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Abstract
The reconstruction of gene regulatory networks (GRNs) from high-throughput experimental

data has been considered one of the most important issues in systems biology research.

With the development of high-throughput technology and the complexity of biological prob-

lems, we need to reconstruct GRNs that contain thousands of genes. However, when many

existing algorithms are used to handle these large-scale problems, they will encounter two

important issues: low accuracy and high computational cost. To overcome these difficulties,

the main goal of this study is to design an effective parallel algorithm to infer large-scale

GRNs based on high-performance parallel computing environments. In this study, we pro-

posed a novel asynchronous parallel framework to improve the accuracy and lower the time

complexity of large-scale GRN inference by combining splitting technology and ordinary dif-

ferential equation (ODE)-based optimization. The presented algorithm uses the sparsity

and modularity of GRNs to split whole large-scale GRNs into many small-scale modular

subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their

asynchronous communications, we can easily obtain the parameters of the whole network.

To test the performance of the proposed approach, we used well-known benchmark data-

sets from Dialogue for Reverse Engineering Assessments and Methods challenge

(DREAM), experimentally determined GRN of Escherichia coli and one published dataset

that contains more than 10 thousand genes to compare the proposed approach with several

popular algorithms on the same high-performance computing environments in terms of both

accuracy and time complexity. The numerical results demonstrate that our parallel algorithm

exhibits obvious superiority in inferring large-scale GRNs.

Introduction
The reconstruction of gene regulatory networks (GRNs) from high-throughput genome-wide
data can help improve our understanding of molecular regulation events and is one of the most
important issues in systems biology, which explicitly characterizes regulatory processes in the
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cell [1, 2]. Because of the advances in high-throughput technologies, the size of the GRNs we
need to understand is becoming incredibly larger than before and extremely complicated. Re-
cently, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) project pro-
vided a platform for researchers to develop new efficient computation algorithms to infer
GRNs [3]. For the reverse engineering of GRNs, various state-of-the-art approaches have been
developed to improve the accuracy and scalability of network inference review in [4], including
correlation based estimation methods [5], model-based methods [6, 7, 8], and mutual informa-
tion(MI)-based methods, such as CMI [9], MI-CMI [10], MI3 [11] and PCA-CMI [12] and
IPCA-CMI [13]. Furthermore, NARROMI [14] combined regression-based optimization and
information theory- based MI to achieve improved accuracy.

However, the above approaches suffer from two limitations when handling networks with
large numbers of genes. One limitation is that the computation cost increases exponentially
with the number of genes. The second is that the accuracy of these approaches in large-scale
problems with high sparsity is not satisfactory. In recent years, there have been efforts to ad-
dress these difficulties. Qin at al. applied LASSO-type regularization methods to enhance the
prediction accuracy [15]. Lee at al. developed a parallelizing hybrid GA-PSO optimization
method to lower the time complexity [16], but in their numerical experiments, all three datasets
contain no more than 125 genes. Because the sparsity level of the large-scale GRNs is much
higher than for small-scale GRNs, false positives also increase remarkably when a similar corre-
lation cutoff is used to predict the GRNs. In this study, we used the two features of large-scale
GRNs, i.e., their sparsity and modularity, to design a new parallel framework to infer GRNs. We
first decomposed whole large-scale GRNs into many small modular subnetworks and used
module-based optimization and asynchronous communications to identify the parameters of
the GRNs. Finally, we used famous benchmark datasets from DREAM with thousands of genes
to compare with several popular algorithms on the same high-performance computing environ-
ments. The results show that the proposed approach can be successfully used to infer large-
scale GRNs with high accuracy, and the computation time can be greatly reduced.

Methods
The proposed approach, namely the LSGPA, includes four parts (Fig. 1). The first part is to in-
terpolate and normalize the gene expression data. The second is to build the initialization net-
work based on the mutual information (MI) presented in section 2.1. In the third part, we have
proposed a module-based decomposition to split the whole network into a large number of
subnetworks, as detailed in section 2.2. Finally, the fourth part includes the parallel design and
algorithm, which is presented in sections 2.3 and 2.4.

2.1 Mutual information
The IFN concentration was measured by a bioassay based on the IFNα/β-mediated Mutual in-
formation (MI) is generally used as a powerful criterion for measuring the relationship between
two genes X and Y in biological networks inference. MI has been widely used to construct
GRNs from gene expression data [17].

For two discrete variables (genes) X and Y, the joint entropy H(X,Y) of X and Y can be de-
noted by

HðX;YÞ ¼ �
X

x2X;y2Y
pðx; yÞlog pðx; yÞ ð1Þ

where p(x,y) is the joint probability of x in X and y in Y. In light of the equation displayed
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above, MI can be denoted as follows

IðX;YÞ ¼ HðXÞ þ HðYÞ � HðX;YÞ ð2Þ

In computational simulation, we can just use the following equivalent formula [12].

I X;Yð Þ ¼ 0:5 � log jCðXÞj � jCðYÞjjCðX;YÞj ð3Þ

where C is the covariance matrix, and |C(X)| is the determinant of matrix C.
If X and Y are independent, the value will be relatively low, while a high MI value indicates

that there may be a close relationship between the genes.

Fig 1. Outline of reconstructing large-scale gene networks by using the LSGPA.

doi:10.1371/journal.pone.0119294.g001
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2.2 Module-based decomposition
In recent years, many excellent algorithms have been proposed to detect the modules of com-
plex networks [18–23]. Most of these algorithms were only used to identify small and highly
intra-connected clusters in a network, without clustering all the nodes. However, in the real bi-
ological world, GRNs often contain thousands of nodes and perform in a sparse way [24].
More recently, Glay proposed an algorithm to display and analyze large and sparse biological
networks [25].

In this study, we proposed an improved approach to detect and split the modules. There are
three steps.

Step1. Building the initialization networks and obtaining the network adjacency matrix
First, we construct initial networks by calculating the MI according to formula (3). By calcu-

lating the MI values between all pairs of variables, we obtain a weighted matrix A = (aij), in
which every element represents a relationship between two genes.

Second, we select a threshold “λ” to cut off edges with low value. In other words, if element
aij is greater than λ, then we set its value to 1 and let aji = aij = 1. Otherwise, no edges will be
considered, i.e., aji = aij = 0. We performed simulation experiments to mine for information
about how to select λ, and the detailed comparisons are displayed in S1 Table and S2 Fig. In
this study, we set the MI threshold λ to 1.2.

Finally, a new network adjacency matrix can be used in clustering.
Step 2. Clustering and modularizing the large GRNs.
First, the network adjacency matrix is transformed into an interaction matrix with two col-

umns. The first column contains source nodes and the second column contains target nodes.
Second, we use Glay’s algorithm to cluster large GRNs and obtainMmodules named Ci (i = 1,
2,. . .,M).

Step 3. Using the optimization algorithm to ensure that each node in the network belongs
to one of all modules.

As we all know, many algorithms have been engineered to identify small and highly intra-
connected clusters in a network, without clustering all the nodes [3, 23]. In Step 1, when select-
ing a threshold to remove edges, certain vectors (genes) might have been "kicked out" from the
whole network. To ensure the integrity of the networks to be inferred, we provide the following
optimization method.

Because all the genes that were removed must be returned to the whole network, we com-
pute the mutual information value between each "kicked out" node and the nodes in all mod-
ules. For example, if gene x was removed from the whole network, the MI value should be
calculated between x and each node in all modules Ci (i = 1, 2,. . .,M). Then, we use formula (4)
to search for the index with the maximumMI value between x and Ci.

i0 ¼ Index max
1�i�M

max
1�j�jCi j

MI
yij2Ci

ðx; yijÞ
� �� �� �

ð4Þ

Therefore, gene x will be inserted into module Ci0
. Finally, all genes are split into modules

without any isolated genes.

2.3 Mathematical Model and Optimization
Generally, a GRN consisting of N genes can be modeled by a set of ordinary differential equa-
tions (ODEs) [4, 15]. In this study, the ODE model in each cluster Ci can be described as
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follows.

dxjiðtÞ
dt

¼
XTi
k¼1

ajikx
k
i tð Þ þ

XHi

l¼1

bjily
l
iðtÞ ð5Þ

The first term in the right of Equation. (5) represents the internal links between the same mod-
ule Ci and the second term represents the external links from other modules Cl(l 6¼i)to the mod-
ule Ci. x

j
i(t) represents the express level of gene j at time t in module Ci, a

j
ik represents the

weight value of influence from gene k to gene j in module Ci and Ti is the gene number in the
module Ci. We denoted the set that links with module Ci as the Candidate_set �Ci of Ci. The
value bjil describes the weight value of gene l in the set �Ci to gene j, y

l
i(t) is the expression level

of gene l at time t in set �Ci andHiare the gene number in the set �Ci. Therefore, the purpose of
reconstructing the GRNs is to optimize all weight values ajikand b

j
ilin Equation. (5).

First, we take the difference for the left item of the above ODE equation.

dxjiðtÞ
dt

� xji tð Þ � xji t � 1ð Þ ¼ dj
i tð Þ ð6Þ

Thus, we can obtain a linear system.

dj
iðtÞ ¼

XTi
k¼1

ajikx
j
kðtÞ þ

XHi

l¼1

bjily
j
lðtÞ ð7Þ

For the different time points tm, (m = 1, 2,. . ., T), we obtain the matrix form.

HiP
j
i ¼ Dj

iðtÞ ð8Þ

Where Xi ¼ ðxikðtmÞÞT�Ti
;Yi ¼ ðyilðtmÞÞT�Hi

;Hi ¼ ðXi Y iÞ;
Pj
i ¼ ðaji1; aji2; � � � ajiTi ; bji1; bji2; � � � ; bjiHi

ÞT ;Di
i
¼ ðdj

iðt1Þ; dj
iðt2Þ; � � � ; dj

iðtTÞÞT :
The identification of all unknown coefficients Pji for module Ci (i = 1, 2,. . .,M) and gene j

in Equation. (8) can be transformed into the following least-square problem.

minQ ¼ min
Pj
i

jjHiP
j
i � Dj

iðtÞjj22 ð9Þ

First, we calculate the condition number of matrix Hi in equation. (9). If it is relatively large,
we can use the QR factorization to solve the (9) to obtain all coefficients Pji. If the condition
number of matrix Hi is small, the regularization method is used. Therefore, the following nor-
mal equations are obtained:

HT
i HiP

j
i ¼ HT

i D
j
iðtÞ ð10Þ

We use the Gauss elimination with pivoting to solve the linear systems for all modules
in parallel.

2.4 Parallel Computing Algorithm
2.4.1 Parallel computational environment. The Message Passing Interface (MPI) is a

standardized and portable message-passing system designed by a group of researchers from ac-
ademia and industry to function on a wide variety of parallel computers. The MPI provides a
method based on a message passing parallel programming environment to communicate be-
tween the service processes. Its installation is presented in S1 Text. Generally, MPI has two
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main modes: Peer-to-peer mode and Master/Slaves mode. In this study, we choose Master/
Slaves mode, and each slave can process one or several modules.

2.4.2 Calculate the connections between modules. To achieve communication between
different slaves and improve the accuracy of constructing GRNs, we need to select the edges be-
tween different modules more accurately. First, we calculate and rank all MI values of two dif-
ferent modules Cn and Cm, respectively. Because of the sparsity of large-scale biological
networks, we then select those the top 5%~ 10% rankings of MI values as representatives of the
connections between every two modules. In this way, all separated modules can be linked
through those edges.

2.4.3 Parallel design and asynchronous communications. The proposed parallel frame-
work is depicted in Fig. 2.

Step 1. After finishing the splitting of network in Master, M subnetworks were sent to all
Slaves.

For cases when the number of subnetworks/modules is larger than the number of comput-
ing nodes for the cluster system, we designed a special process to overcome the limitation of
the number of SLAVES, which is described in S3 Text.

Step 2. For each module/Slave, we combine the ODE-based model and MLR to obtain the
subnetworks and the connections among subnetworks. The algorithm is listed in Table 1.

Step 3. We send all network topologies represented by matrixes from modules/Slaves to the
Master and recombine them as a whole network.

Results
All the numerical experiments were conducted on a high-performance parallel computing en-
vironment with a unified cluster system, which includes the Dawning cluster and HP cluster.
The Dawning cluster has a peak speed of 19.64 TFlops and includes 93 computing nodes and

Fig 2. Outline of Parallel Computing.

doi:10.1371/journal.pone.0119294.g002
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two management nodes. Each node includes 2 CPUs, and each CPU includes 2 cores. The
clock speed is 2.2 GHz, and the memory of each node is 128 GB. The HP cluster has a peak
speed of 2.675 Tflops and includes 76 computing nodes and two management nodes. Each
node includes 2 CPUs, and each CPU includes 2 cores. The clock speed is 2.2 GHz, and the
memory of each node is 4 GB.

3.1 Datasets used in this study
As a well-known dataset, the DREAM5 challenge provided widely used benchmark networks
with expression datasets (http://wiki.c2b2.columbia.edu/dream/index.php/D5c4) and gold
standards. The E. coli dataset includes 334 TFs, 4511 target genes and 805 chips. In this study,
we chose four subsets of different sizes from E. coli., i.e., including 92, 202, 1505 and 4511
genes. If the size of network is less than 4511, we simply selected genes at random. In this
study, the gold-standard networks for all subsets are extracted from the overall gold-standard
networks presented by DREAM5. We also selected one published dataset that contains more
than 10 thousand genes [15].

3.2 Performance Evaluation
3.2.1 Result evaluation by different indexes. To evaluate the performance of LSGPA,

four well-known indexes, namely true positive rate (TPR), false positive rate (FPR), positive
predictive value (PPV) and accuracy (ACC) which are presented in S2 Text were calculated. To
consider the overall performance of LSGPA, we also plot the receiver operating characteristic

Table 1. Algorithm 1.

The pseudocode procedure for the parallel communications of the LSGPA.

for Slave i = 1 to i = M in Parrallel
!.Let Slave(i) MPI_Rev dataset(i) from Master, Ci;

!.MPI_Brocast Ci to all Slaves for 1 to M;

!.Compute I(x,y) for every pair of genes (x,y);

!.Give the threshold of MI values λ, if I(x,y)<λ then I(x,y) = 0,

else I(x,y) = 1 and edge (x,y) will be selected into Ci (Candidate_set(i));

!.MPI_Rev Ci from Slaves1 to M

Compute MI values for every pair of edges (x,yj) x2Ci, yj2Ck,k = 1 to M, k 6¼i;

Rank all the MI values, selected top 5% value for every pair of edges into Candidate_set of Ci.

!.Give the paameter threshold θ(**)

for j = 1 to Ti

Solving the normal equations HT
i HiP

j
i ¼ HT

i D
j
iðtÞ or using the QR factorization;

to obtain parameters Pj
i ¼ ðaj

i1; a
j
i2;L; a

j
iTi
;bj

i1;b
j
i2; L;b

j
iHi
ÞT ¼ ðb1;b2; L; b1; bTiþHi

ÞT ;
for l = 1 to Ti+Hi

if βl > θ

βl = 1 and edge(yk,xl) = 1;

else
βl = 1 and edge(yk,xl) = 0;

Endfor

Net(i).Matrix ðK; :Þ ¼ ðb1; b2; L;bTiþHi
ÞT ;

Endfor
!MPI_Send Net(i).Matrix to Master;

Endfor

doi:10.1371/journal.pone.0119294.t001
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(ROC) curves. The initial networks with sizes from 92 to 4511 are depicted in S3–S6 Figs, re-
spectively. The networks inferred by LSGPA are listed in S7–S10 Figs, and the details for those
networks are shown in S2–S5 Tables, Moreover, the results for the different sizes are listed and
compared in Tables 2–5, respectively.

From Table 2, we can observe that LSGPA performed almost the best among prominent
methods including NARROMI [14] and the CMI-based path consistency algorithm [12]. For
PCA-CMI, we calculated three cases in the zero-order, first-order and second-order. Tables

Table 2. Comparison of four indexes on network with size 92.

Methods TPR FPR PPV ACC

LSGPA 0.7545 0.0443 0.1316 0.9553

NARROMI 0.7000 0.0500 0.1360 0.9220

PCA-CMI(0-order) 0.7222 0.1105 0.0095 0.8894

PCA-CMI(1-order) 0.7182 0.3777 0.0028 0.6225

PCA-CMI(2-order) 0.7182 0.3777 0.0028 0.6225

Remark: In all tables, the best results for the relative items are noted in bold.

doi:10.1371/journal.pone.0119294.t002

Table 3. Comparison of four indexes on network with size 202.

Method TPR FPR PPV ACC

LSGPA 0.6000 7.7257e-04 0.0882 0.9992

NARROMI 0.1837 0.0123 0.0176 0.9867

PCA-CMI(0-order) 0.1224 0.3426 4.2502e-04 0.6531

PCA-CMI(1-order) 0.2653 0.4003 0.0008 0.7993

PCA-CMI(2-order) 0.2653 0.4003 0.0008 0.7993

Remark: In all tables, the best results for the relative items are noted in bold.

doi:10.1371/journal.pone.0119294.t003

Table 4. Comparison of four indexes on network with size 1505.

Method TPR FPR PPV ACC

LSGPA 0.4179 0.0016 0.0573 0.9983

NARROMI 0.1770 3.1266e-4 0.0139 0.9994

PCA-CMI(0-order) 0.4240 0.3633 2.4162e-4 0.6366

PCA-CMI(1-order) 0.4664 0.4056 0.0003 0.5943

PCA-CMI(2-order) non non non non

doi:10.1371/journal.pone.0119294.t004

Table 5. Comparison of four indexes on network with size 4511.

Method TPR FPR PPV ACC

LSGPA 0.4840 3.6150e-04 0.0863 0.9996

NARROMI 0.2780 0.0007 0.0650 0.9987

PCA-CMI(0-order) 0.3819 0.3238 0.0020 0.6762

PCA-CMI(1-order) non non non non

PCA-CMI(2-order) non non non non

doi:10.1371/journal.pone.0119294.t005
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3–5 also show that our method significantly outperforms these popular methods in terms of
false positives and accuracy. In particular, with increasing network size, the first-order and sec-
ond-order PCA-CMI almost cannot work. Although zero-order PCA-CMI can obtain the re-
sults, the accuracy is quite low. These results demonstrated that LSGPA is suitable for
reconstructing large-scale networks.

Figs. 3 and 4 depicted the difference of the LSGPA with other two methods NARROMI and
PCA-CMI based on the four indexes, i.e., using the indicator value for the proposed LSGPA
minus the value for other methods. We can clearly see that the vast majority of the comparison
values are over the zero line, which means that the performance of our algorithm is much bet-
ter than the other methods, especially in larger sets.

Fig. 4 is more obvious: almost all the indexes from size 92 to 4511 are above zero except for
TPR at size 1505, that is to say, LSGPA is widely superior.

Figs. 5 and 6 displayed the overall performance of LSGPA with size 202 and 1505. these
ROC curves indicate that LSGPA has reached a very high level. Because of the unacceptable
runtime for calculating the ROC of NARROMI and PCA-CMI in size 1505, we just depicted
the curve of LSGPA in Fig. 6.

3.2.2 The stability of the performance. To test the stability of the performance of LSGPA,
we selected different truncated threshold values θ of the identificated parameters in line (��) in
the pseudocode procedure in section 2.4.3

In Fig. 7 and S6 Table, the parameter threshold θ changed from 0 to 0.4 with 0.01 as the step
length. Focusing on the TPR, it decreased with the increase of the threshold but stopped de-
creasing from 0.18 at 0.5306. FPR, PPV and ACC are all in the ideal state, for example, ACC
varied from 0.9810 to 0.9885, and PPV changed between 0.0583 and 0.0552. Table 6 showed

Fig 3. Difference between LSGPA and the twomethods LSGPA and NARROMI in four indexes. Val() in
vertical axis represents one of the four indexes for different methods.

doi:10.1371/journal.pone.0119294.g003

Fig 4. Difference of twomethods LSGPA and PCA-CMI in four indexes.

doi:10.1371/journal.pone.0119294.g004
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Fig 5. ROC curves of LSGPA on DREAM5 in size 202.

doi:10.1371/journal.pone.0119294.g005

Fig 6. ROC curves of LSGPA on DREAM5 in size 1505. The subfigure shows the details.

doi:10.1371/journal.pone.0119294.g006
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that the variances of the four indexes are all small, indicating the performance of LSGPA is not
greatly influenced by the threshold value. For the size 1505, Fig. 8 (the detailed data are listed
in S7 Table) and Table 7 demonstrated that all four indexes also maintained a stable level with
some small fluctuations of the threshold value θ.

3.2.3 Comparisons of runtime and speed up. To measure the efficiency of LSGPA, the
runtime and speed up of the algorithm were recorded and compared. In this section, we first

Fig 7. The calculated indexes for different parameter thresholds θwith size 202.

doi:10.1371/journal.pone.0119294.g007

Table 6. Statistical analysis of four indexes on network with size 202.

Indexes TPR FPR PPV ACC

Maximum 0.9796 0.0190 0.0714 0.9885

Minimum 0.5306 0.0109 0.0453 0.9810

Variance 0.0382 4.2672e-06 8.1676e-05 3.4771e-06

doi:10.1371/journal.pone.0119294.t006

Fig 8. The calculated indexes for different thresholds θwith size 1505.

doi:10.1371/journal.pone.0119294.g008

Table 7. Statistical analysis four indexes on network with size 1505.

Indexes TPR FPR PPV ACC

Maximum 0.5018 0.0040 0.0455 0.9977

Minimum 0.4011 0.0021 0.0304 0.9959

doi:10.1371/journal.pone.0119294.t007
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compared the time consumption of LSGPA and two famous methods NARROMI and
PCA-CMI by running them on the same computer environment. The method for calculating
the runtime is shown in S4 Text.

Furthermore, we computed the speed up of LSGPA using the following formula, i.e., the
runtime of another method over the runtime of the LGSPA in the same
computing environment.

Speed up ¼ RuntimeðAnother MethodÞ=RuntimeðLSGPAÞ ð11Þ

This definition means that larger values correspond to better performance. Compared
with NARROMI and PCA-CIM, Fig. 9 shows that as the network size increases, the speed-
up of the LSGPA increases exponentially. These results indicate that the proposed parallel al-
gorithm achieved a promising speed-up and thus can be used to handle large-scale data
sets effectively.

To further prove its effectiveness, the LSGPA was also applied to construct GRNs from gene
expression datasets in [15] with more than 10 thousand genes. In this dataset, there are 12488
target genes and 939 transfer factor genes, and 245 samples for each gene can be found in the
expression dataset. Fig. 10 depicts the speedup of the LSGPA against Genie3 for different gene
numbers in these datasets. The results further demonstrated the effectiveness of the LSGPA.

Table 8 lists the runtimes of different methods with different sizes. From size 92 to size
4511, LSGPA took less than 5 seconds, while NARROMI took over 1500 seconds, and
PCA-CMI zero-order took almost 2000 seconds and also led to low accuracy. Note especially
that in PCA-CMI, time cannot be counted for more than zero-order when dealing with sizes
above 1505. These results indicate that the proposed algorithm is capable of handling large-
scale data sets effectively.

Fig 9. Speed up of the LSGPA against NARROMI and PCA-CIM for different gene numbers from E.coli.

doi:10.1371/journal.pone.0119294.g009

Fig 10. Speed up of the LSGPA against Genie3 for different gene numbers from datasets in [13].

doi:10.1371/journal.pone.0119294.g010
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Discussion and Conclusion
In this study, we proposed a novel asynchronous parallel framework (namely LSGPA) to im-
prove the accuracy and lower the time complexity of large-scale GRN inference, by combining
splitting technology and ordinary differential equation (ODE)-based optimization.

Our study makes three main contributions. First, we split the whole large-scale GRNs into
many small-scale modular subnetworks by using the sparsity and modularity of large-scale
GRNs. Second, combining ODE-based optimization of all subnetworks in parallel and their
asynchronous communications, the connected subnetworks from all modules/Slaves are sent
to the Master and the large-scale networks can be easily obtained. Third, we used different per-
formance indexes, i.e., the well-known accuracy measures, stability measure, runtime and
speedup to test the performance of the proposed approach in comparison with several popular
algorithms on the same high-performance computing environments. The numerical results
showed that the proposed LSGPA can be used effectively to infer large-scale GRNs with high
precision and the computational time can be largely reduced.

Although the proposed LSGPA was mainly used for the reconstruction of GRNs, it can also
be extended to infer the undirected networks. However, because of the complexity of connec-
tions and communications between different modules/ undirected subnetworks, we need to use
the optimization algorithm to search for optimal connections between different Slaves [7, 26].
The detailed description is presented in S5 Text and the results are depicted in S11 Fig. The four
indexes are compared in S8 Table. For the further work, we will make the dynamical analysis
based on the constructed networks [27, 28].

In summary, we established a paradigm for inferring large-scale GRNs from large-scale
high-throughput data by combining a splitting technique and optimization-based asynchro-
nous parallel communications. The novel framework of the asynchronous parallel algorithm
can be applied to solve related large-scale problems presented by large-scale omics data.

Supporting Information
S1 Fig. Example on undirected network.
(TIF)

S2 Fig. The selection of the MI threshold value λ on the structure of networks.
(TIF)

S3 Fig. Initial networks of Gene size 92.
(TIF)

S4 Fig. Initial networks of Gene size 202.
(TIF)

S5 Fig. Initial networks of Gene size 1505.
(TIF)

Table 8. Runtimes for different sets with different sizes (seconds).

Methods\Sizes 92 202 1505 4511

LSGPA 1.382400 1.654020 2.354940 4.183680

NAROMI 5.606153 15.781613 404.341643 1597.859435

PCA-CMI(0-order) 1.530520 5.324213 569.249900 1969.614691

PCA-CMI(1-order) 56.062523 633.741694 2.6557e+005 non

PCA-CMI(2-order) 1943.272243 4.9291e+04 non non

doi:10.1371/journal.pone.0119294.t008
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S6 Fig. Initial networks of Gene size 4511.
(TIF)

S7 Fig. Network with 92 genes inferred by the LSGPA (without isolated nodes).
(TIF)

S8 Fig. Network with 202 genes inferred by the LSGPA (without isolated nodes).
(TIF)

S9 Fig. Network with1505 genes inferred by the LSGPA (without isolated nodes).
(TIF)

S10 Fig. Network with 4511 genes inferred by the LSGPA (without isolated nodes).
(TIF)

S11 Fig. The undirected Network with 19 genes inferred by the LSGPA.
(TIF)

S1 Table. The selection of the MI threshold value λ on the structure of networks.
(PDF)

S2 Table. Details for the network with size 92.
(PDF)

S3 Table. Details for the network with size 202.
(PDF)

S4 Table. Details for the network with size 1505.
(PDF)

S5 Table. Details for the network with size 4511.
(PDF)

S6 Table. The effects of the threshold value θ of parameters in networks on the four indexes
in size 202.
(PDF)

S7 Table. The effects of the parameter threshold value θ on the four indexes in size 1505.
(PDF)

S8 Table. Comparison of different indexes on network with size 19.
(PDF)

S1 Text. Install of MPI.
(PDF)

S2 Text. The calculation of different indexes.
(PDF)

S3 Text. Method to deal with the limitation of computer nodes.
(PDF)

S4 Text. The Calculation of runtime.
(PDF)

S5 Text. Application on undirected networks.
(PDF)
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