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Editorial on the Research Topic

Accessory Cells of Sensory Systems and Their Functional Roles

INTRODUCTION

Humans experience the world through the five primary senses: sight, touch, hearing, smell, and
taste, most of which are conserved across the animal kingdom. Acute loss of one of these senses
can be disorienting and prolonged sensory impairments can greatly impact one’s quality of life.
Environmental stimuli are received by specialized sensory structures innervated by neurons to elicit
an appropriate behavioral response (Roper and Chaudhari, 2017; Seabrook et al., 2017; Driver and
Kelley, 2020; Ray and Singhvi, 2021), for example, the retraction of a hand from a hot or freezing
surface. Sensory neurons are accompanied by a diverse group of non-neuronal cells including glia.
Accessory cells/glia are essential regulators of neuronal health through direct metabolic coupling
and through careful maintenance of ionic balance at peripheral and central synapses (Ray and
Singhvi, 2021). An increasing body of evidence has revealed that glia are not only “support” cells,
but directly influence circuit architecture and signaling (Lago-Baldaia et al., 2020; Perez-Catalan
et al., 2021; Ray and Singhvi, 2021). In this issue, “Accessory Cells of Sensory Systems,” new studies
highlight the importance of non-neuronal cells to Sight,Touch,Hearing, and Smell, from phagocytic
function following injury, to tuning of neuronal activity.

SIGHT

Müller cells are a major type of glial cell in the retina, and they are responsible for homeostatic and
metabolic support of retinal cells (Reichenbach and Bringmann, 2013). In particular, Müller cells
mediate transcellular ion, water and bicarbonate transport, glutamate uptake, and they provide
trophic and anti-oxidative support to the cells of the retina. In addition, Müller cells guide light
through the inner retinal tissue, thus enhancing the signal/noise ratio (Franze et al., 2007). In
disease conditions, a subset of Müller cells may differentiate into neuronal progenitor cells, thereby
giving rise to new photoreceptors and neurons (Das et al., 2006; Bernardos et al., 2007; Roesch et al.,
2008). Müller cells also have phagocytotic functions (Long et al., 1986).

In this issue, Lew et al. investigated the molecular underpinnings of Müller cell-mediated
phagocytosis, a process still largely uncharacterized, and its consequences on photoreceptor
degeneration. Using in culture phagocytosis assays, two distinct in vivomodels, western blots, and
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immunocytochemistry, the authors demonstrate that
phagocytosis of photoreceptor outer segment fragments
(POS) by human and murine Müller cells is mediated by the
TAM engulfment receptor tyrosine kinase MERTK, which has
been implicated also in Retinal Pigmented Epithelium (RPE)-
mediated phagocytosis (Gal et al., 2000; Parinot and Nandrot,
2016). The authors also show that MERTK utilizes both galactin-
3 and protein S as its ligands. These two ligands most likely share
the same binding site because their effect on phagocytosis is not
additive. Knockout of mertk or of the gene encoding galactin-3,
lgals3, lead to degeneration of photoreceptors by postnatal day 35
and activation of the Müller cells as measured by Glial fibrillary
acidic protein (GFAP) expression. Interestingly, mertk−/− and
lgals3−/− double knockout mice show significantly enhanced
Müller cell activation and photoreceptor degeneration as
compared to the single knockouts. The authors exclude the
involvement of microglia in this effect and thus conclude that it
must be mediated by the Müller cells themselves. To conclude,
this study identifies galactin-3 acting on Müller glial cells, as
a protective factor in photoreceptor degeneration. Notably,
previous studies showed that microglia activation is reduced
in galactin-3-defective models, highlighting that galactin-3
may have opposite effects on microglia vs. Müller cells. This
urges the consideration of cell-specific approaches for the
studies of these mechanisms and for the identification of future
therapeutical approaches.

TOUCH

Four of the five types of touch receptors embedded in the
human skin are composed of nerve endings and accessory cells.
These include the Pacinian, Meissner, and Ruffini corpuscles, and
the Merkel disks. In addition, the Krause bulbs, which detect
vibrations in addition to cold temperature, are also composed of
nerve endings and accessory cells. On the other hand, the free
nerve endings that detect temperature, painful stimuli, and light
touch, are unencapsulated dendrites of sensory neurons voided
of any type of accessory cells. In a review published in this issue,
Suazo et al. update us on what is known about the anatomy,
development, as well as function of Meissner and Pacinian
corpuscles that detect light touch and vibration, respectively,
primarily focusing on their accessory cells. Indeed, in both
the Meissner and Pacinian corpuscles, flattened Schwann cells
form lamellae organized in parallel (Meissner) and concentric
(Pacinian) structures around the nerve terminal. Both corpuscles
also have outer capsules composed of perineurial fibroblast-
like cells and contain a complex extracellular matrix. While
initially the lamellae of the Meissner and Pacinian corpuscles
were thought to primarily provide structural integrity to the
corpuscles, their cellular and functional features suggest that they
have major roles in the transduction of touch. Indeed, recent
work on the Meissner and Pacinian corpuscles from the duck
bill (called Grandry’s and Herbtst corpuscles, respectively, in the
duck) by the lab of Bagriantsev has shown that these cells are
endowed with mechanically gated ion channels. The lamellae
of the Meissner corpuscles also express R-type voltage gated

calcium channels and can fire action potentials when stimulated
by current injection or by mechanical forces (Nikolaev et al.,
2020; Ziolkowski et al., 2022). These exciting new data not
only support that these cells are intrinsically mechanosensitive,
but also that they can propagate this information potentially to
other cells. Intriguingly, electron micrographs of the lamellar
cells from the cat show that they have clear core vesicles and
electron dense regions near the plasma membrane reminiscent
of synapses (Pawson et al., 2009). Furthermore, lamellar cells
from the Pacinian corpuscles of the cat express synaptic proteins
synaptobrevin VAMP2 and SNAP-23 (Pawson et al., 2009).
Pawson and colleagues using electrophysiological techniques on
the Pacinian corpuscles of the cat, demonstrated that GABA
released by the lamellae inhibits action potentials in the nerve
ending during the static portion of the indentation (Pawson
et al., 2009). They also showed that glutamate released by the
nerve ending is responsible for action potentials during the
static portion of the indentation and that most likely induces
GABA release from the lamellar cells (Pawson et al., 2007, 2009).
These older data combined with new results obtained from
Meissner and Pacinian corpuscles of the duck paint a picture of
a complex cross talk between accessory cells and nerve endings
in these corpuscles that might be crucial for touch sensation.
Intriguingly, a similar mechanism of cross talk and analogous
mechanosensitivity of accessory cells have been described for
the nose touch receptors of the nematode C. elegans, suggesting
conservation of function across species (Fernandez-Abascal et al.,
2022). Future studies leveraging the power of genetics in the duck
and in invertebrate models should help dissect this mechanism of
cross talk even further and should identify the mechanosensitive
channels expressed in the lamellar cells.

HEARING

Hearing is an essential sense that not only allows us to enjoy
the world around us, but also to navigate our environment
with high precision. The sensory organ required for proper
hearing is called the organ of Corti, housed in the cochlea (inner
ear). In the cochlea, sound vibrations activate mechanosensory
cells called hair cells, which decode vibrational information
(sound) to precisely stimulate the auditory nerve and in
turn, auditory cortex. Proper signaling within auditory circuits
requires a variety of both peripheral and central glia, including
Support Cells within the organ of Corti, Schwann cells, Satellite
Glia, Oligodendrocytes, and Astrocytes (Kohrman et al., 2021).
Another prominent, non-neuronal cell population within the
cochlea are tissue-resident macrophages, which are thought to
carry out homeostatic roles in healthy tissues (Hough et al., 2022).

Chronic exposure to loud noises can lead to long-term hearing
loss due to loss or dysfunction of hair cells and associated glia
(astrocytes and microglia). In addition, deleterious sound is
followed by a robust increase in macrophage populations within
the cochlea (Hirose et al., 2005). Shortly following noise exposure,
immune cell engulfment of damaged hair cells is important for
cochlear health; however, long-term inflammation can ultimately
lead to hearing loss (He et al., 2020). In this issue, Shin et al.
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characterize the source and trajectory of cochlear immune cells
in a mouse model of acoustic overstimulation. Using RNAseq,
they find that the pro-inflammatory cytokine Ccl2 is upregulated
in the cochlea a mere 3 h following noise exposure. Within 1–
2 days post noise, peripherally-derived monocytes infiltrate the
cochlea, where they subsequently transform into macrophages.
Importantly, depletion of monocytes (and thus macrophages)
following overstimulation does not prevent hearing loss,
consistent with the early requirement of macrophages in debris
clearance (Bae et al., 2021). Together, these findings suggest that
anti-inflammatory therapies to prevent noise induced hearing
loss must be temporally restricted.

SMELL

Olfaction, the perception of volatile chemosensory cues, is
one of the most ancient sensory modalities. Olfactory sensory
neurons sense odor molecules at either the olfactory epithelium
in vertebrates, or in specialized sensory units in invertebrates,
called sensilla (Vosshall, 2000; Buck, 2004). These anatomical
structures house both neurons and glia. The underlying sensory
neuron transduction machinery that transmits odor information
has been exquisitely dissected (Shirsat and Siddiqi, 1993; Wilson,
2013), and glia have been shown to secrete odor binding proteins
and clearance enzymes (Sun et al., 2018). However, how sense-
organ glia impact olfactory perception is only recently being
explored (Bianchi, 2020; Duan et al., 2020).

Drosophila sense odorants at structures on their antenna
called sensilla, that house 2–4 sensory neurons and three support
cell sub-types called trichogen, thecogen, and tormogen (Sen
et al., 2005). Using genetically encoded sensors for K+ and Ca2+

expressed in different support cells, Prelic et al. uncovered active
cellular responses in glia. First, they observed that thecogen
and tormogen glia exhibit distinct patterns of ion fluxes upon
presentation of the odor proxy VUAA1, concomitant with
neuron activation. Next, by genetically ablating thecogen glia
in adults, they found that individual sensory units exhibit
altered mechanical sensitivity without alteration of resting
neuron activity. This suggests the intriguing notion that these
glia may contribute to odor processing by aiding detection of
spatiotemporal odorant pulses as would be experienced during

the air turbulence experienced during the animal flight. These

findings parallel recent work inC. elegans showing glial responses
to odorants (Duan et al., 2020).

CONCLUSION

Emerging studies, including those described above, reveal more
active participation by glia and other accessory cells in sensory
perception than previously appreciated. Mechanistically, these
cells do so by phagocytosis of sensory endings and cells
(Raiders et al., 2021; Lew et al.), modulation of ionic milieu
(Ray and Singhvi, 2021), and release of neuromodulators
(Pawson et al., 2007, 2009; Duan et al., 2020; Fernandez-Abascal
et al., 2022). This is of note since at least in C. elegans,
glia can respond to diverse external stimuli independent of
neurons (Procko et al., 2011; Duan et al., 2020; Fernandez-
Abascal et al., 2022). How different glia across sensory systems
regulate these functions in response to sensory cues remains
largely a mystery to date, presenting a rich avenue for future
inquiry. We propose that an understanding of how sensory
percepts are processed in the periphery in health or sensory
disorders requires not only a dissection of how a sensory
cell or neuron functions, but rather a composite study of
how sense-organ glia-neuron units coordinately respond to
environmental cues.
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