limbs. As 
such, different exercise protocols must be explored to 
accommodate patients based on the type and extent 
of injury. Moreover, recent clinical trials do not show 
consistent rehabilitative benefits in stroke patients 
undergoing early physical exercise.[32‑34] Therefore, an 
alternative intervention known as ischemic conditioning, 
which confers similar neuroplastic benefits with fewer 
interuser particularities, is of interest to our group.

Ischemic Conditioning and 
Neurorehabilitation

Neuroprotection
Recently, ischemic conditioning has emerged as a 
noninvasive and low‑cost therapy for victims of 
cerebrovascular accidents. By way of controlled and 
transient periods of subcritical ischemia to nonvital 
arteries,[35,36] it works to activate endogenous tissue 
repair mechanisms to exert neuroprotective effects, 
cardiovascular protection, and promote neurological 
recovery.[37,38] Ji lab reported that repetitive bilateral arm 
ischemic preconditioning (BAIPC) safely inhibited stroke 
recurrence and enhanced tolerance of cerebral ischemia, 
by improving cerebral perfusion and attenuating 
inflammation and coagulation in patients with 
symptomatic intracranial arterial stenosis for all ages.[39,40] 
In the molecular events, ischemic postconditioning 
was found to restore voltage‑dependent anion channel 
proteins (VDACs) to protect against mitochondrial 
damage. [41,42] Brain ischemic precondit ioning 
was demonstrated to protect blood–brain barrier 
against ischemic injury by activation of the nuclear 



Figure 1: Physical exercise and ischemic conditioning favorably decrease brain damage and stimulate synaptogenesis, angiogenesis, and neurogenesis to enhance 
neuroplasticity, which promotes poststroke rehabilitation. Some underlying mechanisms of exercise and ischemic conditioning have been evidenced to overlap – both 

therapies demonstrate regulation of the immune and inflammatory system and upregulated the expression of SYN1, PSD95, growth‑associated protein 43, and brain‑derived 
neurotrophic factor
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factor (erythroid‑derived 2)‑like 2 (Nrf2) pathway.[43] 
Esposito et al. have found that ischemic conditioning 
significantly reduced infarction, improved neurological 
outcomes, and involved the promotion of neurogenesis 
and angiogenic remodeling during the recovery 
phase after focal cerebral ischemia.[6] The combination 
of early and delayed ischemic postconditioning 
may activate ERK1/2 and CREB and induce the 
production of BDNF in neurons and astrocytes lead 
to long‑term potentiation and neurogenesis, which 
highlights the neuroprotective potential of these 
therapies.[6,44] Likewise, Ramagiri indicated that 
remote ischemic postconditioning (RIPostC) alleviated 
cerebral ischemic‑reperfusion injury and exerted 
neuroprotective effects through the GSK‑3 β/CREB/
BDNF pathway, which is known to be involved in cell 
survival and metabolism during stress.[45‑47] RIPostC 
promoted cognition mediated by endothelial nitric 
oxide synthase (eNOS)‑dependent augmentation of 
angiogenesis.[48,49] Furthermore, ischemic conditioning 
after stroke upregulated the expression of SYN1, PSD95, 
and GAP43, which are also key players in the context of 
exercise therapy, and promoted neuroprotection and 
plasticity.[17,50,51] Doeppner et al. found that ischemic 
conditioning enhanced neurological recovery and 
neuronal survival in response to neural precursor 
cell transplantation, which could stimulate brain 
plasticity.[52,53] Similarly, astrocytes play an important 
role in developmental synaptogenesis and blood–brain 
barrier modulation and RIPostC could regulate its 
activity and inhibit STAT3 phosphorylation to promote 
neurological function recovery.[54] Moreover, it was 

proposed that ischemic conditioning could stimulate 
arteriogenesis and enhance cerebral blood flow by 
increasing expressions of Notch1 and Notch intracellular 
domain (NICD) in the ischemic brain.[55] Arteriogenesis 
plays a vital role in regulating vascular recovery of 
neurological function.[56]

Neurorehabilitation and plasticity
Recent studies demonstrate that ischemic conditioning 
may induce neurorehabilitation through similar 
mechanisms as physical exercise. In contrast to physical 
therapy, the passive nature of ischemic conditioning 
allows less dependence on the patient’s motivation 
and level of physical activity and is not limited by 
poststroke disability. In addition, it is less likely 
to be harmful or present risk to the patient.[57] The 
investigation of ischemic conditioning as a therapy for 
stroke recovery is still in its relative infancy, especially 
when compared to that of its cardioprotective effects.
[58,59]   The patients of noncardiac ischemic stroke received 
RIPostC were demonstrated to improve significantly in 
cognitive domains, such as visuospatial and executive 
functioning and attention 6 months poststroke.[60] Pilot 
studies showed that ischemic conditioning increased 
the paretic leg strength and muscle activation and 
improved self‑selected walking speed of chronic stroke 
survivors.[61,62] Doeppner et al. showed that very delayed 
RIPostC started on day 5 after stroke induction stimulated 
angioneurogenesis and reversed immunosuppression 
occur to induce sustained neurological recovery.[37] 
Vaibhav et al. found that RIPostC mediated neurological 
recovery after ICH through AMPK‑dependent immune 
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regulation.[63] During the recovery phase, RIPostC 
increased a pro‑inflammatory CCR2 + monocyte subset 
to improve outcomes.[64] Taken together, ischemic 
conditioning was considered an “exercise equivalent” 
as a rehabilitation intervention. However, a plethora of 
questions remains regarding ischemic conditioning in the 
setting of stroke rehabilitation. Since the clinical research 
of ischemic therapy is still in its infancy, investigation 
efforts are not standardized in the precise methods in 
which they deliver the therapy or monitor results. They 
vary by the type of vessel occluded and the duration 
and frequency of therapy. Future directions are essential 
to optimize these parameters to maximize poststroke 
cerebral angiogenesis and neurogenesis and should also 
consider how treatment will vary with the individuality 
of the patient.

Conclusion and Prospective

Based on current research, physical exercise and ischemic 
conditioning favorably induce neuroprotection to 
decrease brain damage after stroke, as well as stimulate 
neuroplasticity, angiogenesis, and neurogenesis, which 
is conducive to poststroke rehabilitation [Figure 1]. 
More research is required to investigate the precise 
benefits and application of poststroke exercise therapy, 
especially in the context of patient individualities. 
However, compared to physical exercise, a paucity of 
data exists regarding the efficacy and underlying cellular 
mechanism of ischemic conditioning in poststroke 
rehabilitation. A larger number of well‑organized 
animal and in vitro experiments are needed to further 
compare the efficacy of physical exercise and ischemic 
conditioning to discuss if ischemic conditioning could 
be an adequate substitute for physical exercise in stroke 
patients. Moreover, it is necessary to establish long‑term 
and large preclinical and clinical trials with sufficient 
sample sizes and multidisciplinary research to further 
explore the optimal parameters of physical exercise and 
ischemic conditioning and to avoid undesirable effects.
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