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SUMMARY

In mammals, transcriptional inactivation of one X chromosome in female compen-
sates for the dosage of X-linked gene expression between the sexes. Addition-
ally, it is believed that the upregulation of active X chromosome in male and
female balances the dosage of X-linked gene expression relative to autosomal
genes, as proposed by Ohno. However, the existence of X chromosome upregu-
lation (XCU) remains controversial. Here, we have profiled gene-wise dynamics of
XCU in pre-gastrulation mouse embryos at single-cell level and found that XCU is
dynamically linked with X chromosome inactivation (XCI); however, XCU is not
global like XCI. Moreover, we show that upregulated genes are enriched with
activating marks and have enhanced burst frequency. Finally, our In-silico model
predicts that recruitment probabilities of activating factors and a surge of these
factors upon X-inactivation trigger XCU. Altogether, our study provides signifi-
cant insight into the gene-wise dynamics and mechanistic basis of XCU during
early development and extends support for Ohno’s hypothesis.

INTRODUCTION

In therian mammals, sex is determined by the sex chromosomes: XX (female) and XY (male). The X and Y

evolved from a pair of autosomal homologs around 166–180 million years ago through the acquisition of

male determining Sry gene on one of the chromosomes, which became de facto proto-Y (Cortez et al.,

2014; Veyrunes et al., 2008). During evolution, the acquisition of male genes on the Y led to the loss of

recombination, resulting progressive degradation of the Y chromosome. Degradation of Y created a

dosage imbalance between X and autosomal genes in males and between the sexes (Graves, 2016). In

1967, Ohno hypothesized that the evolution of dosage compensation happened through two steps: X chro-

mosome in male cells was upregulated to 2-fold to correct the dosage imbalance related to Y degradation

(Ohno, 1967). Subsequently, this X chromosome upregulation (XCU) was inherited in females and thereby

introduced an extra dosage of the X chromosome in female cells. Therefore, to restore optimal dosage

from X chromosome in female cells, the evolution of X chromosome inactivation (XCI) happened, a process

that silent one of the X chromosome in female mammals (Lyon, 1961). However, Ohno’s hypothesis was not

accepted well for a long time owing to the lack of proper experimental evidence. The first evidence of

X-upregulation came through the studies based onmicroarray analysis; however, subsequently, it was chal-

lenged through RNA-seq based analysis (Nguyen and Disteche, 2006; Gupta et al., 2006; Johnston et al.,

2008; Lin et al., 2007; Talebizadeh et al., 2006; Xiong et al., 2010). Down the line, several independent

studies came out both supporting and refuting Ohno’s hypothesis (Chen and Zhang, 2016; Moreira de

Mello et al., 2017; Deng et al., 2011, 2013; Julien et al., 2012; Kharchenko et al., 2011; Larsson et al.,

2019; Li et al., 2017b; Lin et al., 2011; Sangrithi et al., 2017). We have recently shown that there is, indeed,

the presence of upregulated active-X chromosome (X2a) in human pluripotent stem cells in vitro (Mandal

et al., 2020). However, the dynamics of XCU at the onset of XCI during early embryonic development re-

mains poorly understood. On the other hand, the extent of XCU, i.e., whether XCU is chromosome-wide

like XCI or restricted to specific genes, remains unknown. Many studies implicated that XCU might be

global, though direct evidence showing gene-wise dynamics of upregulation is not well understood

(Deng et al., 2011, 2013). On contrary, several studies implicated that XCU affects dosage-sensitive genes

such as components of macromolecular complexes, signal transduction pathways, or encoding for tran-

scription factors (Pessia et al., 2012, 2014). To get better insight into this, here we have explored gene-

wise dynamics of XCU in pre-gastrulation mouse embryos at single-cell level through allele-specific
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single-cell RNA-seq analysis. We found that XCU is neither chromosome-wide nor restricted to dosage-

sensitive genes only. Next, we have explored the mechanistic basis of why some genes are upregulated

while others are not from the same active X chromosome and how XCU is linked to the XCI.
RESULTS

Dynamic active-X upregulation upon randomXCI in epiblast cells of pre-gastrulation embryos

In female pre-gastrulation mouse embryos, while extraembryonic cells harbor imprinted inactive X,

epiblast cells are at the onset of random XCI (Gayen et al., 2015, 2016; C. Harris et al., 2019; Maclary

et al., 2017; Sarkar et al., 2015). We investigated the status of XCU in these different lineages of pre-gastru-

lation embryos by performing allelic/non-allelic gene expression analysis using the available scRNA-seq

dataset of E5.5, E6.25, and E6.5 hybrid mouse embryos (Cheng et al., 2019) (Figure 1A). These embryos

were derived from two divergent mouse strains (C57BL/6J and CAST/EiJ) and therefore harbored polymor-

phic sites across the genome, allowing us to profile gene expression with allelic resolution (Figure 1A). First,

we classified the cells of E5.5, E6.25, and E6.5 mouse embryos into the three lineages: epiblast (EPI), extra-

embryonic ectoderm (ExE), and visceral endoderm (VE) based on our previous work (see detail in STAR

Methods) (Naik et al., 2021) (Figure 1A). Next, we categorized the cells of different lineages of the female

embryos based on their XCI status: cells with no XCI (XaXa), partial or undergoing XCI (XaXp), and complete

XCI (XaXi) through profiling the fraction of maternal allele expression (Figure 1B). We found that in the EPI

lineage lot of cells belong to XaXp/XaXa category, indicating that these cells are the onset of random

X-inactivation. In contrast, cells of VE/ExE lineage mostly belong to XaXi category, indicating the establish-

ment of imprinted X-inactivation (Figure 1B). As expected, autosomal genes showed almost equivalent

paternal/maternal allele expression, thus validating our allele-specific analysis (Figure S1A). Next, to check

the upregulation dynamics, we profiled X:A ratio in the individual cells of different stages/lineages of em-

bryos. If a diploid female cell with an inactive-X (XaXi) poses upregulated active X, the expected X:A ratio

should be more than 0.5 and closer to 1. We found that X:A ratio of XaXp/XaXi cells is always >0.5 and close

to one despite XCI, indicating dynamic X-upregulation from the active-X chromosome XaXp/XaXi cells (Fig-

ure 1C). Similarly, male cells had X:A ratio >0.5 and close to 1, suggesting the presence of upregulated X

chromosome (Figure 1C). Next, to validate the presence of XCU in more accurately, we compared the

allelic expression pattern from autosome and X chromosome in individual cells of each lineage. Indeed,

we found that the active X expression is always significantly higher than the allelic expression of autosomal

genes in XaXp/XaXi cells, reflecting the upregulation of X-linked gene expression from the active X chromo-

some (Figure 1D and Tables S1 and S2). On the other hand, there were no significant differences in active Xs

and autosomal allelic expression in XaXa cells of epiblast lineage, suggesting no upregulation of X chromo-

some in the absence of XCI (Figure 1D and Table S2). As expected, X chromosome in male cells also

showed significantly higher expression than each allele of autosomes (Figures 1D, S1B, and S1C;

Table S2). Altogether, these analyses suggested (a) dynamic active XCU on the initiation of random XCI

in female epiblast cells, (b) presence of upregulated X-Chr. in female VE and ExE cells with imprinted X

inactivation, and (c) presence of upregulated X-Chr. in different lineages of male cells of pre-gastrulation

embryos as well.
X chromosome upregulation is not global

Our X:A analysis in female pre-gastrulation embryos revealed that the X:A ratio of XaXi cells is consistently

lower compared to the XaXa cells (Figure 1C). This data hinted that the X-upregulation of X-linked genes in

XaXi cells is partial or all genes do not undergo upregulation. To explore this further, we investigated

whether X chromosome upregulation occurs globally or is restricted to certain genes. To test this, we pro-

filed gene-wise dynamics of XCU by comparing the expression of X-linked genes from the active X chromo-

some of XaXi cells with the same active allele of XaXa cells in EPI E6.5 (Figure 2A). If active allele of a gene is

upregulated in XaXi cells, it will show increased expression from the active allele in XaXi cells compared to

the same active allele of XaXa cells. We found that while many X-linked genes showed increased expression

from the active-X allele in XaXi cells compared to the XaXa, a significant number of genes did not show such

increased expression, suggesting that all genes do not undergo upregulation (Figure 2A). Moreover, while

some genes showed robust upregulation from the active-X allele, the others weremoderately upregulated.

Altogether, this result suggested that X-upregulation is not global or does not occur chromosome-wide.

On the other hand, surprisingly we found that an adequate number of upregulated X-linked genes showed

allele-specificity as they showed upregulation from either C57 or CAST as an active-X, suggesting that the

regulation of upregulation of active allele may occur in the parent of origin-specific manner (Figure 2B).
2 iScience 25, 104465, June 17, 2022
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Figure 1. Dynamic X chromosome upregulation in different lineages of pre-gastrulation embryos

(A) Schematic outline of the workflow: profiling of active X-upregulation in different lineages (EPI: Epiblast, ExE: Extra-

embryonic ectoderm, and VE: Visceral endoderm) of pre-gastrulation hybrid mouse embryos (E5.5, E6.25, and E6.50) at

the single-cell level using scRNA-seq dataset. Hybrid mouse embryos were obtained from crossing between two diver-

gent mouse strains C57 and CAST.

(B) Classification of cells based on XCI state through profiling of fraction maternal expression of X-linked genes in the

single cells of different lineages of female pre-gastrulation embryos (EPI, ExE, and VE). Ranges of the fraction of maternal

expression were considered for different category cells: XaXa = 0.4–0.6, XaXp = 0.6–0.9/0.1–0.4 and XaXi = 0.9–1/0–0.1.

(C) X:A ratios represented as violin plots for the different lineages of female (XaXa, XaXp, XaXi) and male cells of pre-

gastrulation embryos. Line within each violin represents a median value.

(D) Boxplots showing allelic expression levels of X-linked and autosomal genes in different lineages of female (XaXa,

XaXp, XaXi) and male cells of pre-gastrulation embryos. Line inside of the each box represents median value, edges of

each box indicating 25 and 75% of the dataset. (Mann-Whitney U test: p value < 0.05; * p value < 0.01; ** and p

value < 0.001; ***).
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Figure 2. X chromosome upregulation is not global

(A and B) Comparison of expression (log normalized reads) of individual X-linked genes from the active allele between the

XaXa and XaXi EPI cells of E6.50 embryos (B) Plot representing intersections of allele-wise upregulation of X-linked genes

in E6.5 EPI cells.
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Higher occupancy of different activating factors at upregulated X-linked genes versus non-

upregulated X-linked genes

Next, we investigated the mechanistic basis of why some genes undergo upregulation and others are not

from the same active X. For this purpose, we considered the X-linked genes (in E6.5 EPI) having upregula-

tion from both alleles as upregulated genes, whereas genes showing no upregulation from either of the

allele categorized as non-upregulated. Previous reports stated that XCU is restricted only to dosage-sen-

sitive genes such as genes encoding for large protein complexes, transcription factors, proteins involved in

signal transduction, and so forth. Therefore, we analyzed if the upregulated genes in EPI E6.5 mostly

belong to such dosage-sensitive genes. We identified dosage-sensitive X-linked genes through different

gene function databases and haplo-insufficient gene databases as described in STAR Methods. We found

that while some upregulated genes fall into dosage-sensitive category, many genes are not (Table S3).
4 iScience 25, 104465, June 17, 2022
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Figure 3. Enrichment of activating factors and increased transcriptional burst frequency leads to the

upregulation of X linked genes

(A) Comparison of expression levels (log2 TPM) between upregulated and non-upregulated X-linked genes. In boxplots,

the line inside of each box represents median value, edges of each box indicating 25 and 75% of the dataset.

(B) Comparison of allelic burst frequency and burst size of the upregulated vs non-upregulated X-linked genes in the E6.5

EPI cells. In boxplots, the line inside of each box represents median value, edges of each box indicating 25 and 75% of the

dataset. (Wilcoxon rank test: p value < 0.01; ** and p value < 0.001; ***).

(C) Quantitative enrichment analysis of different activating marks (RNA PolII S5P/S2P, H3K4me3, H3K36me3) at TSS and

gene body of upregulated and non-upregulated genes in female MEF cells. In boxplots, the line inside of each box

represents median value, edges of each box indicating 25 and 75% of the dataset. (Mann-Whitney U test: p value < 0.05 *).
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Moreover, we found that there are many dosage-sensitive X-linked genes among the non-upregulated

genes. Altogether, there are no significant differences in the distribution of dosage-sensitive/insensitive

genes among the upregulated or non-upregulated genes, suggesting that XCU is not restricted to

dosage-sensitive genes only (Table S3). Next, we asked if there were any differences in expression levels

between upregulated vs. non-upregulated genes and found no significant differences (Figure 3A). Previous
iScience 25, 104465, June 17, 2022 5
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studies suggested that X-upregulation is associated with enhanced transcriptional burst frequency. To

explore this, we profiled the allelic transcriptional burst kinetics between the upregulated and non-upre-

gulated X-linked genes in the XaXi cells of E6.5 EPI. Interestingly, the upregulated X-linked genes showed

significantly higher burst frequency compared to the not upregulated X-linked genes (Figure 3B). However,

burst sizes were not significantly different between the two categories of X-linked genes (Figure 3B).

Considering the higher transcriptional burst frequency of the upregulated genes, we next investigated if

upregulated genes have higher occupancy of different transcriptional activating factors than non-upregu-

lated genes. To explore this, we profiled the occupancy of RNA PolII-S5P, RNA PolII-S2P, active chromatin

marks such as H3K4me3, H3K36me3 at the transcriptional start site (TSS) and gene body of active allele of

upregulated and non-upregulated genes loci through allele-specific Chip-Seq analysis of hybrid female

mouse embryonic fibroblast (MEF) cells (Figure 3C). These MEF cells harbor skewed inactive X chromo-

some (129S1) and therefore allowed us to differentiate the enrichment of active marks between active

and inactive-X through allele-specific analysis. Indeed, we found that while active allele showed significant

enrichment of these different active marks, inactive allele had almost no such enrichment, thus validating

our allele-specific Chip-Seq analysis (Figure 3C). Interestingly, we found that the H3K4me3, RNA PolII (S5P/

S2P) showed higher occupancy around the TSS, and gene body regions of the upregulated X-linked genes

compared to the non-upregulated genes (Figure 3C). However, no upregulated gene-specific enrichment

was observed for H3K36me3. Altogether, these data suggested that enhanced occupancy of different acti-

vating marks at the upregulated genes loci might lead to higher transcriptional burst frequency, leading to

the upregulation of X-linked genes.

In-silico model predicts that recruitment probabilities of activating factors, as well as the

availability of activating factors, are keys to the upregulation of X-linked genes

To better understand the mechanisms behind XCU in a quantitative manner, we hypothesized that the dif-

ference in response to X-upregulation for different X-linked genes could be caused by a difference in the

recruitment rates of activation factors of different genes. To test the validity of the hypothesis, we created

an in silico model of the X chromosome consisting of two classes of genes, upregulated and non-upregu-

lated. The first category of genes has a relatively higher probability of recruitment of activation factors (see

STAR Methods). Based on the simulation, we found that the burst frequency, calculated as the fraction of

times a gene turns on, is higher for the upregulated genes compared to non-upregulated genes for XaXi

cells (Figure 4A), thus recapitulating our experimental observations in Figure 3B. In contrast, simulation in

XaXa cells showed no difference between the two classes of genes (Figure 4A). Additionally, we found that

this trend of expression level differences holds across the expression matrices generated using the

simulations (Figure 4B). Altogether, this analysis suggested that a difference in the range of recruitment

probabilities is sufficient to bring about a difference in mean burst frequencies of upregulated and non-up-

regulated genes.

We then compared the expression levels of upregulated and non-upregulated genes across XaXa and XaXi

cells. The difference in expression levels is statistically significant for the upregulated genes but not so for

non-upregulated genes (Figure 4C), suggesting that a difference in recruitment probabilities can also bring

about gene upregulation in the active chromosome on XCI. This result is also supported by the fact that

within the two kinds of cells (XaXa and XaXi), the difference between upregulated and non-upregulated

genes could be seen only for XaXi cells, where there was a difference in the recruitment probabilities

(Figures 4D and 4E). We then examined whether the activation factors available to chromosome play

any role in determining this difference. We generated expression matrices for different levels of activation

factors and found that at lower levels of activation factors, the upregulation is quite noisy, because the

downregulated genes also show a significant difference in expression between XaXa and XaXi for more

than 60% of cells (Figure 4F). As the number of factors increases, the percentage of downregulated genes

showing upregulation decreases, making upregulation less stochastic (Figure 4F).

DISCUSSION

In 1967, Ohno hypothesized that progressive gene loss from the Y chromosome resulted in the upregula-

tion of X chromosomes in both sexes, which subsequently led to the inactivation of one X chromosome in

female mammals to ensure proper X-dosage. Although XCI has been studied extensively in recent years,

many aspects of XCU remain unexplored. Specially, Ohno’s hypothesis is often contested as evidence for

active X upregulation remains controversial. Therefore, extensive studies involving different aspects of

XCU are crucial.
6 iScience 25, 104465, June 17, 2022



Figure 4. In silico model explains a possible mechanism for XCU

(A) Burst frequency distributions for upregulated and non-upregulated genes in XaXa and XaXi cells from the model. In

violin plots included with boxplots, the line inside of the each box represents median value, red dot represents mean, and

edges of each box indicating 25 and 75% of the dataset.

(B) Fraction of cells having an insignificant difference between the burst frequency of upregulated and non-upregulated

genes for XaXa cells (red), XaXi cells (blue).

(C) Expression level distribution for upregulated and non-upregulated genes from active allele from XaXi (orange) and an

allele from XaXa (green) in the model. In violin plots included with boxplots, the line inside of the each box represents

median value, red dot represents mean and edges of each box indicating 25 and 75% of the dataset.

(D) Difference in the expression levels of upregulated vs non-upregulated genes of XaXa and XaXi cells. In violin plots

included with boxplots, the line inside of the each box represents median value, red dot represents mean and edges of

each box indicating 25 and 75% of the dataset.

(E) Same as B but for difference in expression levels of up and non-upregulated genes.

(F) Fraction of in-silico cells that show an insignificant difference in the expression levels of upregulated genes of XaXa and

XaXi (red) and non-upregulated genes between XaXa and XaXi (blue).

(G) Model representing that increase of activating factors availability upon XCI and followed by enrichment of these

activating factors at the loci of genes with higher recruitment probability on the active X chromosome leads to the

upregulation of those X-linked genes.
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Here, we have profiled the XCU dynamics at the single-cell level in pre-gastrulation mouse embryos. We

found that in EPI cells (E5.5, E6.25, E6.5), which is at the onset of random XCI, XCU is dynamically linked

with the XCI. Moreover, VE and ExE cells, which undergo imprinted XCI, also showed the presence of up-

regulated active-X chromosome. Altogether, our results extend support for Ohno’s hypothesis and sug-

gest that two X chromosomes expression state is highly plastic toward balancing the optimal X chromo-

some dosage during pre-gastrulation. Our result is consistent with a recent report by Lentini et al. (2021).

Interestingly, analysis of gene-wise dynamics of XCU revealed that many X-linked genes do not undergo

upregulation (Figure 2A). This was also reflected in the X:A ratio analysis, where we found that X:A ratio

of XaXi cells tends to be lower compared to the XaXa cells (Figure 1C). Therefore, we suggested that

though XCU is dynamically linked to XCI, XCU is might not global or chromosome-wide like XCI. However,

one caveat of our analysis is that we are unable to profile gene-wise dynamics along the X chromosome

from these scRNA-seq datasets as allelic expression of many X-linked genes was unknown. One of the ma-

jor limitations of scRNA-seq is low capture efficiency and high dropouts owing to the very low starting ma-

terial (Chen et al., 2019). Moreover, to ensure the quality of our allelic analysis of gene expression, we

applied many filters, which led to exclusion of many X-linked genes from our analysis. Therefore, in the

future, more extensive studies are necessary to profile gene-wise dynamics along the X chromosome

with many more X-linked genes to better understand the non-uniform nature of XCU.

On the other hand, previous studies implicated that XCU affects dosage-sensitive genes such as compo-

nents of macromolecular complexes, signal transduction pathways, or encoding for transcription factors

(Pessia et al., 2012, 2014). However, we found that upregulated genes are not restricted to dosage-sensitive

genes only and there are many dosage-sensitive genes that do not undergo upregulation (Table S3).

Another possibility has been proposed that dosage compensation can be achieved through downregulat-

ing autosomal genes, which are interacting with dosage-sensitive X-linked genes (Julien et al., 2012). In that

context, it would be interesting to explore if there is a link between recently described randommonoalleli-

cally expressed autosomal genes with the X-linked genes. On the other hand, depletion of haplo-insuffi-

cient genes from the X chromosome has been reported and which can lead to the avoiding of the need

for global XCU (de Clare et al., 2011). Another way could have happened that haplo-insufficient genes

transposed to the autosomes and thereby they can express from two copies, which can also help in avoid-

ing global XCU.

Separately, it is believed that the evolution of XCI happened to counteract the upregulation of X in female

cells, as proposed by Ohno. If so, we wondered why XCI is global and occurs in the majority of X-linked

genes while XCU is not. It may be possible that XCI initially evolved from the genes undergoing upregula-

tion and later became a global phenomenon for some unknown reasons. Indeed, it is thought that XCI

evolved in region-specific manner started from where Y degradation started first and gradually spread

over the other degraded regions as indicated by regional differences of several epigenetic modifications

involved in XCI (Chadwick andWillard, 2004; Prothero et al., 2009). Subsequently, the gradual accumulation

of different sequences on the X chromosome might have played a booster role in the propagation of XCI

signal chromosome-wide (Jegalian and Page, 1998; Lyon, 1998; Prothero et al., 2009). On the other hand,

other possibilities have been proposed that consider XCI evolved first and subsequently, XCU came into

the picture. Haig proposed an alternative model (parental antagonism model) of the evolution of XCI, sug-

gesting that XCI may have evolved initially in the form of genomic imprinting related to parental conflicts

(Engelstädter and Haig, 2008; Haig, 2006; Pessia et al., 2014). Haig’s hypothesis also predicts that imprinted

paternal XCI rather than the random XCI is the ancient form of XCI. Indeed, in marsupials and some tissues

of placentals, XCI always occurs on paternal X (Cooper et al., 1993; Harris et al., 2019; Maclary et al., 2014,

2017). However, further investigation is necessary to validate Haig’s model of the evolution of XCI or to test

whether XCI evolved from a completely different perspective.

Next, our analysis unveils the mechanistic basis of how some genes get upregulated and others are not.

Previous studies have reported that the X-linked genes from active X chromosome have more significant

enrichment of the active chromatin marks compared to the autosomal genes (Deng et al., 2013). We found

that upregulated X-linked genes have a higher occupancy of different transcriptional activating marks such

as H3K4me3, RNA PolII S2P (gene body), RNA PolII S5P (TSS) compared to the non-upregulated genes (Fig-

ure 3C). Interestingly, transcriptional burst frequencies were significantly enhanced in upregulated genes

than non-upregulated genes (Figure 3B). Taken together, our results unveil that the enrichment of
8 iScience 25, 104465, June 17, 2022



Figure 5. Model representing X-upregulation dynamics and mechanisms:

X-upregulation is not global or chromosome-wide. Upregulated X-linked genes show higher occupancy of different

active marks and have higher transcriptional burst frequency compared to the non-upregulated genes.
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activating marks might lead to higher transcriptional burst frequencies and thereby results in the upregu-

lation of X-linked genes. Additionally, our in-silico analysis shows that a difference in the range of recruit-

ment probabilities of different activating factors is sufficient to bring about a difference in the mean burst

frequencies of upregulated and non-upregulated genes (Figure 4). Importantly, the availability of the acti-

vation factors also plays an important role in determining these differences. We predict that on XCI,

numerous trans-acting factors leave the inactivating-X leading to a global increase in the number of acti-

vating factors. We show that on such an increase of activating factors availability, genes with higher recruit-

ment probability get enriched with these factors and bring the upregulation of those genes (Figures 4G and

5). Interestingly, although upregulated genes have increased the ability to recruit activators, yet do not

exhibit an overall higher expression level compared to the non-upregulated genes, suggesting that acti-

vators enrichment does not proportionate with the transcriptional output (Figure 3A). Indeed, previous

studies have reported a nonlinear relationship between chromatin marks and transcriptional output (Yil-

dirim et al., 2012).
Limitation of the study

Here, we have profiled gene-wise dynamics of XCU in pre-gastrulation mouse embryos at the single-cell

level through the allele-specific analysis of scRNA-seq dataset. One limitation of our study is that though

we have profiled XCU dynamics for the substantial number of X-linked genes, many X-linked genes were

excluded from our analysis to ensure the quality of our scRNAseq analysis. Therefore, in the future,

more extensive studies are necessary to get better insight into the gene-expression dynamics along the

X chromosome.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Seurat (v3.1.5) (Butler et al., 2018; Stuart et al., 2019) https://satijalab.org/seurat/

STAR (v2.5.4b) (Dobin et al., 2013) https://github.com/alexdobin/STAR

scImpute (v0.0.9) (Li and Li, 2018) https://github.com/Vivianstats/scImpute

HTSeq-count (v0.13.5) (Anders et al., 2015) https://htseq.readthedocs.io/en/master/index.html

SCALE (v1.3.0) (Jiang et al., 2017) https://github.com/yuchaojiang/SCALE

Bowtie2 (v2.3.4.1) (Langmead and Salzberg, 2012) https://github.com/BenLangmead/bowtie2

SNPsplit (v0.5.0) (Krueger and Andrews, 2016) https://github.com/FelixKrueger/SNPsplit

Samtools (v1.7) (Li et al., 2009) http://www.htslib.org/

BEDTools (v2.26.0) (Quinlan and Hall, 2010) https://github.com/arq5x/bedtools2

VCF tools (v0.1.17) (Danecek et al., 2011) https://github.com/vcftools/vcftools

ngs.plot (v2.61) (Shen et al., 2014) https://github.com/shenlab-sinai/ngsplot

R (v4.1.3) R core team https://www.R-project.org/

Code for simulation This paper https://github.com/csbBSSE/XCU
RESOURCE AVAILABILITY

Lead contact

Further information on resources and reagents should be directed to and will be fulfilled by the Lead Con-

tact, Srimonta Gayen (srimonta@iisc.ac.in).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This study did not generate any unique datasets. The code used for simulation is available at https://github.

com/csbBSSE/XCU For questions regarding the raw data from the current study, please contact the lead

contact. All software’s used in this study are commercially available.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

No experimental model system used for this study.

METHOD DETAILS

Data acquisition

Pre-processed single-cell RNA-seq dataset for pre-gastrulation embryos was retrieved from GSE109071

(Cheng et al., 2019). In this dataset, E5.5 and E6.25 embryos were derived from hybrid mouse embryos

(C57BL/6J:female 3 CAST/EiJ:male), whereas E6.5 embryos were derived from reciprocal cross (CAST/

EiJ:female 3 C57BL/6J:male). ChIP-seq datasets were obtained from GSE33823 (Yildirim et al., 2012),

for H3K4me3, H3K36me3, RNAPolII S5P/S2P.

Read alignment and counting

RNA-seq reads were aligned to the mouse reference genome mm10 using STAR (Dobin et al., 2013) and

counted using HTSeq-count (Anders et al., 2015). To avoid the dropout events due to low amount of start-

ing material or failed amplification of original RNAs in scRNA-Seq, we used a statistical imputation method

scImpute (Li and Li, 2018). scImpute identifies the likely dropouts and do imputation without introducing

any bias in the rest of the data. We used scImpute R package (v0.0.9) with parameter Kcluster = 3, but
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otherwise, default parameters. Expression levels of transcripts was computed using Transcripts per million

(TPM) method. We performed Kolmogorov-Smirnov’s test to identify cells (9-cells) with significant

differences in the gene expression distribution between X and autosomal genes and removed from

downstream analysis.

Sexing of the embryos

For sex-determination of the pre-gastrulation embryos, an embryo was classified as male if the sum of the

read count for the Y-linked genes (Usp9y, Uty, Ddx3y, Eif2s3y, Kdm5d, Ube1y1, Zfy2, Zfy1) in each cell of an

embryo was greater than 12, rest were considered as female embryos.

Lineage identification

We collected the data related to classification of different lineages (EPI, ExE and VE) of pre-gastrulation

embryos from our previous work (Naik et al., 2021). In brief, all single cells were subjected to t-distributed

stochastic neighbour embedding (t-SNE) to cluster cells and identify lineages. t-SNE was performed using

Seurat (version 3.1.5) (Butler et al., 2018; Stuart et al., 2019). Three thousand most variable genes were used

for the analysis. Shared Nearest Neighbor (SNN) modularity optimization-based clustering algorithm

‘Findcluster’ were used to identify cell clusters. Each cluster was allocated to cell lineages based on the

expression of specific marker genes: Oct4 (EPI), Bmp4 (ExE), and Amn (VE).

X:A ratio analysis

In view of large number of autosomal genes compare to the small set of X-linked genes (14442-15497 auto-

somal genes, 798-733 X-linked genes), we calculated the X:A ratio for different lineages of pre-gastrulation

embryo through bootstrapping procedure adapted from previous studies (Pacini et al., 2021). For each cell,

we divided expression of X-linked genes with same number of randomly selected autosomal genes and this

step was repeated 1000 times andmedian of this 1000 values were considered for X/A expression ratio. For

this analysis, we used those X-linked and autosomal genes, which had R0.5 TPM and minimum 10 cell

expression in each respective lineage. We excluded the escapees of X-inactivation and the genes in the

pseudo autosomal region from our analysis.

Allele-specific expression analysis

We first constructed in silico CAST specific parental genome by incorporating CAST/EiJ specific SNPs

(https://www.sanger.ac.uk/science/data/mouse-genomes-project) into the mm10 genome using VCF

tools (Danecek et al., 2011; Li et al., 2009; Quinlan and Hall, 2010). Reads were mapped onto C57BL/6J

(mm10) reference genome and in silico CAST genomes using STAR allowing no multi-mapped reads. To

exclude any false positives, we only considered those genes with at least 2 informative SNPs and minimum

3 reads per SNP site. We took an average of SNP-wise reads to have the allelic read counts. We normalized

allelic read counts using Spike-in control as described in Naik et al. (2021) (Naik et al., 2021). In brief, we

calculated the sum of reads mapping to all Spike-in molecule in individual cell and then we divided

each cell’s Spike-in reads with the highest Spike in value to deduce the normalization factors. Finally, allelic

counts of individual cells were normalized dividing by the corresponding normalization factor. After

normalization of allelic read counts, we considered only those genes for downstream analysis which had

at least 1 average reads across the cells of each lineage from a specific developmental stage for pre-gastru-

lation embryos. Further, only those single-cells were considered for downstream analysis which showed at

least 10 X-linked gene expressions. Allelic ratio was obtained individually for each gene using formula =

(Maternal/Paternal reads) O (Maternal reads + Paternal reads).

Transcriptional burst kinetics

We used SCALE to profile allelic transcriptional burst kinetics (Jiang et al., 2017). For this analysis, we used

genes with at least 5 average read counts across the cells of EPI E6.5 considering that single cells are more

prone to dropout event. Additionally, escapee genes were removed from our analysis.

ChIP-seq analysis

First, we created An ‘N-masked genome in-silico using SNPsplit (0.4.0) (Krueger and Andrews, 2016). The

reads for all samples are then mapped to this N-masked genome with Bowtie2 (-N 1) (Langmead and Salz-

berg, 2012). Duplicate reads were removed with Picard ‘MarkDuplicates’ [‘REMOVE_DUPLICATES =

TRUE’] and blacklisted regions were removed according to encode consortium. SNPsplit was then used
14 iScience 25, 104465, June 17, 2022
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to create allele-specific BAM files by segregating the aligned reads into two distinct alleles (129S1/SvImJ

and CAST/EiJ). Enrichment plots and quantification were created Using ngs.plot (-AL bin -MW 15) (Shen

et al., 2014).
Identification of dosage sensitive genes

To identify dosage sensitive X-linked genes, we profiled the associated biological function of the genes

through Signal related function (http://geneontology.org/) (Mi et al., 2019), Transcription factor databases

(http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/, https://sunlab.cpy.cuhk.edu.hk/mTFkb/) (Hu et al., 2019;

Sun et al., 2017), genes involved in protein complex databases (http://mips.helmholtz-muenchen.de/

corum/#) (Giurgiu et al., 2019), dosage sensitive genes (human) database (https://www.clinicalgenome.

org/) (Rehm et al., 2015), Housekeeping genes databases (https://housekeeping.unicamp.br/) (Li et al.,

2017a, 2017b) (Hounkpe et al., 2021; Li et al., 2017a). We called a gene as dosage sensitive if it has associ-

ation with at least one of the category/databases.
Simulation

The in-silico chromosome: The chromosome is modeled as a set of genes. Each gene has a probability of

recruitment of transcriptional activation factors (epigenetic factors, transcription factors etc.). Based on

probability, genes were classified into two categories: upregulated and non-upregulated, with decreasing

probabilities respectively. We took 100 each of these genes and positioned them at random positions on

the chromosome. The recruitment happens from a column of activation factors, with 1000molecules placed

in front of every gene. At every time step, each gene can recruit an activation factor from the corresponding

position on the column, depending upon the recruitment probability of the gene. The activation factors are

modeled to have a discrete diffusion, in that the reduction in activation factors at any position is filled in by

the neighboring positions. The recruitment onto the gene is modeled as a cooperative process, with the

probability of recruitment increasing sigmoidally with increase in the extent of recruitment. Each gene

has a probability of activation, also modeled as a sigmoidal function of the extent of recruitment on the

gene. The probability of inactivation for each gene is 0.5. An active gene produces one RNA molecule

at every time step. These RNA molecules degrade with a probability of 0.35.

Simulation procedure: At each time step, the recruitment of activation factors happens to all genes if the

recruitment probability for the genes is higher than a uniformly random number generated. After recruit-

ment, diffusion is carried out to normalize the activation factor column. Then, genes are turned on/off with

the on/off probability as described above. All active genes produce one RNA molecule (making the time-

scale of the simulation the same as transcription). RNA degradation also is implemented one molecule at a

time with a probability of 0.35. For sensitivity analysis, we generated 100 in silico cells, each represented by

a chromosome described above.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed using the R software (https://www.R-project.org/). Mann-Whitney U

two-sided test was used for statistical significance analysis and p values < 0.05 was considered as

significant.
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