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We study evolutionary game dynamics on structured populations in which individuals take part in several
layers of networks of interactions simultaneously. This multiplex of interdependent networks accounts for
the different kind of social ties each individual has. By coupling the evolutionary dynamics of a Prisoner’s
Dilemma game in each of the networks, we show that the resilience of cooperative behaviors for extremely
large values of the temptation to defect is enhanced by the multiplex structure. Furthermore, this resilience
is intrinsically related to a non-trivial organization of cooperation across the network layers, thus providing
a new way out for cooperation to survive in structured populations.

T
he understanding of the emergence of cooperative behavior in human and animal societies1,2 as well as in
other contexts (e.g., the formation of multicellular organisms or their organs3) is a major challenge in
science. Interdisciplinary physicists have paid attention to this problem because of the underlying nonlinear

and stochastic nature of the interactions among the entities involved4–6. The mathematical setting that has led to
many deep insights about this problem is evolutionary game theory7–9, that allows to formulate in quantitative
terms the most important prototypical social interactions, such as conflicts and/or dilemmas10. Scientists have
unraveled that a key issue to ascertain the evolution of cooperation is the network of relationships11–13 among the
intervening agents. This drive us to evolutionary game theory on graphs, one of the most intriguing dynamical
processes on networks and one that is currently receiving a lot of attention14–21.

As network science evolves22–25, new questions about the capital problem of the emergence of cooperation arise.
The empirical resolution of the structure and time evolution of social ties has been simultaneously improved.
These advances has been largely facilitated by the explosion of data about mobile communication28,29, web-based
social platforms26,27 and even the monitoring of face-to-face human interactions30,31. Thus, although the network
perspective has offered a novel way out for cooperation to survive in social systems32–35, the latter advances on the
characterization of social systems demand more work to unveil the influence that social patterns have on the
evolution of cooperation. Particularly important in the description of social systems are those structures that
account for multiple types of links and time-evolution of links, commonly known as multiplex36–38.

Social systems are shown as a superposition or projection of a number of interdependent complex social
networks, where nodes represent individuals and links account for different kind of social ties such as those
stablished with family relatives, friends, work collaborators, etc. In our daily life we experience this social splitting
by distinguishing our behavior within each of the social layers we belong to. However, the influence that the
multiplex nature of social interactions has on the evolution of cooperation is still an open question, being recently
tackled39 within a framework consisting in two coupled networks. Besides, on more general grounds, it has been
recently shown that the interdependent structure can influence dramatically the functioning of complex systems
in the context of percolation40–44 and cascade failures41,45. Thus, it is necessary to study how the interplay among
such multiple interdependent social networks affects the onset of large scale human behavior, in particular the
emergence of cooperation in multiplexes.

In this report, we address the problem of the emergence of cooperation in multiplexes. We will use tools of
complex networks and evolutionary game theory to shed light on the emergence of cooperation in populations of
individuals participating simultaneously in several networks in which a Prisoner’s Dilemma game is played. Our
results show that a mutiplex structure enhances the resilience of cooperation to defection. Moreover, we show that
this latter enhancement relies on a nontrivial organization of the cooperative behavior across the network layers.

Let us first describe the multiplex backbone in which the evolutionary game is implemented. We consider a set
of m interdependent networks each of them containing the same number N nodes and L links. Each individual is
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represented by one node in each of the m networks layers while its
neighbors are (in principle) different for each of the layers (see Fig. 1).
In this way we define a set of m adjacency matrices {Al} (with l 5 1,
…, m) so that Al

ij~1 when individuals i and j are connected within
network l whereas Al

ij~0 otherwise. Thus, a given individual, say i, is
connected to kl

i~
P

j Al
ij other individuals within network layer l. In

our case we will consider that each of the layers is an Erdös-Rényi
(ER) random graph characterized by an average degree Ækæ 5 2L/N.
In this way, the probability that an individual is connected to k
individual in a given layer is given by the Poisson distribution:
P(k) 5 Ækæk exp(2k)/k.

Having introduced the multiplex composed by the set of m inter-
dependent networks we now focus on the formulation of the evolu-
tionary dynamics. Each of the individuals, say i, adopts a given
strategy sl

i tð Þ for playing with its neighbors in network l at time step
t. This strategy can be cooperation sl

i tð Þ~1
� �

or defection sl
i tð Þ~0
� �

.
Then, at each time step, each individual plays a Prisoner’s Dilemma
(PD) game with its neighbors in network l. For each of the kl

i PD
games played within network layer l an individual i facing a co-
operator neighbor will collect a payoff 1 or b . 1 when playing as
cooperator or as defector respectively. On the contrary if i faces a
defector it will not collect any payoff regardless of its strategy. This is
the weak version of the PD game which makes use of a single para-
meter b accounting for the temptation of playing as defector. After
round t of the PD game, an individual has played once with its kl

i
neighbors in layer l thus collecting an overall payoff pl

i tð Þ. Obviously,
the net payoff of a player i is the sum of all the payoffs collected in
each of the m network layers, Pi tð Þ~

P
l pl

i, achieved by using a set of
strategies sl

i tð Þ
� �

.
Once the PD is played, all the players update their strategies

simultaneously, i.e., we consider synchronous updates. The update
process makes use of the replicator-like rule that works as follows.
Each of the players, say i, chooses a layer, say l, at random among the
m possible networks and a neighbor j (also randomly) among its kl

i

acquaintances. Then it compares their total payoffs, Pi(t) and Pj(t),
obtained in the last round of the game. If Pi(t) . Pj(t) nothing
happens and i will use the same strategy within the network layer l
in the next round of the PD game, si(t 1 1) 5 si(t). However, when
Pj(t) . Pi(t) agent i will take the strategy of j at layer l with a
probability proportional to their payoff difference:

Pl
i?j tð Þ~ Pj tð Þ{Pi tð Þ

b max Ki,Kj
� � , ð1Þ

where Ki~
P

l kl
i. Note that the update process entangles the evolu-

tionary dynamics of the network layers as the choice of what strategy
will be used in a given layer during the next round of the game
depends on the overall payoffs, not only on the payoffs obtained
in the particular layer. Although other entanglements are also pos-
sible to make the evolutionary dynamics of the m networks inter-
dependent, the one used in this work relies on the social nature of
layers’ interdependency. While two neighbors within a given layer
know the strategies used by each other in the layer, they are unaware
of their opponent’s strategies in the remaining networks, so they
have to assume that the total benefit or success achieved by their
layer’s acquaintances is the outcome of using the observed strategy in
each of the m networks of the multiplex.

Following the above evolutionary rules we let evolve the states of each
individual in each of the layers and compute the instantaneous level of
cooperation cl(t) in each layer l and in the whole multiplex c(t) as:

c tð Þ~ 1
m

Xm

l~1

cl tð Þ~ 1
m:N

Xm

l~1

XN

i~1

sl
i tð Þ: ð2Þ

Results
In Fig. 2 we plot the average fraction of cooperators Æcæ (see Methods)
versus b for different values of the number m of layers and two values
of the layers’ average degree Ækæ 5 3 and 20. Note that the case m 5 1
corresponds to the absence of layers’ interdependency. While for low
values of the temptation b the average level of cooperation on the
multiplex decreases with the number m of layers, it increases with m
for higher values of b, so that the decrease of cooperation with b
becomes progressively slower as the number of layers in the multi-
plex increases. Importantly, the resilience of cooperation observed
for large values of the temptation to defect is not restricted to the
weak version of the PD game; we have checked that our results
qualitatively remain unaltered when two defectors playing get a pos-
itive payoff, i.e., when defection is a strict best response to itself.

The possibility that agents adopt different strategies in different
layers is crucial for the resilience of cooperation in multiplexes, as
revealed in Fig. 3, where we show the average cooperation level
achieved in the multiplex when agents use homogeneous strategies
(sl

i independent of l), i.e., the same strategy in the m layers. Indeed, for
homogeneous strategists’ populations the cooperation decays dra-
matically with b, the faster the larger the value of m. This can be easily
understood as follows: The situation when agents use homogeneous
strategies is equivalent to consider the standard evolutionary game
dynamics on a network whose set of links is the union of the set of
layer’s links (with weights assigned to them whenever two agents are
neighbors in more than one layer in the multiplex). This network has
(approximately) an average degree of mÆkæ, which for large values of
m approaches a well-mixed population, where cooperation extin-
guishes quickly.

The survival of cooperation in multiplexes is supported by the
network structure inside the multiplex layers, i.e. on network reci-
procity46. One can easily prove that if the layers are assumed to be
well-mixed (fully connected), then the only surviving strategy of the
evolutionary dynamics is to defect in all the layers. To characterize
the degree of heterogeneity of the surviving strategies on the

Figure 1 | Schematic representation of a multiplex network. The

multiplex is made of N 5 5 nodes embedded within m 5 3 interdependent

networks (or layers) each one containing L 5 3 links.
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multiplex, let us consider the fraction xi(t) of layers where agent i
plays as a cooperator at time t:

xi tð Þ~ 1
m

Xm

l~1

sl
i tð Þ, ð3Þ

that, after averaging over the observation time interval T (see above)
defines the variable x, whose probability density P(x) as a function of
b is shown in Fig. 4. One should remark that P(x) exhibits a well
defined maximum for each value of b, along with a relatively small
width around it. In other words, for each value of b there is a truly
characteristic value of the fraction x of layers where a randomly
chosen agent behaves cooperatively. On the contrary, the layer’s
cooperation level �cl possess a rather wide distribution density, as
shown in Fig 5. In a given multiplex realization, and for a given
value of the temptation parameter b, layers with quite dispersed

cooperation levels coexist, so that there is no truly characteristic value
for the layer’s cooperation. In other words, the cooperative compo-
nents [whose number is typically m?xmax, where xmax is the location of
the maximum of P(x)] of the agents’ set of strategies sl

i tð Þ
� �

are not
uniformly distributed on the multiplex layers.

The above findings suggest the failure of ‘‘mean-field-like’’ theor-
etical explanations of the observed behavior based on the absence of
correlations. As an example, consider a layer l, and let us assume that
the payoff an agent receives from the games played on the rest of
layers is normally distributed according to the hypothesis that it has
Ækæ neighbors on each layer and that agents use the cooperative
strategy in each layer with a probability x, independently of each
other. One can compute easily the mean and the variance of this
payoff distribution, as a function of x, m and b (see Methods). For
self-consistency, one can assign to x the value cl(t) of the instantaneous

Figure 2 | Cooperation diagrams of multinetworks. Average level of cooperation Æcæ as a function of the temptation to defect b for several multinetworks

with different number of layers m. In panel A the network layers are ER graphs with Ækæ 5 3 (sparse graphs) while in panel B we have Ækæ 5 20. In both cases

N 5 250 nodes. As can be observed, the resilience of cooperation increases remarkably as the number of layers m grows. Finally, panel C shows the curves

Æcæ(b) for ER graphs with Ækæ 5 3 (as in panel A) for m 5 2 and m 5 10 and different network sizes N 5 100, 200 and 400.

Figure 3 | Comparison with the cooperation diagrams of null models. Average degree of cooperation Æcæ as a function of b (solid line with filled circles)

for m 5 3 (A), 6 (B), 10 (C) and 20 (D). In each panel we show the case of a simplex (m 5 1) network, the evolution Æcæ(b) for homogeneous strategists’

populations corresponding to each value of m (Homo.) and the curve Æcæ(b) corresponding to the mean-field assumption for the coupling between layers

(M.F.). Each multiplex network has N 5 250 nodes while the interdependent layers are ER graphs with Ækæ 5 3.
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cooperation in the considered layer, and then proceed to run the
evolutionary game dynamics on the layer with payoffs given by the
sum of the payoff obtained in the layer plus a payoff taken from this
‘‘mean-field-like’’ distribution. The results obtained from this
approach are shown in Fig. 3. The only feature of the behavior
observed in the multiplex that seems to be slightly captured, but only
qualitatively, by this approach is the tendency when m increases to the
decrease of cooperation for low values of b, and its increase for high
values of b. The building up of correlations in the distribution over the
multiplex layers of the fraction of cooperative strategies appears to be
an essential ingredient for the observed enhancement of cooperation
in multiplexes.

Discussion
Summing up, we have incorporated the multiplex character of social
interactions into the formulation of evolutionary games in structured
populations. By considering a Prisoner’s Dilemma game we have
shown that cooperation is able to resist under extremely adverse
conditions, for which the usual simplex formulation, i.e. the network
approach, fails. In a nutshell, the addition of network layers has two
effects. On one hand the level of cooperation for low values of the
temptation to defect appears to decrease. However, the enhancement
of the cooperation resilience shows up when temptation is further
increased. It is in the region of large temptation when the inter-
dependency of network layers outperform, regarding the average
level of cooperation, the behavior found in simplex networks reach-
ing values of b . 3 for which even scale-free networks fail to sustain
cooperation34,35.

The observed resilience of multiplex networks is sustained in the
segregation of cooperative and defective strategies across the mul-
tiple network layers contained in the multiplex. Moreover, we have
shown that this segregation is non-trivial by comparing with mean-
field approaches producing no cooperation. Thus, our results point
out a complementary mechanism to the so-called network recipro-
city, paving the way to the study of more complex and realistic
multiplex architectures and alternative dynamical couplings between
the networks embedded in them. Let us note, that we have made use
of network layers with a regular (Erdös-Rényi) topology in order to
avoid spurious effects, such as the degree heterogeneity, that may

Figure 4 | Evolution of the degree of cooperation of individuals across
layers. Each contour plot shows the evolution of the probability P(x) of

finding an individual playing as cooperator in a fraction x of the network

layers as b increases. In A m 5 15 while for B m 5 20. In both cases the

networks have N 5 250 nodes while each layer is an ER graph with Ækæ 5 3.

Observe that the resilience of cooperation is intrinsically due to the fact

that individuals play different strategies across the different layers (no

homogeneous strategists appear until defection dominates at very high

values of b). For each value of b there is a well defined maximum for P(x).

Figure 5 | Histograms of layers’ cooperation level. The panels show the probability of finding a level of cooperation c l in a randomly chosen layer of the

multiplex. The results are obtained from a multiplex of m 5 20 layers and four different values of the temptation parameter b 5 1.0, 1.2, 1.4, and 1.6 from

panels A to D. 50 realizations of the multiplex were employed.
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contribute to the enhancement of cooperation. However, the study of
multiplex topologies incorporating the interdependency of scale-free
layers seems a promising continuation of the results presented here.

Methods
Numerical and statistical details of the simulations. In our simulations we start
from a configuration in which a player i in layer l cooperates or defects with equal
probability. Then, we run the evolutionary dynamics for a transient time t0 of typically
t0 5 23104 generations. After this transient period we further iterate the evolutionary
dynamics over a time interval T of typically 105 generations. It is during this latter
window when we compute the quantities of interest such as the average cooperation
level in a given layer l, �cl l~1, . . . ,mð Þ:

�cl~
1

N:T

Xt0zT

t~t0

XN

i~1

sl
i tð Þ, ð4Þ

or the average cooperation in the whole multiplex �c:

�c~
1
m

Xm

l~1

�cl , ð5Þ

The values shown in each plot represent the average of the above quantities over a
number of realizations, typically 50. After this latter average we obtain the final
average level of cooperation Æcæ for each value of the temptation parameter b.

Mean-field calculation. The mean-field assumption for the coupling of layers
assumes that there is no correlation between the strategies used by an individual in
each of the m layers. To this aim, we consider a network (single layer) in which an
individual plays a PD game with his neighbors receiving a payoff. In addition we add
to this latter payoff a quantity mimicking the payoff obtained in the rest of (m 2 1)
layers. This additional payoff is randomly assigned after each round of the game from
a normal distribution whose precise form depends on the number of cooperators in
the system.

To compute the mean and variance of the normal distribution at work, we first
consider that all the nodes in the network are connected to Ækæ neighbors in each of the
network layers. In this way, the possible payoffs of a given individual i in one of the
network layers l are pl

i~ 0,1,2, . . . , kh i,b,2b, . . . , kh ibf g. Considering now that players
use the cooperative strategy in each layer with probability x, independently of each
other, and that the multiplex is composed of m network layers we can assign compute
the probability q pl

i

� �
that player i obtain a payoff pl

i in layer l. In our case, we fix Ækæ 5 3
so that there are 7 possible payoffs whose probabilities read:

q P1~0ð Þ~x 1{xð Þ3z 1{xð Þ4,

q P2~1ð Þ~3 xð Þ2 1{xð Þ2,

q P3~2ð Þ~3 xð Þ3 1{xð Þ,

q P4~3ð Þ~ xð Þ4,

q P5~bð Þ~3 xð Þ 1{xð Þ3,

q P6~2bð Þ~3 xð Þ2 1{xð Þ2,

q P7~3bð Þ~ xð Þ3 1{xð Þ:

With these expressions one can easily compute the expected value for the payoff
obtained by an individual i in a layer l given the value of x as:

�pl
i~
X7

j~1

q Pj
� �

Pj~3x b 1{xð Þzx½ �, ð6Þ

while the variance of the above expected value reads:

s2~
X7

j~1

q Pj
� �

P2
j {

�P2
j ~3x 1z2xð Þ b2 1{xð Þzx

� �
{3x b 1{xð Þzx½ �2

� �
: ð7Þ

Given the values of x and b, equations (6) and (7) allow us to compute the normal
distribution and assign the additional payoffs a player receives from the other
(m 2 1) layers. For self-consistency, at each time step, the value of x is re-computed
from the fraction of cooperators in the system, i.e. cl(t), in the considered layer.
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