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ABSTRACT Advances in next generation sequencing technologies and statistical approaches enable genome-
wide dissection of phenotypic traits via genome-wide association studies (GWAS). Although multiple statistical
approaches for conducting GWAS are available, the power and cross-validation rates of many approaches have
beenmostly tested using simulated data. Empirical comparisons of single variant (SV) andmulti-variant (MV) GWAS
approaches have not been conducted to test if a single approach or a combination of SV and MV is effective,
through identification and cross-validation of trait-associated loci. In this study, kernel row number (KRN) data were
collected from a set of 6,230 entries derived from the Nested Association Mapping (NAM) population and related
populations. Three different types of GWAS analyses were performed: 1) single-variant (SV), 2) stepwise regression
(STR) and 3) a Bayesian-based multi-variant (BMV) model. Using SV, STR, and BMV models, 257, 300, and
442 KRN-associated variants (KAVs) were identified in the initial GWAS analyses. Of these, 231 KAVs were
subjected to genetic validation using three unrelated populations that were not included in the initial GWAS.
Genetic validation results suggest that the three GWAS approaches are complementary. Interestingly, KAVs in low
recombination regions were more likely to exhibit associations in independent populations than KAVs in
recombinationally active regions, probably as a consequence of linkage disequilibrium. The KAVs identified in this
study have the potential to enhance our understanding of the genetic basis of ear development.
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Following the adoption of genome wide association studies (GWAS)
(Klein et al. 2005),�2,000 loci have been identified as being statistically
associated with human disease and other quantitative traits (Visscher

et al. 2012). Using GWAS approaches, hundreds of loci associated with
traits have been identified in crops including maize (Brown et al. 2011;
Tian et al. 2011; Leiboff et al. 2015), rice (Huang et al. 2010), sorghum
(Morris et al. 2013) and barley (Cockram et al. 2010), and in non-crop
models such as Arabidopsis (Atwell et al. 2010; Meijón et al. 2014).

There are multiple statistical models for conducting GWAS, in-
cluding both single-variant (SV) and multi-variant (MV) models. SV
analysis compares the phenotypic distributions of alternative genotypes
at eachpolymorphic site independently. They can be conductedwithout
correction for population structure or with correction using techniques
such as genomic control (Devlin and Roeder 1999) or principal com-
ponent analysis (Price et al. 2006). More recently, genetic relatedness
among individuals can be accounted using a kinship matrix in mixed
linear models (Yu et al. 2006). Although SV analysis is often used in
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published literature, it has a number of inherent limitations, such as not
being able to distinguish among the contributions of closely linked loci
(Yang et al. 2012). Sometimes SV analysis overcorrects for the genomic
inflation of the test statistics caused by genetic structure because cova-
riates identified via population structure analysis can be associated with
causal loci (Yang et al. 2011). In comparison, MVmodels have already
been demonstrated to be superior in classical linkage analyses, where
for example, composite interval mapping outperforms simple interval
mapping (Zeng 1993). MV models can explicitly account for large-
effect loci and estimate the effects of multiple loci simultaneously. It
has been suggested that the power of GWAS may be improved by
conditioning on major-effect QTL (Kang et al. 2010). One challenge
to usingMVmodels, however, is the substantial computational burden
associated with analyzing a large number of polymorphic sites. As a
partial solution, stepwise regression, which selects markers based on
forward inclusion and backward elimination, has been proposed
(Segura et al. 2012). As an alternative to stepwise regression, multi-
variant Bayesian models that were initially developed for genomic pre-
diction, by simultaneously fitting all genotyped loci across the genome
(Meuwissen et al. 2001), have been used for GWAS (Fan et al. 2011;
Habier et al. 2011). These Bayesian-based approaches fit hierarchical
models that allow the effects of many loci to shrink toward zero. An
empirical comparison of the above models is necessary to investigate
their relative advantages in dissecting the genetic architecture of target
traits (either individually or in combination).

Many models for conducting GWAS have been compared using
simulated data (Galesloot et al. 2014). Although such studies can pro-
vide insight, they suffer from the limitation that simulated data do not
necessarily reflect all characteristics of real data because some charac-
teristics of empirical data may be unknown to the simulator. Hence,
comparisons based on empirical data are complementary to those
based on simulated data. Other than studies that compared different
versions of mixed linear model approaches (Stich et al. 2008), to our
knowledge there are no published reports that compare results gener-
ated from empirical data analyzed using single-variant (SV), stepwise
regression (STR) and Bayesian-based multi-variant (BMV) models
for GWAS. In this study, our objective is to compare the effectiveness
and/or complementarity of different GWAS (SV, STR, and BMV)
models using a single empirical data set. Our second objective is to
assess the degree to which our findings from different GWAS models
would support other independent empirical data sets.

We perform our initial GWAS analyses on four populations (de-
scribed in Material and Methods) related to the nested association
mapping (NAM) population, which combines the strengths of histor-
ical recombination events across a broad base of genetic diversity and
recombination events that arise following experimental crosses (Yu
et al. 2008). Rather than studying diversity panels often featured in
GWAS, we consider multi-parent mapping populations to take advan-
tage of the statistical power of QTL mapping and the gene-level reso-
lution of association mapping.

We study the kernel row number (KRN) phenotype, which is both a
component of yield and a model trait for genetic studies in maize
(Hallauer et al. 2010). KRN is highly heritable and a polygenic trait
(Liu et al. 2015a,b) that exhibits little variation in response to environ-
ment (Lu et al. 2011). In addition, KRN is easily scored as an integer,
and this scoring can be conducted after completion of the busy polli-
nation season.We collected new KRN data and downloaded previously
published KRN data (Brown et al. 2011).

Collectively, the three GWAS models identified 988 unique KRN-
associated variants (KAVs), 231 of which were subjected to genetic
validation tests using three unrelated populations thatwere not included

in the initial GWAS. Approximately 60% of the validated KAVs were
identified by only one of the three approaches.

MATERIALS AND METHODS

KRN phenotyping for initial GWAS populations
KRN phenotypes were collected from four related populations: 1) the
nested association mapping (NAM, N = 4,699) population which was
composed of 25 recombinant inbred line (RIL) subpopulations (Yu et al.
2008), plus RILs of intermated B73 andMo17 (IBM,N= 325) (Lee et al.
2002), 2) a subset of the RILs that were backcrossed to the inbred
line B73 (B73 x RILs, N = 692 BC1 lines), 3) a subset of the RILs that
were backcrossed to the inbred line Mo17 (Mo17 x RILs, N = 289 BC1
lines) and 4) a partial diallel created from the 26 NAM founders and
Mo17 (N = 225 F1 hybrids). Because reciprocal crosses were not con-
sidered and some of the crosses were not successful, the diallel popu-
lation was both partial and incomplete (225/351 = 64%).

During the years 2008-2011, NAMRIL populations were sequen-
tially planted in Ames, IA (summer season) and in Molokai, HI
(winter season), such that only a fraction of the full set of RILs were
grown in a given environment. For each NAM RIL, five plants were
grown within each row. KRN data were collected from the mature
ears. In addition, we obtained KRN data from eight trials for
NAM RILs from a previous study (Brown et al. 2011). The Brown
et al. (2011) data set is eight times larger than ours. We obtained
final phenotypic values by fitting a mixed linear model with fixed
effects for entries and random effects for trials. Phenotypic density
distributions in this study were estimated and plotted using R with
default smoothing parameters.

During the summer of 2011, the B73 x RILs, Mo17 x RILs, and
the diallel populations (GWAS populations 2-4) were planted in Ames,
IA in 12-plant rows. The B73 x RILs and Mo17x RILs were planted
with two replications, and the diallel population was planted with three
replications. For each replication, KRN data were collected from three
mature ears. The obtained KRN phenotypic data were analyzed using a
mixed linear model, where genotype was fitted as a fixed factor and
replication was fitted as a random factor.

KRN phenotyping for subsequent
validation populations
Elite maize inbred lines, extreme KRN USDA accessions, and lines
obtained from Iowa long ear synthetic (BSLE) population were used for
genetic validationofKAVs identified throughGWAS.A total of 220 elite
inbred lines, commercial lines that had formerly been subject to IP
(Intellectual Property) protection via the plant variety protection act,
were obtained from the USDA Plant Introduction (PI) Station in
Ames, IA (http://www.ars.usda.gov/main/site_main.htm?modecode=36-
25-12-00). During year 2011, these accessions were planted in three rep-
lications and observed for KRN phenotypes. About 7,000 of the maize
accessions have been phenotyped for the KRN trait in the database
of USDA PI Station. We selected the 225 accessions with the largest
KRN values, the 208 accessions with the smallest KRN values, and
173 random accessions to serve as the second genetic validation pop-
ulation. Empirical KRN phenotypes were obtained from our previously
published replicated field experiment (Yang et al. 2015). Because of
the genetic heterogeneity of the accessions, up to 12 random seeds were
germinated and pooled together for each accession for DNA isolation.
The BSLE population was the product of a long-term selection proj-
ect conducted to divergently select long and short ears from a single
founder population (Hallauer et al. 2004). Parental lines (N = 10/12) of
BSLE and bulked seeds from cycle 0 (C0), cycle 30 short ear (C30 SE)
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and cycle 30 long ear (C30 LE) were obtained from Arnel Hallauer
as our third validation population.

Genomic variant processing
A set of 6.2million genic variants (SNPs and small InDels) was identified
via analysis ofRNA-seqdata fromfive tissues (shoot apicalmeristem, ear,
tassel, shoot and root) on 26 NAM founder lines and Mo17 (Lin et al.
2017). Another two sets of genomic variants generated from the maize
HapMap project (Bukowski et al. 2015) were extracted from the
Panzea database (https://www.panzea.org). These three sets of var-
iants were merged using the consensus mode of PLINK (Purcell
et al. 2007). The merged variants were further filtered by discarding
variants with a call rate of , 0.4 across entries. We further filtered
variants using a minor allele frequency (MAF) cutoff of , 0.1 to
exclude minor SNPs only present in fewer than five non-B73 par-
ents. The finalized set consists of 12,966,279 genomic variants on
NAM founders, which were used for imputation or projection onto
the four related GWAS populations.

Imputation of genotypes was performed as described below. NAM
RILs had been directly genotyped using genotyping-by-sequencing
(GBS) technology (Elshire et al. 2011). We obtained the GBS data from
the Panzea database (https://www.panzea.org). Based on the GBS data
and the known pedigrees, the �13 million variants discovered in the
NAM founders were imputed onto NAM RILs using a python script
(https://github.com/yangjl/zmSNPtools) as previously described (Yu
et al. 2008). Because the B73xRIL, Mo17xRIL and partial diallel pop-
ulations were composed of pairs of known haplotypes, their geno-
types were directly projected from their parents using the above
python script.

Association variants thinning
Because progeny of bi-parental crosses comprised much of the initial
GWAS population, the strong linkage of genetic variants violated the
assumption of independence needed to determine statistical-based
thresholds. Therefore, a variant thinning procedure was developed
to select the most significant variants, and to avoid concentration of
selected variants in certain regions. For variants located in the 28 QTL
intervals from the joint QTL analysis and their 1-Mb flanking re-
gions, the top 10 most significant variants were selected. For variants
located in other regions, significant variants were determined follow-
ing the arbitrary thresholds: 2log10ðPÞ. 20 for the SV model, pos-
terior model frequency (MF) . 0.02 for the BMV model and an
inclusion P value, 0.05 for the stepwise regression. These significant
variants were clustered as groups if none of their pair-wise physical
distances exceeded 10-Mb. From these clustered groups, no more
than 10 most significant variants were selected.

Amplicon sequencing for validation of KAVs
Amplicon sequencing assayswere designed for 140/231 (61%)KAVs.
A total of 1,102 DNA samples from elite inbred lines (N = 208),
extreme KRN lines from the USDA germplasm collection (N = 606)
and individuals from the Iowa Long Ear Synthetic (BSLE, N = 288)
were individually genotyped, by sequencing all multiplexed ampli-
cons from all 1,102 samples in one HiSeq2000 lane. Informative
variants, defined as those which were successfully genotyped, were
polymorphic, and had a call rate of . 0.4 and a MAF . 0.05 were
used for genetic validation.

Statistical Analysis: Joint QTL analysis Joint linkage analysis was
performed on NAM and IBM RILs using their corresponding genetic

maps. A two-step composite interval mapping (CIM) (Zeng 1993)
method was employed using a suite of programs within QTL cartog-
rapher (Silva Lda et al. 2012). First, an automatic forward stepwise
regression procedure was used to sequentially test all SNP markers;
the most significant marker (inclusion threshold = 0.05) was kept after
each iteration. This procedure was repeated until no SNP met the in-
clusion threshold. In the second step, linkage analyses were conducted
at 1-Mb intervals along the chromosome treating previously selected
SNPs (other than those within the 1-Mb interval under analysis) as
co-variates. A significance threshold was determined by conducting
1,000 permutations and QTL confidence intervals were defined using
a 1.5-LOD drop from QTL peak (Lander and Botstein 1989).

To account for documented stratification effects, the statistical
model included fixed effects for population and subpopulation for
all three GWAS models described below.

Single-variant (SV) GWAS model Additional fixed effects were
fitted in the model to control for effects of QTL on other chromosomes,
while all variants on a single chromosomewere scanned, resulting in the
following model 1 for the kth variant:

Yl ¼ uk þ
X4

i¼1

aikPil þ
X26

j¼1

bjkSjl þ
X

m2Chðk�Þ
ckmQml þ dkVARkl þ ekl

(1)

where Yl is the adjusted KRN phenotypic value for line l from the
mixed linear model analysis; uk is an intercept parameter; Pil is 1 if
line l is of GWAS population i and is 0 otherwise, and aik is the effect
of the ith population in the model for variant k; Sjl is 1 if line l is from
subpopulation j and 0 otherwise, bjk is the effect of subpopulation
j in the model for variant k; Qml indicates the line l genotype of the
mth QTL detected by the joint linkage analyses, ckm is the effect of the
mth QTL in the model for variant k, Chðk�Þ is the set of QTL detected
by the joint linkage analysis that are located on chromosomes other
than the chromosome of variant k; VARkl indicates the genotype of
the kth variant in line l, dk is the effect of the kth variant; and ekl is an
error term. This SV model 1 was implemented using SNPTEST v2.3.0
(Marchini and Howie 2010).

Stepwise regression (STR) GWAS model In the stepwise regression
test, populationandsubpopulationeffectswerefittedfirst asfixedeffects,
and thenmarkerswere added in a stepwisemanner. For eachmarker,R2

was calculated as the proportion of sums of squares after the fixed
effects.We employed the STRmethod that was implemented in GenSel
v4.1 (Habier et al. 2011) with the option of “StepWise”. We used the
following three options to control the STR model, 1) inputMaxRs-
quared (default 0.8), inputMaxMarkers (300) and alphaValue (default
0.05).

Bayesian-based multi-variant (BMV) GWAS model ABayesian-
basedMVmodel was constructed using the “BayesC” option of GenSel
v4.1 (Habier et al. 2011). Thismodel differs from the SVmodel in that it
estimates the effects of all variants simultaneously rather than testing
them one-at-a-time. The effects of the variants were fitted as random
effects. The following mixed model was used.

Yl ¼ uþ
X4

i¼1

aiPil þ
X26

j¼1

bjSjl þ
X� 13M

k

ckVARkl þ el (2)

whereVARkl indicates the genotype of the kth variant in line l and ck is
the effect of the kth variant; other terms in the model are as described
in the SV model 1 except that neither the u, ai; or bj parameters nor
the el error terms are specific to the kth variant in the BMV model 2.
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We trained the BMV model using a two-step procedure. In the first
step, we ran 1,000 iterations with 100 burn in ofMCMC simulation using
default priors, i.e., genetic variance (genVariance = 1) and residual var-
iance (resVariance = 1). In the 2nd step, we replaced the priors using the
posteriors obtained from step 1 and ran a longer chain of simulations
(chainLength = 41,000 and burnIn = 1,000).

Data Availability
File S1 contains phenotypic data for the GWAS populations. File S2
contains the KAVs identified using the three GWAS models. File S3
contains genotypes of KAVs for the three validation populations. File
S4 contains the KRN phenotypic data for the validation populations.
In the table, “Internal_id” could be used as the identifier to match
genotypic data. File S5 contains the genetic validation results. Stars
indicate SNPs that were consistently associated with KRN in initial
GWAS, and in at least one of the validation populations. All the
supplementary files have been uploaded to Figshare (10.6084/m9.
figshare.6902144). R code for the analyses is available in the public

GitHub repository (https://github.com/yangjl/KRN-GWAS). Supple-
mental material available at Figshare: 10.6084/m9.figshare.6902144.

RESULTS

KRN Phenotype in GWAS and Validation Populations
We collected KRN phenotypic data from 6,230 entries within four
related GWAS populations grown at two locations over four years (see
Materials and Methods). Best linear unbiased estimators (BLUE) of the
KRN phenotype were calculated for each of the 6,230 entries in the four
GWAS populations (File S1). In this combined analysis, KRN pheno-
typic values ranged from 9.1 to 23.6, with a mean of 14.9 rows, whereas
the B73 inbred had an above average KRN phenotype of 17.1 rows.
Densityplots of the fourGWASpopulations exhibited the expected bell-
shaped distributions (Figure 1A).

We also collected KRN data from three unrelated populations for
subsequent validationpurpose. The three populations consist of elite inbred
lines that expired from US plant variety protection (Nelson et al. 2008),

Figure 1 Phenotypic distributions of the KRN trait in
GWAS and validation populations. (A) Density plots of
the four GWAS populations. Embedded picture shows
the typical KRN counts for B73, B73xMo17 (BxM),
Mo17xB73 (MxB) and Mo17 lines. (B) Density plots of
two validation populations, elite inbred lines and ex-
treme KRN accessions. Embedded pictures shows ex-
amples of an extreme low KRN accession and an extreme
high KRN accession. (C) Density plots of cycle 30 long
ear (C30 LE) and cycle 30 short ear (C30 SE) in the BSLE
population. Embedded pictures indicate the ear length
and KRN variation after 30 generations of selection. Blue
and red dashed lines indicate the mean KRN values of
B73 (KRN = 17.1) and Mo17 (KRN = 10.8).
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extreme KRN accessions from USDA germplasm database, and a long
term selection population— Iowa long ear synthetic (BSLE). The elite
lines have KRN that are less extreme and less variable than the NAM
lines (Figure 1B). This fits with our understanding of breeder practices;
they do not select for high KRN phenotypes. The USDA Plant Intro-
duction station maintains a large collection of maize germplasm. The
KRN phenotypes in this population are extreme, ranging from
an average of 13-30 rows in the high KRN pool to 6-12 rows in the
low KRN pool according to data obtained from a replicated field trial
(Figure 1B) (Yang et al. 2015). The BSLE population had been subjected
to 30 generations of divergent selection for long ears (LE) and short ears
(SE) (Hallauer et al. 2010). During selection, KRN exhibited a nega-
tively correlated response to ear length (r ¼ 2 0:6; Pearson’s correla-
tion test P value , 0:05), i.e., longer and shorter ears had smaller and
larger KRN trait values, respectively (Figure 1C). The parental lines and
bulked seeds from cycle 0 (C0), cycle 30 long ear (C30 LE) and cycle
30 short ear (C30 SE) served as our third genetic validation population.

Identification of KAVs With different statistical models
using GWAS populations
In each GWASmodel, population and subpopulation were included as
fixed effects to account for inherent structure in the 6,230 entries
included in the GWAS. First, a SV model (Manolio 2010) was used
to scan the�13M variants one-by-one using QTL detected in the joint
analysis as covariates. The linear mixedmodel with genetic relationship
matrix was not used here because the four initial GWAS populations
are NAM and NAM related multi-parent mapping populations. Using
an arbitrary cutoff of 2log10ðPÞ. 20; this approach identified linked
clusters of variants (Figure 2C), most of which were located within the
28 QTL intervals that had been identified by the joint QTL analysis
(Figure 2D). To diminish the over-representation of certain regions by
significant variants, a binning (bin size = 100-kb) procedure was used
that resulted in the identification of 257 KAVs, which in combination
accounted for 51% of the KRN variation.

Second, in an attempt to improve mapping resolution, a STR
approach was used, which resulted in identification of 300 KAVs
representing 296 100-kb bins (Figure 2B). In combination, these vari-
ants accounted for 78% of phenotypic variation.

Third, a BMVmodel (Habier et al. 2011)was used to estimate effects
of all �13M variants simultaneously. After applying the variant thin-
ning procedure and cutoffs described inMaterials andMethods, a set of
442 variants representing 343 100-kb bins, which together accounted
for 74% of the phenotypic variation, was identified (Figure 2A). Most
promisingly, this model identified smaller chromosomal intervals than
the SV model.

Comparison of KAVs identified by three GWAS Models
Incombination, the threeGWASmodels identified764100-kbbins (File
S2), each of which contained one or more significant variants. Encour-
agingly, among these 764 bins, 66 (containing 169 variants) were
detected by at least two models. Only one of these bins was detected
by all three GWAS models. That bin (chr4:229.0-Mb) overlaps the
most significant QTL peak detected in the joint QTL study. To
estimate an upper bound for cross-validation rate for each approach
and to determine whether the KAVs that were detected bymore than
one approach are more reliable, a set of 231 KAVs was selected for
genetic validation. This set of KAVs included the 169 variants in the
66 bins detected by at least two approaches and 62 of the most
significant one or two variants selected from 20 bins that had only
been detected by one approach (approach-specific variants). Hence,
in total 231 KAVs from a total of 126 bins (66 + 20 · 3) were selected
for genetic validation.

Collectively, the 231 selected KAVs explained 64% of phenotypic
variation in the initial GWAS population by fitting these KAVs simul-
taneously using an additive model (i.e., narrow-sense heritability
h2 � 64%) . Individually, most of the KAVs (83%, 192/231) explained
less than 5% of the phenotypic variation, but 17% (39/231) of the KAVs
individually accounted between 5–10% of phenotypic variation.

Figure 2 Stacked plots of GWAS and QTL results. From upper to lower panels are results from the Bayesian-based multi-variant (A) stepwise
regression (B) and single variant(C) models for GWAS and the joint QTL mapping result (D). The red dashed line in the QTL plot indicates the
1,000 permutation threshold and black lines show the QTL confidence intervals. Red squares in panel (A), triangles in panel (B) and circles in panel
(C) indicate the kernel row number associated variants selected for further genetic validation.
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Note that a causal variant might be represented by multiple selected
KAVs. The B73 variant-types were alleles for higher KRN for nearly
three-quarters (73%, 168/231) of these KAVs, consistent with the high
KRN value of the B73 genotype. Consistent with our previous study
(Li et al. 2012), KAVs are substantially enriched for variants located
within genes or within 5-kb upstream of genes (2.0-fold change, Chi-
square P value , 0.01) and enriched in variants discovered from the
RNA-seq data (1.ninefold change, Chi-square P value , 0.01) relative
to the �13M variants used for GWAS.

Genetic validation of KAVs using three
unrelated populations
To distinguish true positive association signals from potentially false pos-
itive associations, three previously described genetic validation populations
that are unrelated to the GWAS populations and to each other were
genotyped at the KAVs (genotype data are provided in File S3 and S4).

To control for population structure in the elite inbred lines, a set of
SNPs that had previously been used to genotype a subset (N = 91) of
these lines was obtained (Nelson et al. 2008). We fitted a mixed linear
model to estimate the fixed effects of KAVs. In the model, we included
random effects for lines. These random effects were assumed to be
correlated according to a kinship matrix calculated from the genome-
wide SNPs (Nelson et al. 2008). Using this approach, 22/70 (31%) of the
informative KAVs could be genetically validated in the set of 91 elite
inbreds with an FDR , 0.05. Because the elite inbreds are not closely
related to the GWAS populations, it is unlikely that uncontrolled pop-
ulation structure could yield false-positive validation assays for KAVs
derived from the GWAS populations. Hence, we also conducted a naive
analysis using the entire set of elite inbreds (N = 209) without control-
ling for population structure. In this analysis, 33/70 (47%) of the KAVs,
which included all of the 22 KAVs discussed above, could be validated.

Because extreme KRN accessions were maintained via random
pollination within accessions, individual accessions are both hetero-
geneous and heterozygous. We therefore genotyped pools of DNA
extracted from up to 12 plants per accession. A model fitted to the
estimated allele frequencies was used to test the hypothesis that alleles
for higher KRN have higher frequencies in the high KRN pools than in
low KRN pools. Among the 56/131 (43%) informative variants, 14/56
(25%) could be validated.

Of the 51 informative KAVs in the BSLE population, 7/51 (14%)
showed significant differences in allele frequency between C30 LE and
C30 SE populations. To rule out the possibilities of genetic drift or
stochastic sampling error, we conducted simulation to mimic the
selection procedure. After simulation, one validated KAV did not
pass the cutoff (FDR , 0.05) and was removed. Hence, even after
accounting for drift and stochastic sampling errors, 6/51 (12%)
KAVs were deemed to have been under divergent selection. We
applied the simulation to the negative control variants, and they
were indeed negative. Collectively, these loci account for 40% of
the total between-population variance for KRN trait. Variants that
are segregating in BSLE but not in GWAS populations or that were
simply not detected as being KAVs in the GWAS populations may
explain the remaining phenotypic variation between C30 LE and
C30 SE.

Summary of the genetic validation results
In summary, 40/77 (52%) of informative KAVs exhibited associations
with the KRN trait in at least one of the genetic validation populations
(File S5). The genetic validation results from the three GWAS models
are illustrated in Figure 3. Considering all KAVs detected by each
approach, the validation rates were 61% (20/33) for the single-variant
approach, 43% (6/14) for the stepwise regression approach and 45%

Figure 3 Genetic validation results of selected kernel row number associated variants (KAVs). (A) Transformed P values using single variant (SV)
model and posterior model frequencies using Bayesian-based multi-variant (BMV) model were extracted and plotted for the 77 informative KAVs
identified by at least one of the three GWAS models. KAVs detected only by the SV model are plotted in the lower right quadrant, KAVs detected
only by the stepwise regression model are plotted as non-gray dots in the lower left quadrant, the KAVs detected only by the BMV model are
plotted in the upper left quadrant, KAVs detected by both the SV and BMVmodels are plotted in the upper right quadrant and control variants are
plotted as gray dots in the lower left quadrant. Validated KAVs are marked in red. A control variant is a genomic variant that is randomly chosen
from a set of SNPs that were not associated with KRN in the initial GWAS. (B) Venn diagram of the validation results.
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(14/31) for the Bayesian-based approach (Figure 3B). Validation rates
were 67% (10/15) for KAVs detected only by the SVmodel, 43% (6/14)
for those detected only by STR model, 35% (9/26) for KAVs detected
only by the BMV model, 73% (16/22) for KAVs detected by both SV
and BMVmodels, and 11% (1/9) for control variants that are randomly
chosen from a set of SNPs that were not associated with KRN in the
initial GWAS (Figure 3A). Although both the STR and BMV models
had lower validation rates than the SVmodel, these results demonstrate
that each of the three models identified validated KAVs that were not
identified by other approaches. Thus, the three GWAS models are
complementary.

We also obtained genotypingdata for 34KAVs reported in an earlier
GWAS (Brown et al. 2011). Using the statistical analyses described
above, 26% (9/34) of these KAVs could be validated in at least one of
the three unrelated populations.

The amount of genetic recombination per Mb in maize varies
substantially across the genome (Fu et al. 2002). To investigate whether
the probability of genetic validation varies based on the amount of
recombination per Mb, the 111 tested KAVs (77 from this study and
34 fromBrown et al. (2011)) were projected onto theNAMgeneticmap
(Buckler et al. 2009) using our previously published method (Liu et al.
2009). Recombination rates (cM/Mb) were estimated for every 10 cM
window. KAVs were classified as being located in regions recombina-
tionally “cold” (, 1 cM/Mb) or “hot” (. 1 cM/Mb) chromosomal
regions. KAVs located in recombinational cold zones were 3.5 · more
likely to be genetically validated than those in recombinational hot
zones (Chi-square P value , 0.03).

DISCUSSION
GWAS is typically associatedwith high rates of false discovery (Visscher
et al. 2012). In human studies, a second cohort is often used to genet-
ically validate the most significant SNPs discovered in the first cohort,
thereby cost effectively reducing the number of false discoveries (Sladek
et al. 2007). To our knowledge, no large sets of genetic variants iden-
tified via GWAS as being associated with a trait of interest has been
subjected to this type of genetic validation in maize. Here, we report on
such a set of genetic variants that were consistently detected as being
associated with KRN in both the initial GWAS and the validation
populations, each of which therefore has the potential to enhance our
understanding of ear development in maize.

EachGWASmodel has its own strengths and weaknesses. Results
from our study indicate that the three GWAS models complement
each other through initial association studies and cross-validation
of KAVs. In this study, genetic validation strategies that exploit
the extensive genetic resources of maize were used to estimate maximum
rates of cross-validation. This was accomplished by testing whether
KAVs identified via the GWAS also exhibit associations with the
KRN trait in independent populations. We tested not only KAVs
in or near genes that had previously been associated with the KRN
trait via functional analyses, but also KAVs that were not located
in or near genes with prior evidence of affecting the KRN trait.
There are multiple reasons for a KAV that would not be genetically
cross-validated. These include biological differences in the genetic
control of the KRN trait among populations and Type II errors in
the validation analyses.

Overall, at least 52% (40/77) of KAVs were cross-validated in at least
one of three unrelated populations. Because KRN is mainly controlled
by additive effect loci (Brown et al. 2011; Lu et al. 2010), traits controlled
by different modes of inheritance may yield different validation results.
Because the four GWAS populations were all derived from 27 founder
lines, they differ from a diversity panel with respect to the genetic

base. While diversity panels exploit LD from a broader genetic base,
multi-parent mapping populations are usually derived from few foun-
ders (narrow genetic base), which could also contribute to different
validation results. Therefore, it may not be possible to generalize our
results from these structured multi-parent mapping populations to
other types of populations such as diversity panels. Further, GWAS
conducted in plants often have access to immortalized genotypes and
replicated observations, which provides the opportunity to better
control for stochastic factors, such as environmental effects, that
could affect the rate of false discovery as compared to GWAS con-
ducted on humans or some other species.

Although the SV model had a somewhat higher genetic validation
rate than theother twomodels (possiblyat leastpartlybecauseofanalytic
similarities between the SV model and the genetic validation experi-
ments), each GWAS model identified validated KAVs that were not
detected by the others. By definition, this means that the three GWAS
models arecomplementary.Therefore, theuseofmultiple approachesor
the development of a statistical model that combines their advantages,
promises to enhance the power of GWAS.

The genetic validation rate of KAVs identified in this experiment
(40/77 = 52%) is higher than KAVs identified in an earlier KRNGWAS
study (9/34 = 26%) (Brown et al. 2011). The improved power of our
study (which made use of data from Brown et al. (2011), as well as
additional data generated as part of the current study) could be due to
the use of three complementary GWAS models for identifying KAVs,
the inclusion of more genotypes, more phenotypic data and/or higher
marker density.

KAVs located in chromosomal regions with low rates of re-
combination (cM/Mb) were 3.5 times more likely to be genetically
validated than those in chromosomal regions with high rates of
recombination per physical distance. This is probably a consequence
of the relationship between recombination and LD (Kim et al. 2007).
Specifically, a KAV that is not causative but that is only linked to
the causative variant is more likely to exhibit an association with
the KRN trait in an independent population if it is located in a
large LD block as compared to a KAV that is in a region with low
LD, as a consequence of higher rates of recombination separating
a marker from the functional polymorphism across different genetic
backgrounds.

In conclusion, this study identified hundreds of KAVs that in
combination explained 64% of phenotypic variation for KRN in lines
that sample �60% of the genetic diversity of maize (Liu et al. 2003).
Over 50% of KAVs that were tested could be genetically validated.
In-depth analyses of KAV-linked genes will enable us to better un-
derstand the molecular and developmental processes that control var-
iation in the KRN trait and may eventually be useful in breaking the
negative correlation between KRN and ear length, thereby increasing
grain yields.
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