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Abstract. The most effective treatment for twin-to-twin transfusion syndrome is laser photocoagulation of the
shared vascular anastomoses in the placenta. Vascular connections are extremely challenging to locate due to
their caliber and the reduced field-of-view of the fetoscope. Therefore, mosaicking techniques are beneficial to
expand the scene, facilitate navigation, and allow vessel photocoagulation decision-making. Local vision-based
mosaicking algorithms inherently drift over time due to the use of pairwise transformations. We propose the use
of an electromagnetic tracker (EMT) sensor mounted at the tip of the fetoscope to obtain camera pose mea-
surements, which we incorporate into a probabilistic framework with frame-to-frame visual information to achieve
globally consistent sequential mosaics. We parametrize the problem in terms of plane and camera poses con-
strained by EMT measurements to enforce global consistency while leveraging pairwise image relationships in
a sequential fashion through the use of local bundle adjustment. We show that our approach is drift-free and
performs similarly to state-of-the-art global alignment techniques like bundle adjustment albeit with much less
computational burden. Additionally, we propose a version of bundle adjustment that uses EMT information.
We demonstrate the robustness to EMT noise and loss of visual information and evaluate mosaics for synthetic,
phantom-based and ex vivo datasets. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Twin-to-twin transfusion syndrome (TTTS) complicates 10% to
15% of monochorionic diamniotic pregnancies.1 Monochorionic
twins share a single placenta and their circulation due to the
presence of intertwin anastomes. A certain unfavorable pattern
may result in an imbalance of intertwin blood flow, leading to
acute, mid-trimester TTTS. It causes overproduction of urine
(hence polyhydramnios) in the recipient, whereas the other
fetus will have oligohydramnios. Due to the acute overdistention
of the uterus, mothers may go into labor or rupture their mem-
branes. TTTS can also lead to cardiac dysfunction in one or
both fetuses, worsening the prognosis. If this condition is not
treated, then the outcome is nearly always fatal.2

The standard of care today is fetoscopic laser photocoagula-
tion,3 which has been shown to be more effective than serial
removal of excessive amniotic fluid.4 The procedure consists
of the insertion of a fetoscope, identification and coagulation
of all visible anastomoses, and functional disconnect the two
circulations.

The success of this operation is dependent on many varia-
bles, some of them related to the operative technique. The sur-
geon has to be able to inspect as much of the placenta and
understand its angioarchitecture. Ideally, one obtains a general

insight on the nature (whether the connecting vessels are arteries
or veins) and location of all anastomoses. Following this, first
arteriovenous and then venoarterial connections are coagulated.
At the end of the procedure, it is recommended to superficially
laser the area between the lasered anastomoses to avoid the
persistence of flow over nonvisualized, smaller anastomoses
(referred to as the Solomon or bichorionization technique2).
Fetoscopy is typically performed with 1.3 to 2.0 mm fiberendo-
scope and limited light. The most limiting factor for keeping
an overview of the vascular anatomy is the small field-of-view.

To address this limitation, the creation of a 2-D mosaic of
the placenta has been proposed5–7 as a means of expanding the
field-of-view by stitching the fetoscopic images to a common
reference frame.

The number of images needed to cover the whole placenta is
an additional challenge. Clinical imaging conditions are also
restrictive due to a lack of visual texture and color contrast
between arteries and veins, in particular of small diameter,
and visual artifacts, such as blood, amniotic fluid particles,
the presence of the intertwin membrane, or even fetal move-
ments, which may perturb the vision. To leverage the use of
imagery, there should be a large overlap between adjacent
images to ensure a successful registration at the expense of
increasing, even more, the number of frames.

Local vision-based mosaicking algorithms make use of
pairwise transformations between images to compose a mosaic.
This has a fundamental limitation; since the transformation of
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each frame to the reference space is made dependent of all the
previous pairwise registrations, any new pairwise registration
error is propagated through a chain of transformations. As a
result, an inevitable, progressive drift in the reference space
occurs, which can even degenerate in a rupture of the chain
of transformation if a pair of images cannot be registered.
In order to illustrate this effect on a simulated dataset, Fig. 1(a)
shows a ground truth mosaic composed of 200 images, where
the camera has moved following a circular pattern. Figure 1(b)
shows a mosaic that has experienced drift due to the composi-
tion of homographies.

To address this problem, we propose the use of an electro-
magnetic tracker (EMT) system by attaching an EMT sensor8–13

to the tip of the fetoscope. The EMT system provides measure-
ments of the 3-D pose of the sensor, which then relate to the 3-D
pose of the fetoscope through a precomputed rigid hand–eye
calibration matrix. These measurements do not provide enough
information to create a mosaic since the geometry of the scene is
unknown. In fact, even if the geometry of the scene was known,
the noise or jitter in these measurements would propagate to
the mosaic space, resulting in misregistrations in the mosaic.
Hence, the generation of the mosaic using exclusively the EMT
information is infeasible (see Sec. 4.2.2). However, the fusion
of these measurements is extremely valuable in order to guide
the estimation of the mosaic and prevent it from drifting;
especially in fetoscopy, where the poor quality of the pairwise
registrations can accentuate the drift.

In this paper, we present a probabilistic model that uses the
complementarity between the EMT and visual information to
drive the estimation toward globally consistent mosaics, i.e.,
that do not suffer from drift, independently of the number of
frames. Additionally, we compare our algorithm with the
state-of-the-art in global alignment,14,15 i.e., bundle adjustment,
and show that we achieve a similar performance to the state-of-
the-art with a much lower computational burden.

The improvement in terms of computational complexity is
mostly observed in two main steps: the matching and the non-
linear optimization. Since in bundle adjustment, the number of
image pairs where matching needs to be attempted is N2 in the
worst case, where N is the number of images in the sequence,
this stage of the algorithm has a complexity of OðN2Þ. In the

proposed algorithm, only the images within a fixed window
are considered for matching. Therefore, only a fixed number of
images proportional to N is matched (OðNÞ). Analogously, the
visual cost function computes the residuals for all the obtained
correspondences in potentially N2 pairs of images [OðN2Þ]
and estimates all the parameters at a time while our algorithm
computes only the visual residual within the window [OðNÞ]
optimizing only for a small subset of parameters.

Finally, we show that our algorithm is robust to EMT noise
and loss of visual information and evaluate mosaics for synthetic
and phantom-based datasets. Additionally, we propose a version
of bundle adjustment that incorporates EMT information in
an analogous manner.

The rest of the paper is structured as follows. In Sec. 2,
we discuss the state-of-the-art in drift-free mosaicking using
visual information as well as sensor fusion. Section 3 details
our approach and Sec. 4 provides an experimental evaluation.
Finally, in Sec. 5, we discuss the results and the limitations of
the approach, and we propose future research lines to over-
come them.

2 Related Work
Mosaicking algorithms have been extensively explored in com-
puter vision for the last two decades. Vision-based mosaicking
generally relies on estimating transformations with respect
to the mosaic space by chaining transformations between
adjacent images.14–16 Therefore, it inherently accumulates drift.
Additionally, if one of the transformations fails to be estimated,
the resulting mosaic cannot be computed further.

Michaelsen17 observed that a translation-based mosaic
accumulates less drift since no multiplicative effect applies.
He presented a patchwise algorithm, where the normal vector
to the imaged patch is used to correct the homography between
the first and last image in the patch such that only x-y translation
components are used to stitch the patch into the global refer-
ence frame.

As an alternative strategy, Sawhney et al.18 explored the idea
of iteratively finding the topology of the images. First, using a
translation-based registration, the authors check for overlapping
images to determine the neighborhood of a given image. Then,
they use a projective mapping to estimate locally consistent

Fig. 1 Mosaics of 200 synthetic images where the camera has moved following a circular pattern of four
laps. (a) The ground truth mosaic. (b) A mosaic with drift due to the accumulation of error in subsequent
iterations.
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patches within the neighborhood. Finally, a global refinement of
the mosaic is performed to avoid local minima due to the local
refinement of the patches. Given that the EMT system provides
the position of the cameras, we directly have information about
the topology and we aim for a sequential estimate that is glob-
ally consistent.

Given that the accumulation of error leads to nonmatching
image positions when revisiting the same scene, so-called
loop-closing strategies propose to identify and add the loop
closure overlapping frames as an additional constraint19–21 and
then correct for the accumulation of error in the rest of the loop.
Civera et al.22 keep track of the observed features and optimize
for all the camera poses in every iteration, having a natural loop
closing effect since the whole loop is optimized for. This has the
additional cost of having to compare all images to a growing
map in each iteration. The creation of this map is not trivial
in our scenario given the poor fetoscopic image quality: the
lack of visual texture and color contrast between arteries and
veins, amniotic fluid particles, and the presence of the intertwin
membrane and fetal movements.

Another cause of this accumulation of error in a planar sce-
nario is over-parametrization.23 In a planar scenario, the family
of homographies that defines the motion of a monocular camera
can be minimally parametrized by six parameters for each cam-
era pose and the three global parameters representing the plane,
whereas in classic mosaicking, every pairwise relation is para-
metrized by a full homography. There exists a restricted group of
homographies that can each be decomposed into the camera
motion and global plane. This decomposition has been used
by several authors, for example, Malis and Benhimane24 used
it for visual servoing and some authors used it for mosaicking
as well.7,17,23,25

Closely related to the last idea, Olsson and Eriksson26

showed an increased performance in the estimation of the
plane by minimizing the reprojection errors as a function of
the plane as opposed to using a plane fitting procedure after
triangulating the 3-D points. Given that depth is an unobserved
quantity, if there is not enough observability and baseline,
then depth estimates of the 3-D points may not be accurate
and therefore fitting a plane leads to poorer performance than
estimating an underlying plane modeling the structure. While
they assume that the camera positions are provided, we estimate
them from visual information and noisy EMT measurements.

The state-of-the-art in terms of drift-free alignment is the
well-known bundle adjustment.14,15 This is a batch nonlinear
optimization that minimizes the reprojection residuals in all
images. As an example close to our application, Atasoy et al.27

proposed a vision-based version of bundle adjustment for
fibroscopic video mosaicking that weights the images with
the number of matched features found in each pair. In Sec. 3,
we introduce a problem-specific version of bundle adjustment
that fuses the visual and EMT data.

Mur-Artal et al.19 showed that it is possible to meet real-time
performance requirements with the use of a windowed iterative
approach also known as local bundle adjustment (LBA). Under
the assumption that the global minimum is too expensive to
reach and that the information is provided in an incremental
fashion, this algorithm computes the estimates in a window
with the underlying idea that cameras outside the window pro-
vide little information about the current estimates. Therefore,
the estimated cameras are considered fixed in the following
iteration and only new cameras are to be estimated. This yields

accurate estimates, usually close to the bundle adjustment.28

Consequently, we use it in our application to achieve sequential
yet accurate mosaics.

The use of an external sensor in our framework aims to
constrain the global pose estimates in order to bound the
drift. Similar to ours is the work of Agrawal and Konolige,29

who explored the idea of using an inexpensive global position-
ing system combined with a stereo vision system. They used
a Kalman filter limiting the drift in translation for long robot
trajectories. In our scenario, the fetoscope is close to the tissue
and its movement follows a hand-held pattern, which implies
additional complications.

Vyas et al.12 also integrated an EMT system in a mosaicking
pipeline. In their system, the camera movement is restricted to
frontoparallel motion. The registration consists of two steps:
first, the images are placed according to the EMT measurements
and then, a pairwise adjustment is performed using a cross-
correlation. This method does make optimal use of the available
information since it only enforces pairwise consistency, and
the optimization does not take into account the electromagnetic
data. By contrast, our probabilistic integration leverages the fact
that the EMT measurements are centered in the true camera
position and uses jointly either all or a larger subset of informa-
tion available.

There has been extensive work on the fusion of other types of
sensors. The integration of gyrometers,30 accelerometers,
and inertial measurement units (IMU)31 with visual data has
been shown to achieve better accuracy and robustness in the esti-
mation of homographies. Additionally, in Ref. 31, an IMU com-
bined with visual keypoints is integrated in a fully probabilistic
manner in order to improve the robustness and accuracy of the
estimation in a SLAM system. Another idea exploited by some
authors is to use predictions of the camera poses and the inertial
measurements to recalibrate the bias term32–34 inherent in inertial
measurement systems in order to eliminate the drift. To our
knowledge, it is not currently possible to fit an inertial system
into a clinical fetoscope due to its dimensions.

In our previous work,7 we proposed a preliminary model to
reduce the drift using the EMT and visual information jointly.
In the current work, we extend our framework and validate
the complete elimination of the drift.

3 Methods
First, we present preliminaries in mosaicking in Sec. 3.1. Then,
Sec. 3.2 introduces the EMT measurements and the relation-
ships that used to incorporate them into the mosaicking pipeline.
In Sec. 3.3, we detail our main contribution; the formulation of
a probabilistic model that achieves a sequential drift-free esti-
mate of the mosaic independently of the number of frames
using the complementarity between visual and EMT informa-
tion. We then state the assumptions of the model and explain
the parametrization used. Finally, we introduce the two pro-
posed algorithms to do inference in Sec. 3.4.

3.1 Preliminaries in Mosaicking

Given a sequence of 2-D images I ¼ fIkgNk¼1 of a planar scene
acquired by a hand-held monocular camera with limited
field-of-view, where π ∈ R3 denotes the plane, we seek to find
a representation of the scene, the mosaic M∶ΩM → R3, where
ΩM ⊂ R2 that captures the entire observed area into a 2-D space,
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where each coordinate is associated with the RGB components
of a pixel in the mosaic.

Provided that the structure is a plane, a homography
hð·Þ∶R2 → R2, which can also be expressed as a matrix
H ∈ R3×3 in homogeneous coordinates, maps the location of
any point p ¼ ½px py �T in an image to its corresponding
point p 0 ¼ ½p 0

x p 0
y �T in a second image:

EQ-TARGET;temp:intralink-;e001;63;397

p 0
x ¼

H1;1px;þH1;2py þH1;3

H3;1px;þH3;2py;þH3;3
;

p 0
y ¼

H2;1px þH2;2py þH2;3

H3;1px þH3;2py þH3;3
: (1)

If expressed as a matrix, Eq. (1) can be written as ~p 0 ∝ H ~p,
where H is known up to a scale factor.35 We use a tilde in
an image point to indicate homogeneous coordinates.

We can relate image k to image j of the sequence with a chain
of homographies as follows:

EQ-TARGET;temp:intralink-;e002;63;268Hj;k ¼
Yj−1
l¼k

Hlþ1;l; (2)

where the product operator denotes the left matrix multiplica-
tion. To build a mosaic, we need to define the common
space ΩM, where all images are stitched. Without loss of
generality, if we choose the space of the first image as the
mosaic space, then Eq. (2) with k ¼ 1 expresses the relation
between any image j in the sequence and the mosaic space.
Throughout this manuscript, a homography with only one sub-
index relates an image j to the mosaic space, e.g., Hj ¼ Hj;1,
whereas a homography with two subindexes relates two images,
e.g., Hj;k ¼ HjH−1

k relates image k to image j.
A pairwise homography Hj;k can be directly obtained if

a part of the scene is present in both images. In this work,
we use a landmark-based approach36–38 to find correspondences
in the images. Once the correspondences are computed, an

approximation of the homography can be estimated using
the DLT algorithm and further refined through a nonlinear
optimization.39 However, the estimation of a homography
between two images inevitably carries error, which leads to
accumulation of error when propagated through the chain in
Eq. (2). We propose to tackle this problem by incorporating
measurements given from an EMT system.

3.2 Incorporation of the Electromagnetic Tracker
System

We propose to bound the drift in the mosaic by relying on a set
of camera pose measurements Z ¼ fzkgNk¼1 provided by the
EMT system. In order to use EMT measurements in conjunction
with visual information, we must establish a link between them.
To this end, we place a virtual camera at the origin of an arbitrary
global coordinate system, whose image plane can be set to
coincide with the mosaic space ΩM. Then, the image plane
from the camera pose at time k is related to the image plane of
the virtual camera by its homographyHk, as illustrated in Fig. 2.

Therefore, we can establish the relation as follows:

EQ-TARGET;temp:intralink-;e003;326;246Hk;k−1 ¼ HkH−1
k−1: (3)

Moreover, a 3-D point p3D on the imaged plane satisfies

½ nT d �
�
p3D
1

�
¼ 0, where the unit vector n ¼ ½ nx ny nz �T

and the distance d from the virtual camera to the plane are seen
from the point of view of the virtual camera. Let T ∈ SEð3Þ be
a camera pose expressed as rigid body transformation in 3-D
space:

EQ-TARGET;temp:intralink-;e004;326;135T ¼
�
R t
0 1

�
; (4)

where R is a rotation matrix in SOð3Þ and t is a translation vec-
tor in R3. Provided that we want to incorporate camera pose

Fig. 2 A virtual camera is placed at the origin of an arbitrary global coordinate system. The relation
between images and cameras is defined in Eqs. (3) and (5).
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measurements, we establish the link between the true camera
poses (Tk;Tk−1) that induce the homographies (Hk;Hk−1)
through the plane24,35 as follows:

EQ-TARGET;temp:intralink-;e005;63;719Hk ¼ K
�
Rk − tk

nT

d

�
K−1; (5)

where K is the precalibrated intrinsic camera matrix.
If the plane π was known, then we could compose a mosaic

only using the EMT measurements and the images. However,
the EMT noise in the camera pose measurements propagates
to the mosaic space causing a jitter effect that translates
into misregistrations in the composition. More importantly,
we do not know π a priori. Therefore, while the guidance
of the EMT system is of crucial importance for global position-
ing consistency, it is necessary to combine both EMT and
visual information to integrate knowledge of the scene, implic-
itly estimate the plane, and obtain pairwise registrations that
are as accurate as possible. To this end, we propose a gener-
ative probabilistic model that seeks the set of camera poses
X ¼ fxkgNk¼1 and plane π that generated the sequence of
images I and the EMT measurements Z, which are then
used to project the images to the mosaic space ΩM and create
the mosaic M:

EQ-TARGET;temp:intralink-;e006;63;488ðX̂ ; π̂Þ ¼ argmax
ðX ;πÞ

PðX ; πjZ; IÞ: (6)

We now detail the notation, assumptions, and parametriza-
tion used in the probabilistic model.

3.3 Probabilistic Model

3.3.1 Notation and modeling assumptions

Consider two images. Let image A be the source image and
image B be the target image. These images each contain
a set PA

l;m and PB
l;m of Nl;m corresponding landmarks found

from image m to image l. For each set, let us define the i'th
corresponding landmark in the set as fpA;il;m ∈ R2jPA

l;m ¼
fpA;il;mgNl;m

i¼1 g for image A and fpB;il;m ∈ R2jPB
l;m ¼ fpB;il;mgNl;m

i¼1 g
for image B. For simplicity, we assume that landmarks in an
image are independent. Additionally, for different pairs of images,
we consider independence of all the sets in source images in
PA ¼ S

l;m∈LP
A
l;m, and target images PB ¼ S

l;m∈LP
B
l;m, where

L is the set of all possible corresponding image indexes.
Figure 3 depicts a schematic of the nomenclature of the
correspondences.

In terms of the parametrization, we use a scaled normal vec-
tor π ¼ n∕d ∈ R3 to parametrize the plane. Compared to other
parametrizations,23 this has the advantage of encoding the
inverse depth (1∕d) in each of the components, reducing the
nonlinearity and thus accelerating the convergence. We use
a minimal parametrization of six parameters for the camera
poses xk ¼ ½ rTk tTk �T with the orientation r ¼ ½ rx ry rz �T
being the Euclidean vector in R3 identified with the skew-
symmetric matrix S ∈ soð3Þ for which R ¼ eS ∈ SOð3Þ:
EQ-TARGET;temp:intralink-;e007;63;124

S ¼

2
64

0 −rz ry
rz 0 −rx
−ry rx 0

3
75: (7)

This parametrization ensures valid rotation matrices and is
valid for all angles as the exponential map in so(3) is subjective.
Furthermore, the camera is guaranteed to look downward,
toward the placenta, and therefore, the exponential map is
bijective for all angles of interest as long as the camera does
not complete a full rotation around its z axis, which is very
unlikely.

Once the notation has been defined, we state the main
modeling assumptions:

1. We consider the imaged object to be a plane.7

2. Every EMT measurement zk is modeled as a Gaussian
random variable centered on the true camera pose xk
with diagonal covariance ΣEMT, that is zkjxk ∼
N zkðxk;ΣEMTÞ. Even though the EMT measurements
are actually not strictly Gaussian,40,41 this is a common
assumption40 that simplifies the problem. We account
for modeling errors in the EMT measurements by
enlarging its standard deviation.

3. The locations of corresponding points between adja-
cent images match the same visual content, but they
are imperfect; each pair of corresponding points has
a matching error defined as the distance between a
point in an image and its correspondence propagated
from the other image. For simplicity, we assume this
error to have zero mean and diagonal covariance
matrix σ2vI. This is equivalent to saying that a 2-D
point in image B is a Gaussian measurement generated
from a true 2-D point in image A, which is
pB;il;mjxl; xm; π; pA;il;m ∼N pB;il;m

ðμiv; σ2vIÞ in which the

mean μivðxl; xm; π; pA;il;mÞ, detailed later in Eq. (13), is
the projected location of the point in image A.
See Sec. 5 for more comments about this modeling
assumption.

Fig. 3 Schematic of the nomenclature of the correspondences.PA
kþ1;k

(green empty circles) is the set of points of image A for whichNkþ1;k ¼
4 correspondences from image k to k þ 1 are available, being PB

kþ1;k

(green colored circles) the corresponding landmarks in image B.
PA

kþ2;k (blue empty triangles) is the set of points of image A for
which Nkþ2;k ¼ 5 correspondences from image k to k þ 2 are
available, being PB

kþ2;k (blue colored triangles) the corresponding

landmarks in image B. As an example, the landmark pA;1
kþ1;k corre-

sponds to the point pB;1
kþ1;k and the point pA;5

kþ2;k corresponds to the

point pB;5
kþ2;k .
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4. We assume that the camera is moving smoothly and,
therefore, model the relation between camera poses
with a constant velocity motion model42 with mean
μpðxk−1; xk−2Þ, which is described later in Eq. (15),
and diagonal covariance matrix Σp, that is xkjxk−1;
xk−2 ∼N xkðμp;ΣpÞ. This model expresses that the
velocity at time k must be the same as the velocity
at time k − 1 plus a perturbation.

Within this probabilistic framework, the estimation of
the mosaic can be cast as a Bayesian inference problem,
in which the posterior PðX ; πjZ;PA;PBÞ is maximized with
respect to the camera poses X and plane π:

EQ-TARGET;temp:intralink-;e008;63;332ðX̂ ; π̂Þ ¼ argmax
ðX ;πÞ

PðX ; πjZ;PA;PBÞ (8)

in which the posterior probability factorizes as follows:
EQ-TARGET;temp:intralink-;e009;63;281

PðX ; πjZ;PA;PBÞ ∝ PðZ;PBjX ; π;PAÞPðX ; πjPAÞ
∝ PðZjXÞ|fflfflfflffl{zfflfflfflffl}

ðaÞ

PðPBjX ; π;PAÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ

PðXÞPðπÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ðcÞ

:

(9)

First, we applied Bayes theorem and dropped the constant
factor. Second, if the true cameras X are given, then the EMT
measurements Z are independent of the visual terms PB and
therefore, PðZ;PBjX ; π;PAÞ can be separated as (a) and (b).
Furthermore, in (a), we applied the fact that the EMT measure-
ments are independent of the plane π given X so that
PðZjX ; πÞ ¼ PðZjXÞ.

In the prior term identified as (c), we have first considered
independence of PA and π and then independence of π and X ,
i.e., PðX ; πjPAÞ ¼ PðX ; πÞ ¼ PðXÞPðπÞ. We assume that we
do not have prior information about the plane and that its dis-
tribution is bounded, thus considering PðπÞ ∝ 1. The graphical

model of the proposed probabilistic framework is presented in
Fig. 4. Circles represent random variables, which can be either
latent (white background) or observed (shaded). Parameters of
the model are depicted as a point.

Next, we incorporate the assumptions and present the factori-
zation of the likelihood and prior terms.

3.3.2 Likelihood and prior

The likelihood combines the EMT term PðZjXÞ and visual
term PðPBjX ; π;PAÞ. In particular, the EMT term contains
the relation between the EMT measurements and the true
cameras, assuming independence of the EMT measurements,
can be expressed as follows:

EQ-TARGET;temp:intralink-;e010;326;601PðZjXÞ ¼
YN
k¼1

PðzkjxkÞ: (10)

The visual term comes from the correspondences between
images, and it enforces visual pairwise consistency. Applying
the assumption that sets of corresponding points are independent
of each other, we can simplify this term by factorizing it as
follows:

EQ-TARGET;temp:intralink-;e011;326;491PðPBjX ; π;PAÞ ¼
Y

fm;lg∈L
PðPB

l;mjxl; xm; π;PA
l;mÞ: (11)

In every image, we also assume every landmark to be
independent. Therefore, we can further decouple the points as
follows:

EQ-TARGET;temp:intralink-;e012;326;405PðPB
l;mjxl; xm; π;PA

l;mÞ ¼
YMl;m

i¼1

PðpB;il;mjxl; xm; π; pA;il;mÞ: (12)

We assume every point in image B to be
pB;il;mjxl; xm; π; pA;il;m ∼N pB;il;m

ðμiv; σ2vIÞ with

EQ-TARGET;temp:intralink-;e013;326;323

�
μivðxl; xm; π;pA;il;mÞ

1

�
∝ HlH−1

m p̃A;il;m

¼
�
Rl − tl

nT

d

��
Rm − tm

nT

d

�−1
p̃A;il;m

(13)

For convenience, we redefine every point ~p directly in the
normalized image space through ~p ¼ K−1 ~q being ~q a homo-
geneous point in the image space.

The number of correspondences has a strong impact on
the estimation. A high number emphasizes the visual term,
unbalancing the fusion with the EMT information. This effect
is related to the simplifying independence assumption between
landmarks. The solution adopted has been to normalize and
manually adapt the visual variance σ2v to ensure good inter-
frame registrations, which can be seen as a pragmatic correc-
tion factor. A more detailed explanation of this problem is
covered in Sec. 5.

The prior term PðXÞ on the camera poses is approximated
by using a second order Markov process, which accounts for a
constant velocity of the camera. We assume no prior knowledge

Fig. 4 Graphical model of the proposed probabilistic framework.
Circles represent random variables, which can be either latent (white
background) or observed (shaded). Parameters of the model are
depicted as a point.
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of the joint probability on a bounded region of the space, i.e.,
Pðx2; x1Þ ∝ 1:
EQ-TARGET;temp:intralink-;e014;63;730

PðXÞ ¼ Pðx1; : : : ; xNÞ

¼ Pðx2; x1Þ
YN
k¼3

Pðxkjxk−1; xk−2; : : : ; x1Þ

≈ Pðx2; x1Þ
YN
k¼3

Pðxkjxk−1; xk−2Þ

∝
YN
k¼3

Pðxkjxk−1; xk−2Þ: (14)

We assume the new camera motion xkjxk−1; xk−2 ∼
N xkðμp;ΣpÞ, where

EQ-TARGET;temp:intralink-;e015;63;573μpðxk−1; xk−2Þ ¼ ½ r̄Tk t̄Tk �T (15)

is decomposed from the rigid transformation T̄k into rotation
and translation:

EQ-TARGET;temp:intralink-;e016;63;517T̄k ¼
�
R̄k t̄k
0 1

�
¼ Tk−1;k−2Tk−1; (16)

with R̄k ¼ expðr̄kÞ. This simply says that the last camera pose
Tk−1 is composed with the last available pairwise velocity
Tk−1;k−2 ¼ Tk−1T−1

k−2, giving an approximate idea of where
the current estimate should be.

3.4 Inference

By applying a negative logarithm to the posterior probability
distribution, we can express the proposed model as the minimi-
zation of a cost, which contains three terms, the visual cost Cv,
the EMT cost CEMT, and the cost associated with the temporal
model Cp as follows:

EQ-TARGET;temp:intralink-;e017;63;342ðX̂ ; π̂Þ ¼ argmin
ðX ;πÞ

ðCv þ CEMT þ CpÞ; (17)

where

EQ-TARGET;temp:intralink-;e018;63;288Cv ¼
X
l;m∈L

XNl;m

i¼1

1

σ2v
kpB;i − μivðxl; xm; π; pA;il;mÞk22; (18)

EQ-TARGET;temp:intralink-;e019;63;242CEMT ¼
XN
k¼1

ðzk − xkÞTΣ−1
EMTðzk − xkÞ; (19)

EQ-TARGET;temp:intralink-;e020;63;198Cp ¼
XN
k¼3

½xk − μpðxk−1; xk−2Þ�TΣ−1
p ½xk − μpðxk−1; xk−2Þ�:

(20)

This is a large scale nonlinear least squares problem, which
can be solved using a Gauss–Newton method, for which the
EMT measurements can be used for initialization.

If only the visual cost is used, the problem results in bundle
adjustment. Therefore, the proposed algorithm is an adapted
version of bundle adjustment that also incorporates the EMT
measurements and temporal consistency of the camera motions.

These algorithms require to have all the information beforehand,
i.e., they are offline. This is prohibitive in our case since we aim
for a sequential estimate. Consequently, we move toward local
methods. However, we do consider the incorporation of the
EMT information in bundle adjustment and propose it as an
additional contribution, since it can be used for refinement at
the end of the scanning procedure and can serve as a reference.

We use LBA, an approximation of bundle adjustment in
which only the components within a temporal window of
size W are considered. This drastically reduces the computa-
tional burden of the algorithm and allows for sequential estima-
tion. We slightly modify this approach following these two main
assumptions: (i) The cameras far from the current window pro-
vide little information about the new cameras to be estimated,
yet they provide information about the plane given visual mea-
surements. (ii) The cameras that have already been estimated
are considered fixed in the next iteration. These assumptions
are further commented in Sec. 5.

Let Xe ¼ fxekgχek¼1 be the subset of cameras to be estimated,
where χe is the number of cameras in the subset, X g ¼ fxgkg

χg
k¼1

is the set of cameras already estimated and fixed within the
window, with χg being the number of cameras in the subset
as well as the index of the most recent fixed camera,
such that W ¼ χe þ χg. Additionally, let Xo be the subset of
cameras already estimated outside the window, such that X ¼
fXe;X g;Xog. Analogously, let Ze be the set of EMT measure-
ments corresponding to the camera poses to be estimated.

We now seek to maximize the posterior probability of the
new camera motions Xe and plane π given all the estimated
cameras that have been fixed, and the EMT and visual measure-
ments such that

EQ-TARGET;temp:intralink-;e021;326;406ðX̂ e; π̂Þ ¼ argmax
ðX e;πÞ

PðX e; πjX g;Xo;Ze;PA;PBÞ: (21)

In this case, the posterior factorizes as follows:

EQ-TARGET;temp:intralink-;e022;326;348

PðX e; πjX g;Xo;Ze;PA;PBÞ
∝ PðZe;PBjX ; π;PAÞPðX e; πjX g;Xo;PAÞ
∝ PðZejXÞPðPBjX ; π;PAÞPðX ejX g;XoÞPðπÞ: (22)

Provided that Ze are independent of the rest of the camera
poses given X e, then PðZejXÞ ∝ PðZejXeÞ. Additionally,
we approximate PðXejX g;XoÞ with the assumption that the
cameras outside the temporal window do not influence the
estimation of the new ones as follows:

EQ-TARGET;temp:intralink-;e023;326;222

PðX ejX g;XoÞ ≈ PðXejX gÞ
≈ Pðxe2jxe1; xgχgÞPðxe1jxgχg ; xgχg−1Þ

×
Yχe−3
k¼0

Pðxeχe−kjxeχe−ðkþ1Þ; x
e
χe−ðkþ2ÞÞ; (23)

where all the terms have been further approximated as a Markov
process of second order in the same way as before.

However, operating only in a temporal window may not pro-
vide enough baseline between camera poses to capture the depth
of the plane accurately. Therefore, we have enhanced the meas-
urement set with evenly distributed visual measurements that
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cover the available space explored at every iteration. In order to
sparsely select sets of landmarks throughout the observed area,
we project the image corners using the available camera poses
and plane estimated at a given iteration. Provided that drift has
not been accumulated during the estimation, we can use the pro-
jection of the image corners to determine the location of the
image in the mosaic space. To this end, we compute the cent-
roids of the reprojected corners and use K-means [Fig. 5(b)] to
cluster the centroids into different regions of the space. Finally,
we randomly pick a consecutive subset of camera motions in
each cluster to be taken into account together with their corre-
sponding landmarks. Figure 5 depicts the proposed algorithm.

In a similar way as before, we can formulate the problem:

EQ-TARGET;temp:intralink-;e024;63;390ðX̂ e; π̂Þ ¼ argmin
ðX e;πÞ

ðCv þ CEMT þ CpÞ; (24)

where

EQ-TARGET;temp:intralink-;e025;63;336Cv ¼
X

l;m∈W

XNl;m

i¼1

1

σ2v
kpB;i − μivðxl; xm; π; pA;il;mÞk22; (25)

EQ-TARGET;temp:intralink-;e026;63;290CEMT ¼
XW
k¼1

ðze;k − xekÞTΣ−1
EMTðze;k − xekÞ; (26)

EQ-TARGET;temp:intralink-;e027;63;246

Cp ¼
XW
k¼3

½xek − μpðxek−1; xek−2Þ�TΣ−1
p ½xek − μpðxek−1; xek−2Þ�

þ ½xe2 − μpðxe1; xgχgÞ�TΣ−1
p ½xe2 − μpðxe1; xgχgÞ�

þ ½xe1 − μpðxgχg ; xgχg−1Þ�TΣ−1
p ½xe1 − μpðxgχg ; xgχg−1Þ�;

(27)

where W ⊂ L is the subset of corresponding images that has
been sparsely selected as well as the ones within the temporal
window. This results in much smaller nonlinear least square
problems that can be solved using Gauss–Newton.

LBA produces a slightly different version of the plane in
every iteration. The task of composing consistent homographies
from these estimates is not trivial. For simplicity, we have opted
to compose the new homographies with the estimated set of

cameras and plane obtained in every iteration by using
Eq. (5). This may lead to slight misregistrations in the mosaic
between estimates with different planes when the camera has not
explored enough area. Eventually, the estimate of the plane
is going to converge and could potentially be assumed fixed,
simplifying the optimization problem.

4 Experiments and Results
In this section, we introduce the algorithms to compare to, the
datasets, and the metrics used to then present a suite of experi-
ments, where we prove that our approach is drift-free, robust to
EMT noise as well as robust to loss of visual information.

4.1 Algorithms, Datasets, and Evaluation Metric

4.1.1 Algorithms

We name our proposed algorithm LBAVis+EMT. We compare it
against the pairwise solution (PairVis) of the mosaicking pipe-
line that Brown et al.14 proposed as initialization for a further
global refinement step. We also compare it against the algorithm
established as the state-of-the-art in global alignment, so-called
bundle adjustment16 (BAVis). However, rather than using
homographies to parametrize the problem, we used the same
parametrization as in LBAVis+EMT to avoid over-parametriza-
tion. We also compare LBAVis+EMT against the proposed
version (BAVis+EMT) of bundle adjustment that incorporates
the EMT information.

4.1.2 Datasets

We introduce a synthetic (SYN, 3370 frames), a phantom-based
(PHB, 902 frames), and an ex vivo human placenta (EX, 366
frames) datasets, which are composed of a set of EMT measure-
ments as well as a sequence of images from which correspond-
ences have been obtained using SIFT and RANSAC.14

Experimental procedures for the acquisition of the ex vivo
human placenta were approved by Bloomsbury National
Research Ethics Service Committee and by University College
London Hospital Research and Development (REC Reference
number 133888). The SYN is a xy-translation synthetic
dataset in which the camera motion follows a circular pattern.
It contains EMT information synthetically generated following

Fig. 5 (a) The estimated cameras and plane produce drift-free estimates of the projected images in the
mosaic space. We project the image corners (dotted contour) and compute the centroids (black dots).
(b) The centroids have been clustered using K -means. (c) A consecutive subset of centroids has been
randomly selected from each cluster. These centroids correspond to fixed camera poses as well as visual
measurements, which are then used to leverage the visual pairwise relations in different areas of the
space.
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the assumptions made on the EMT and visual information (see
steps 2 and 3). The sequence of images was generated by select-
ing image regions (368 × 378) of a large image, representing the
imaged plane, observed by the ground truth cameras. The PHB
(783 × 782) and EX (806 × 779) are hand-held datasets. The
PHB is recorded by imaging a printed version of a placenta
taped onto a planar surface. Example images for all datasets
are shown in Fig. 6.

The PHB and EX datasets were recorded using the following
setup: a camera head IMAGE1 H3-Z SPIES mounted on a 3-mm
straight scope 26007 AA 0 (Karl Storz Endoskope, Tuttlingen,
Germany), an EMT system NDI Aurora with a planar field gen-
erator and a Mini 6 DoF sensor. According to Franz et al.,9 the
MSE in the accuracy of the system is 0.9 deg in the rotation and
0.25 mm in the translation in laboratory conditions. However,
since the accuracy of the EMT system can vary due to external
factors, such as metal in the working area or position in the
working volume, dynamic electromagnetic tracking errors, syn-
chronization errors, and hand-eye calibration errors, we arbitrar-
ily take larger9 standard deviations of 1 deg and 1 mm as default
values in our experiments. Synchronized video (25 fps) and
EMT data (40 Hz) were obtained using the NifTK43 software
with a maximum synchronization error of 12.5 ms. The feto-
scope was precalibrated using the MATLAB camera calibration
toolbox in Ref. 44. We also precomputed and applied the hand-
eye calibration45 matrix from a sequence of images of a checker-
board as well as synchronized sensor poses. The reference
plane was obtained by fitting a plane to a large sweep of 3-D
points collected by scanning the surface with an EMT sensor.
We obtained the ground truth homographies by manually regis-
tering the fetoscopic images directly to the original image of
the placenta. The entire setup is shown in Fig. 7.

To provide quantitative results in terms of the accuracy of
a mosaic with respect to the ground truth, we need to define
the metrics.

4.1.3 Metrics

We parametrize a mosaic as a collection of homographies.
Therefore, comparing two mosaics becomes equivalent to
comparing two collections of homographies. Starting by com-
paring individual homographies, we define the error between
any homography H and the ground truth homography
HGT as the mean residual error of a projected grid of points

fρigNg

i¼1 ∈ ΩI from the image space ΩI ⊂ R2 to the mosaic
space ΩM:

EQ-TARGET;temp:intralink-;e028;326;383ej ¼
1

Ng

XNg

i¼1

kwðH−1
j ; ρiÞ − wðH−1

j; GT; ρiÞk2; (28)

where wðHj; ρÞ projects the point ρ from the image space ΩI to
the mosaic space ΩM through Hj by propagating the point and
converting it to Cartesian coordinates. Specifically, we have
used a grid of Ng ¼ 1002 points for each comparison.

To further compare two collections of homographies, we take
the mean of the error associated to each of the homographies
with respect to the ground truth and define the error eM that
represents the average reprojection error in pixels:

EQ-TARGET;temp:intralink-;e029;326;250eM ¼ 1

N

XN
j¼1

ej: (29)

4.2 Experimental Suite

In the first experiment, we show that LBAVis+EMT is not
affected by long-term drift in the SYN and PHB datasets. In
the second experiment, we demonstrate that the complementar-
ity between EMT and visual information makes the system
robust to the jitter effect caused by the EMT noise on the SYN
dataset. In the third experiment, we prove how the loss of visual
information does not impede the creation of the mosaic in the
SYN dataset. Finally, we present a set of videos for all datasets
showing accurate sequential drift-free creation of the mosaics
from long sequences.

Fig. 6 (a) The synthetic (SYN), (b) phantom-based (PHB), and (c) ex vivo human placenta (EX) datasets.

Fig. 7 The setup is composed of an EMT field generator and feto-
scope in which an EMT sensor has been assembled at its tip.
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The choice of parameters has been the following: W ¼ 5,
χe ¼ 3, and K ¼ 3, each of which we take 5 consecutive
cameras for SYN; W ¼ 3, χe ¼ 1, and K ¼ 3 each of which
we take 3 consecutive cameras for PHB; and W ¼ 12, χe ¼ 6,
and K ¼ 3 each of which we take 12 consecutive cameras for
EX. The covariance matrix Σp has been estimated through an
independent dataset with similar motion characteristics. ΣEMT

has been conservatively chosen to account for other sources
of error while σ2v has been set to σv ¼ 1 pixel. ΣEMT and
Σp are shown in Appendix A.

Once the alignment has been performed, we use a linear
blending15 with a thin circular black border in each image to
clearly show where it has been stitched. The use of linear blend-
ing allows for clearly distinguishing the misregistrations and
it is, therefore, more interesting for demonstration purposes.
However, we also use multiband blending15 to provide more
appealing results for all datasets (Videos 1–3).

4.2.1 Drift-free mosaicking

The goal of this experiment is to show that LBAVis+EMT does
not drift over time. Figure 8 shows the curves for the PairVis
(blue dashed), LBAVis+EMT (green), BAVis (yellow dotted),
and BAVis+EMT (green dotted) in the SYN [Fig. 8(a)] and
PHB [Fig. 8(b)] datasets. The x-axis is the number of frames
and the y-axis is the error ej in pixels corresponding to a homog-
raphy Hj. Note that in the case of PairVis, this homography is
created through a composition of pairwise homographies, and
therefore, a point in the curve shows the cumulative error up
to the corresponding frame.

Both experiments show a similar trend; the growing tendency
in the PairVis is expected due to small misregistrations in sub-
sequent images, which leads to this long-term drift. By contrast,
LBAVis+EMT maintains an approximately constant tendency
over time, which demonstrates the absence of long-term drift.
Additionally, the accuracy of the proposed approach is very
close to that of BAVis and BAVis+EMT. This shows the feasibil-
ity of sequential methods for mosaicking in a planar scenario in
terms of accuracy, when the EMT system is guiding the
estimation.

We have used a relatively small number of frames (152
frames in SYN and 155 in PHB) to prove the long-term drift
in PairVis while being able to compute BAVis and BAVis
+EMT. However, we emphasize that after a certain number
of frames, which will depend on the quality of the pairwise
registrations, the accumulated error can lead to projections of

unnatural size (see Fig. 1), which may result in memory prob-
lems when creating the mosaic image. By contrast, we show in
Fig. 11, how LBAVis+EMT can cope well with long sequences.

In Table 1, we show the runtimes for both SYN and PHB
datasets. We report the runtimes of the steps that differ between
algorithms: matching and optimization. The experiments were
performed in a MacBook Pro with an Intel Core I7 at
2.5GHz with 4 cores and 16 GB of RAM memory and the algo-
rithms were implemented in MATLAB using VLFeat version of
SIFT and matching algorithm.46 While PairVis is the fastest
method, LBAVis+EMT shows similar performance to the
gold standard bundle adjustment with much less computational
burden. We also highlight the fact that the computational times
of BAVis+EMTare smaller than BAVis. Since we provide direct,
albeit noisy measurements of the latent variables to estimate,
the problem is better posed. Therefore, faster convergence is
expected.

4.2.2 Robustness to electromagnetic tracker noise

Inherently, the use of EMT information produces a jitter effect in
the mosaic due to the noise in the camera pose measurements.
The goal of this experiment is to assess the accuracy of LBAVis
+EMT and show that when EMT information is fused with
visual information, the jitter effect is mitigated in the creation
of the mosaic. For this purpose, we created seven synthetic
datasets, each with different EMT noise statistics. We have
denoted the scalar ν to be the standard deviation of the EMT
noise in the camera poses. We chose a small subset of only
17 frames since we are now only interested in the quality of
pairwise registrations.

For every SYN dataset, we assessed the accuracy of the
resulting mosaic for LBAVis+EMT and compared it against
the jittery baseline composition of the mosaic using only EMT
information and the ground truth plane. Figure 9(a) displays
the graphs for both algorithms. The x-axis represents the differ-
ent datasets from best to worse EMT noise statistics ν while
the y-axis corresponds to the average error in the mosaic eM
measured in pixels.

We can see how while the EMT-based composition shows an
approximately linear tendency with the increase of ν, LBAVis
+EMT outperforms it by showing an approximately constant
accuracy. This stands to reason since, after ν ¼ 1, the quality of
the EMT information is really bad and thus barely used. Then,
the visual information plays a major role in the estimation.
We have highlighted the case ν ¼ 1 and displayed the mosaics
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Fig. 8 Assessment of the accuracy of the PairVis (blue dashed), LBAVis+EMT (green), BAVis (yellow
dotted), and BAVis+EMT (dark green dash-dotted) in (a) SYN and (b) PHB.
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corresponding to ν ¼ 1 since it is the value of choice in other
experiments. Figure 9(b) shows an accurate mosaic created with
LBAVis+EMT, and Fig. 9(c) shows the jitter effect of EMT
information in the mosaic.

4.2.3 Robustness to sudden loss of visual information

In this experiment, we test our approach when no corresponding
landmarks can be found between pairs of frames. We created an
alternative dataset in the same manner than the SYN dataset was
created. This new dataset contains 62 frames of which 12 ran-
domly selected ones were replaced by black frames to simulate
lack of visual content. The black frames are 7, 11, 12, 23, 24, 37,

38, 42, 43, 45, 51, and 54. Then, we ran LBAVis+EMT to assess
its accuracy with missing visual information. Figure 10(a)
shows how despite loss of visual information, when PairVis
would fail, LBAVis+EMT has been able to successfully create
a mosaic. Black circles in the mosaic [Fig. 10(a)] represent the
reprojection of the missing frames in the mosaic space.
Figures 10(b) and 10(c) show the estimated plane and six com-
ponents of the camera pose (green), rotation (rx; ry; rz) and
translation (tx; ty; tz), the EMT measurements (blue crosses)
and their ground truth (red), respectively, for each frame. We
convert the plane to azimuth, elevation, and distance for an
easier interpretation and detail the conversion in Appendix A.
Therefore, when no landmarks are available, the estimation

Fig. 9 (a) In the x -axis, the multiplier ν defines the standard deviation of the rotation and translation in
degrees and millimeters, respectively, of seven versions of the SYN dataset. In the y -axis, the error in
pixels eM in the mosaic. Every point in the graph represents the error in a mosaic created by using either
LBAVis+EMT (green) or EMT (blue dotted) with the ground truth plane (EMT+GT Plane). (b) LBAVis
+EMT mosaic for ν ¼ 1. (c) EMT + GT plane mosaic for ν ¼ 1.

Table 1 Runtimes for both SYN and PHB datasets for PairVis, LBAVis+EMT, BAVis, and BAVis+EMT. The second column indicates the number
of images in the dataset. The third column corresponds to the number of matched pairs. The fourth column is the average number of correspond-
ences in all pairs. The fifth column is the matching runtime in seconds. Note that it includes unsuccessful matching attempts. The last column is
the optimization runtime in seconds.

Algorithm Dataset No. of images No. of pairs No. Avg. Corr. Matching (s) Optimization (s)

PairVis SYN 152 151 86 49.811 3.145

LBAVis+EMT SYN 152 350 67 178.766 38.567

BAVis SYN 152 1094 76 4286.259 521.819

BAVis+EMT SYN 152 1094 76 4350.518 321.928

PairVis PHB 155 154 222 88.192 3.333

LBAVis+EMT PHB 155 449 184 519.447 50.638

BAVis PHB 155 2030 105 15064.135 1488.251

BAVis+EMT PHB 155 2030 105 15394.628 1103.748
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can continue successfully and provide a reasonable estimate of
the camera poses and plane.

4.2.4 Sequential creation and blending of the mosaics

Figures 11(a)–11(c) show the results of running LBAVis+EMT
in the SYN (3770 frames), PHB (902 frames), and EX (366
frames) datasets, respectively. Figure 12 shows the graph corre-
sponding to the error ej in every frame of the SYN dataset.
We provide videos (Videos 1–3) that illustrate the sequential
creation of the mosaics by showing the subsequent blending
of every new image into the mosaic image. We recommend

the reader visualize the videos for a better understanding of
the results. In this experiment, the goal is to demonstrate that
our approach can create accurate long mosaics in a sequential
fashion.

5 Discussion
Our results confirm that the fusion between the EMT and visual
information using the proposed probabilistic model in a sequen-
tial fashion does not accumulate drift. However, there exists
an error within the acceptable range of camera poses in which
estimates can lay. We believe that the major cause of this error is

Fig. 10 (a) LBAVis+EMT mosaic of a synthetic dataset where some random frames have been replaced
by black frames to simulate the lack of visual content (7, 11, 12, 23, 24, 37, 38, 42, 43, 45, 51, and 54).
Black circles in the mosaic represent the reprojection of the missing frames in the mosaic space.
(b) Estimation of the plane (green) and ground truth (red). (c) Estimation of the camera pose
(green); rotation (r x ; r y ; r z ) and translation (t x ; t y ; t z ), EMT measurements (blue crosses), and ground
truth (red).
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the use of previous estimates as fixed camera poses, which
encourages continuity on subsequent estimations. The effect
of this error can be clearly appreciated in Fig. 11(a). In contrast
to the PairVis, in which Fig. 8 has drifted after ∼20 frames, our
approach is able to create a consistent mosaic after 3770 frames.
However, a fixed point in one of the circular loops does not
necessarily match to the exact same point when the scene is
revisited [Fig. 11(a)]. The range of error experienced corre-
sponds to the spread, where the EMT system allows the
estimates to be as long as there is pairwise consistency. To
further highlight this fact, we can see that when the estimation
exceeds the range of error allowed by the model, an occasional
pull toward the true value can be observed (e.g., see frames
18–19). We did not include a version of the LBA using
only visual information in our results since it would still use
exclusively pairwise visual measurements, and therefore, it
would drift.

When the scene is revisited, images are not necessarily
stitched in an exactly consistent location. This is a limitation
of our approach, and we do not constrain the revisited positions
to match. However, an immediate extension that can tackle this
problem would consist of the use of a spatiotemporal window to
also consider regions of the space that are being revisited. While
the probabilistic formulation would remain valid, the spatial
window would optimize for loop closures, yet avoiding the

computational cost associated with re-estimating the cameras
within the loop, since we would rely on the EMT information
to situate the loop roughly in a correct location from the
beginning.

Our results show how, despite the inherent noise in the EMT
system, its measurements can be used to produce accurate
pairwise registrations. However, since independence between
corresponding points has been assumed in the model and the
number of points can be high, if not dealt with, it translates
into underestimated uncertainty in the visual information, thus
leading to less reliance on the EMT information. Nonetheless,
our setup does not yet fully simulate clinical images; the match-
ing process in our datasets is in general easier than in clinical
videos, with an increased number of matches, which accentuates
the imbalance between both modalities.

The placenta is not completely planar; the violation of this
assumption will inevitably produce misregistration errors in
those areas, where the nonplanarities are more prominent.
Figure 11(c) demonstrates that these errors are small enough
to consider the assumption of planarity valid in an ex vivo
scenario. However, further research should be conducted on
in vivo data.

Additionally, we see how the feature-based and outlier
removal strategy do not perform optimally in ex vivo tissue
[Fig. 11(c)], which leads to misregistrations in the mosaic.
We believe that further research in registration of pairwise
images must be done for ex vivo and in vivo data. However,
this is out of the scope of this paper.

If we closely analyze how the noise in the corresponding
points is propagated, we see that there are two error terms
playing a role in a point pi;B in image B; the corresponding
point pi;A in image A gets propagated through the homography,
which makes one error term highly correlated between points,
and another one is additive, i.e., pi;B ¼ Hðpi;A þ ϵi;AÞ þ ϵi;B.
Therefore, the distribution already undergoes a nonlinear func-
tion, and there can be other nonlinear factors, such as distortion
errors that can complicate even more the resulting distribution.
For this reason, we opted to approximate such distribution as
a Gaussian, which works well in practice.

We have also demonstrated how our approach can perform
adequately even when visual information is missing. The reason

Fig. 11 Mosaic using LBAVis+EMT in the (a) SYN (Video 1), (b) PHB (Video 2), and (c) EX (Video 3)
datasets. (Video 1, MP4, 5.1MB [URL: https://doi.org/10.1117/1.JMI.5.2.021217.1]; Video 2, MP4, 3.4MB
[URL: https://doi.org/10.1117/1.JMI.5.2.021217.2]; and Video 3, MP4, 3.1MB [URL: https://doi.org/
10.1117/1.JMI.5.2.021217.3])
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Fig. 12 Error ej in pixels of LBAVis+EMT in the SYN dataset.

Journal of Medical Imaging 021217-13 Apr–Jun 2018 • Vol. 5(2)

Tella-Amo et al.: Probabilistic visual and electromagnetic data fusion. . .

https://doi.org/10.1117/1.JMI.5.2.021217.1
https://doi.org/10.1117/1.JMI.5.2.021217.2
https://doi.org/10.1117/1.JMI.5.2.021217.3
https://doi.org/10.1117/1.JMI.5.2.021217.1
https://doi.org/10.1117/1.JMI.5.2.021217.1
https://doi.org/10.1117/1.JMI.5.2.021217.1
https://doi.org/10.1117/1.JMI.5.2.021217.1
https://doi.org/10.1117/1.JMI.5.2.021217.1
https://doi.org/10.1117/1.JMI.5.2.021217.1
https://doi.org/10.1117/1.JMI.5.2.021217.1
https://doi.org/10.1117/1.JMI.5.2.021217.1
https://doi.org/10.1117/1.JMI.5.2.021217.1
https://doi.org/10.1117/1.JMI.5.2.021217.2
https://doi.org/10.1117/1.JMI.5.2.021217.2
https://doi.org/10.1117/1.JMI.5.2.021217.3
https://doi.org/10.1117/1.JMI.5.2.021217.3
https://doi.org/10.1117/1.JMI.5.2.021217.3


for this is that we have strong information about missing camera
poses: for each empty frame, we have an EMTmeasurement that
tells us the approximate location of the camera, and a temporal
model that also provides prior knowledge of its location.
Furthermore, the fact that some images are missing does not
impede the estimation of the plane as long as the visual infor-
mation has enough baseline between images.

Our approach estimates the distance d from the reference
camera to the surface, which is directly related to the distance
between the camera and the surface. This distance can be a
powerful cue for the surgeon since photocoagulation must
be done at a certain fixed distance from the placenta. However,
neither the EMT nor visual information in isolation can estimate
such distance. Actually, if no EMT information is provided, the
distance becomes a free parameter due to the inherent scale
ambiguity in monocular cameras. For this reason, its estimation
is not straightforward and further assessment of the accuracy
needs to be conducted. Additionally, the hand-eye calibration
is in general problematic; a set of images of a known object,
e.g., a checkerboard, must be taken with the fetoscope and
the attached EMT sensor in controlled conditions. One may
also need to apply some heuristics to achieve an acceptable
accuracy.

6 Conclusions
We have presented a probabilistic model for robust drift-free
sequential mosaicking that fuses imagery and data from an
EMT system in the case where a planar or quasiplanar object
is imaged in a hand-held motion. We have shown that our
method does not accumulate error; a problem that affects all
monocular pairwise mosaicking systems, which use exclusively
visual information. Therefore, we have been able to create long
mosaics obtaining an accuracy comparable to the state-of-the-art
bundle adjustment. In spite of the inherent noise in EMT sys-
tems, we have demonstrated that our approach can still generate
accurate mosaics while leveraging its guidance. Furthermore,
we have shown its feasibility even when there is a loss of visual
information.

In terms of future work, we are considering the following
research lines: (i) clinical fetoscopic datasets present a challenge
in terms of obtaining a set of valid matches. In this work, we
have not addressed this problem; however, this is clearly a limi-
tation toward fetoscopic mosaicking that we plan to address.
(ii) In order to eliminate the error within the EMT bounds,
we could consider the use of weighted LBA. This would soften
the effect of fixed cameras and reconsider already estimated
cameras according to their uncertainty in the current estimation.
(iii) To further avoid normalization in the corresponding points,
modeling the fact that the errors in the points are correlated is
an interesting idea, which could avoid the normalization
process. (iv) The inclusion of the visual and hand-eye matrix
in the model is an attractive research line, which, if successful,
would remove a tedious step in the operating room. (v) Last,
this study serves as a proof-of-concept to a future real-time
version of the approach. We believe this is possible given
that algorithms with similar computational load have been
successfully implemented in real time.

Given the low quality of fetoscopic images, we believe that
the inclusion of the EMT system in the mosaicking process is
fundamental to achieve a robust and accurate mosaic, independ-
ently of the number of frames.

Appendix A

A1 Covariance Matrices

EQ-TARGET;temp:intralink-;e030;326;700

ΣEMT ¼ diagð½0.017; 0.017; 0.017; 1; 1; 1�Þ;
Σp ¼ diagð½0.0044; 0.0044; 0.0044; 15.2178;

15.2178; 15.2178�Þ; (30)

where diagð·Þ denotes a diagonal matrix.

A2 Conversion from Cartesian Coordinates
to Azimuth, Elevation, and Distance

The conversion from Cartesian coordinates to azimuth, eleva-
tion, and distance is as follows:
EQ-TARGET;temp:intralink-;e031;326;564

tanðazÞ ¼ y
z
;

tanðelevÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p ;

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2 þ z2

q
: (31)
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