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Abstract: A viral spread occurrence such as the SARS-CoV-2 pandemic has prompted the evaluation
of different disinfectants suitable for a wide range of environmental matrices. Chlorine dioxide
(ClO2) represents one of the most-used virucidal agents in different settings effective against both
enveloped and nonenveloped viruses. This narrative synthesis is focused on the effectiveness of
ClO2 applied in healthcare and community settings in order to eliminate respiratory transmitted,
enteric, and bloodborne viruses. Influenza viruses were reduced by 99.9% by 0.5–1.0 mg/L of ClO2

in less than 5 min. Higher concentration (20 mg/L) eliminated SARS-CoV-2 from sewage. ClO2

concentrations from 0.2 to 1.0 mg/L ensured at least a 99% viral reduction of AD40, HAV, Coxsackie
B5 virus, and other enteric viruses in less than 30 min. Considering bloodborne viruses, 30 mg/L of
ClO2 can eliminate them in 5 min. Bloodborne viruses (HIV-1, HCV, and HBV) may be completely
eliminated from medical devices and human fluids after a treatment with 30 mg/L of ClO2 for 30 min.
In conclusion, ClO2 is a versatile virucidal agent suitable for different environmental matrices.

Keywords: chlorine dioxide; SARS-CoV-2; enteric viruses; bloodborne viruses

1. Introduction

Disinfection treatments in healthcare and community settings are aimed at achieving
microbiological compliance for environmental matrices (drinking water, air, and surfaces).
Disinfection is the final treatment after cleaning, which acts on the residual microbiological
component, ensuring the absence of pathogens. Among the several chemical biocides,
chlorine compounds such as chlorine dioxide, sodium hypochlorite, and chloramines
are usually recognized as useful in reducing the infection risk related to environmental
matrices in healthcare facilities [1].

The use of gaseous chlorine dioxide as a disinfection agent for drinking water has been
increasing in recent years. It is an unstable gas produced on-site by mechanical generators
using acid-based or electrolytic methods [1], and it is usually used for water treatment at a
concentration between 0.1 and 5.0 mg/L.

It is used as an oxidant agent [2] decomposing the biofilm inside pipes and tanks [3],
and it can react only by oxidation with a low trihalomethanes (THM) formation in water.
In fact, it has an oxidizing effect on organic components originating from mainly oxidized
byproducts and a small amount of chloro-organic compounds, while chlorine reacts with
various substances via oxidation and electrophilic substitution [4]. Chlorine dioxide (ClO2)
is more biocidal than both chlorine and chloramines, but it generates organoleptic defects
in the water after treatment [5]. Actually, in comparison to chlorine, ClO2 reduces the
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generation of toxic halogenated disinfection byproducts, but ClO2 disadvantages are the
formation of the organic halides chlorite/chlorate and the production of tastes and odors
at concentrations of 0.5 mg/L [6].

Since 1940, data have been published demonstrating the chlorine dioxide action on
bacteria, viruses, biofilms, protozoa, and algae [7]. In case of viruses, the inactivation
mechanism differs from that of bacteria or other cells. The inactivation time of a virus is
probably much shorter than that of a bacterium under the same conditions. ClO2 gas does
not necessarily penetrate viruses to inactivate them. ClO2 reacts with one or more of the
cysteine, tyrosine, and tryptophan amino acid residues of the spike proteins located on
the enveloped viral surface. In the case of nonenveloped viruses, ClO2 acts on the viral
genome [8–10].

The aim of this narrative review is the evaluation of the main studies performed on
ClO2 activity on respiratory transmitted, enteric, and bloodborne viruses.

We provide an overview of the ClO2 features, usage settings, and its virucidal spec-
trum. The cited viruses were chosen on the basis of the available data and the references
provided by some databases (PubMed, Scopus, and Google Scholar).

A scientific study design with the research details is provided in Figure 1.

Figure 1. Study design representation: aim, keywords, inclusion and exclusion criteria, and references.

1.1. Virucidal Activity of ClO2

There are many studies on the virucidal activity of ClO2, involving both nonenveloped
and enveloped viruses. Enveloped viruses are different from nonenveloped ones due to
the presence of a lipid bilayer membrane outside the viral protein capsid, which contains
proteins or glycoproteins. The presence of different functional groups on the outer surface
of enveloped viruses impacts their survival in different environments [11,12]. A lot of
factors have also been found to have a great impact on virus inactivation rates, such as the
ClO2 dosage, time, pH, and temperature [13].

Sanekata suggested that enveloped viruses are inactivated more easily than nonen-
veloped viruses when exposed to 1.0 mg/L of ClO2 [14]. The disinfectant action on the
enveloped proteins cause a failure of the viral attachment to the host cell, and so, the failure
of cell invasion and infection [15]. About that, some authors carried out a study showing
that ClO2 inactivates the virus thanks to its reaction with amino acids like cysteine and
tryptophan [16]. Noss et Haunchman found that the site of the disinfectant action is a viral
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protein component; inactivating the coat viral protein inhibits the virus’s ability to attack
the host cells [10].

These statements were supported by Olivieri et al., who showed that the viral proteins
and lipids were sufficiently altered by ClO2 during a disinfection treatment [17]. Both
the human and animal cells are not free from the ClO2 effects, but the damage was not
comparable to that on microorganisms for several reasons. Not only are the mammalian
cell sizes much larger and a greater disinfectant exposure is needed, but these cells have
protection systems such as glutathione and further proteins [1,18].

1.2. ClO2 Activity on Respiratory Transmitted Viruses

Sanekata et al. evaluated the antiviral activity of ClO2 and sodium hypochlorite
against human influenza virus (IFV). ClO2 reduced influenza viruses by 99.9% at 1.0 ppm
for 15 s, while the same antiviral activity was obtained for sodium hypochlorite at 100 ppm
for 15 s [14].

Lenes studied the ClO2 action on the H1N1 virus. Tests were performed with contact
times of 5 min and a residual ClO2 value of 0.5 mg/L. After the treatment, the H1N1
virus was not detected in any of the samples. The H1N1 virus is effectively inactivated by
chlorine dioxide [19].

Ogata found that ClO2 antimicrobial activity is based on protein denaturation through
amino acid residue oxidative modification. In particular, tyrosine and tryptophan residues
in the hemagglutinin protein constitute an important active-site pocket for viral infectivity.
ClO2 causes a functional modification of these amino acids with a loss of infectivity.
Ogata demonstrated that ClO2 reacts with the tryptophan 153 residue, inactivating the
hemagglutinin function [20–22].

Kalay-Kullay assessed that ClO2 action on amino acid residues could also be the
mechanism for the antiviral activity on SARS-CoV. Spike proteins contain tyrosine, tryp-
tophan, and cysteine residues with which the disinfectant can easily react in an aqueous
solution with rapid virus inactivation [9]. Carducci et al. reported that SARS-CoV seeds
in 100 mL of domestic sewage may be completely inactivated with a disinfection with
20 mg/L of ClO2 for 30 min [23]. Additionally, Wang performed a similar study with
comparable results (10 mg/L of ClO2 for 10 min and 40 mg/L of ClO2 for 5 min, with total
viral inactivation) [24].

New epidemiological approaches have been investigated in order to define wastewater
surveillance, aimed at determining the spread, persistence, and detection of SARS-CoV-2
or other viruses in communities during their most critical epidemiological occurrences.

ClO2 in the most-used and effective method for the abatement of viral loads in these
types of waters. It can inactivate SARS-CoVs completely after 30 min of exposure time and
at a concentration of 40 mg/L [25].

The same result was not obtained after a sewage treatment with other disinfectants,
especially if they were not chlorine-based.

Wastewater-based epidemiology is a new approach for monitoring viral pathogens
spreading (SARS-CoV-2) in different contexts and countries. It is a valuable early warning
system. It is a helpful alternative surveillance tool to subside the public health response,
containing and measuring different infectious risk levels, mostly for poor sanitation set-
tings [26].

Moreover, against the Measles virus, the ClO2 antiviral activity of 99.99% of the viral
load was obtained at 10 mg/L for 30 s or at 100 mg/L for 15 s [14,27].

The principal tests performed on the respiratory transmitted viruses are summarized
in Table 1.
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Table 1. Literature data on the reduction of respiratory transmitted viruses following chlorine dioxide
treatments at different times and concentrations.

Chlorine Dioxide
Concentration Exposure Time Viral Reduction Author and Year

1 mg/L 15 s Human influenza
virus (99.9%) Sanekata 2010

0.5 mg/L 5 min H1N1 virus (99.9%) Lénès 2010

20 mg/L in sewage 30 min SARS-CoV-2 (99.99%) Carducci 2020

10 mg/L
100 mg/L

30 s
15 s

Measles virus
(99.99%) Sanekata 2010

1.3. ClO2 Activity on Enteric Viruses

The viral inactivation by ClO2 was studied by Thurston-Enriquez et al. on Adenovirus
type 40 (AD40). The tests were performed in various conditions, such as different pH
values (8 and 6) and temperatures values (15 ◦C and 5 ◦C). The ClO2 doses ranged from
0.67 to 1.28 mg/L.

The rate of AD40 inactivation was higher at pH 8 and/or a temperature of 15 ◦C than
at pH 6 and/or a temperature of 5 ◦C. The ClO2 efficacy increased at higher experimental
temperatures and pH levels.

The concentration of ClO2 multiplied by the contact time with the virus needed for a 4-log
inactivation (Ct99.99%) for AD40 at 5 ◦C was 1.28 and 0.67 mg/L×min at pH 6 and 8, respectively.
The Ct99.99% values for AD40 were about two times higher at pH 6 than at pH 8 [6].

A Chinese research group tested the dioxide chlorine action on the Human Hepatitis
A Virus (HAV) at a concentration of 5 mg/L. After 60 min, they observed that the infectivity
was not completely eliminated yet. Increasing the concentration to 7.5 mg/L, HAV was
completely inactivated after 10 min. The action mechanism was found in the viral genome
damage and/or viral proteins destruction. Li et al. assessed that the disinfectant damaged
the 5′-nontranslated region (5′NTR) of the genome, blocking its replication and reacting
with the viral proteins, stopping the interactions with the host cells [15]. The Department
of Public Health of Parma reported a faster inactivation of HAV (only 30 s at a 0.8-mg/L
concentration and 5 min at 0.4 mg/L) [15,28].

Li et al. revealed that ClO2 reduced the HAV infectivity through 5′-NCR damage [29].
Simonet et al. reported similar findings as that of Li et al. for Poliovirus-1 (PV-1), whereby
the 5′-NCR and 3′-NCR of the PV1 genome appeared to be the most sensitive to the ClO2
treatment [30].

Several studies have been performed on the ClO2 actions against enterovirus such
as the poliovirus, norovirus, and coxsackievirus. Brigano et al. [31] promoted a theory
based on the thermodynamic analysis asserting that ClO2 inactivates viruses through the
denaturation of protein coatings. Although ClO2 reacts with coated proteins, changing the
pH value (pH 6), the critical target appears to be the viral RNA. Alvarez and O’Brien [32]
observed that the poliovirus inactivation at pH 10.0 was faster than at pH 6.0 [33,34].

A possible explication may be related to the alkaline disinfectant dissociation in chlo-
rite (ClO2−) and chlorate (ClO3−). Berman et al. observed the same effect for the Rotavirus.
They compared the inactivation obtained by chlorine, ClO2, and monochloramine at 5 ◦C
at pH 6 and 10 on a purified preparation of single virions with 0.5 mg/L of disinfectant. At
pH 6, more than 4 log (99.99%) of the single virions were inactivated in less than 15 s with
chlorine and monochloramine. With ClO2, this effect was observed at pH 10 [13].

For Poliovirus, Tenno Fujioka and Loh indicated that ClO2 damages the RNA, sepa-
rating the RNA from the viral capsid at pH 10 but not at pH 6. Virion is converted into an
empty capsid, suggesting that the loss of infectivity is due to a slight structural modification
of the capsid [35]. The antiviral activity against Norovirus was tested by Sanekata using
feline calicivirus (FCV). An initial antiviral effect was obtained with 1 ppm of ClO2 for
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180 s, but the antiviral activity against >99.99% of the virus was obtained with 10 ppm of
ClO2 for 15 s [14].

In a study conducted by Alvarez, FCV was completely eliminated in 30 min by
ClO2 at a concentration of 0.2 mg/L, and Coxsackie B5 showed a similar behavior, being
completely inactivated in 4 min with 0.4 mg/L of ClO2 and after 30 min at a 0.2 mg/L
concentration [32].

Thurston-Enriquez et al. observed that the total inactivation could be achieved when
Enterovirus 71 (EV71) was treated with a concentration of 0.5 mg/L ClO2 for over 30 min,
1.5 mg/L ClO2 for 25 min, or 2.0 mg/L ClO2 for 15 min. The inactivation was more effective
at pH 8.2 than at pH 5.6 with 4.92 mg/L of ClO2 for 1 min. Considering the temperature
parameter, the inactivation was faster at 36 ◦C than at 4 ◦C or 20 ◦C. The ClO2 efficacy for
EV71 was pH and temperature-dependent. Similarly, the inactivation of AD40 and FCV
by ClO2 was reported to be higher at 15 ◦C than at 5 ◦C [6]. Jin et al. evaluated the ClO2
effect on EV71 infectivity and the genomic integrity. With 13.51 mg/L of ClO2 for 1 min,
the 5′-NCR was not amplified by RT-PCR, and the viral infectivity disappeared.

Harakeh tested the ClO2 effect on three viruses: Human rotavirus, Coxsackievirus B5,
and Poliovirus 1. The three enteroviruses were tested at pH 7.2 and 15 ◦C. Coxsackievirus
B5 was the most resistant, with 17.25 ppm needed, whereas 15 ppm of free residual ClO2
was required for a complete inactivation (99.99%) in 5 min [36].

The Poliovirus 1 genome was not affected after the treatment with 0.5 mg/L of ClO2
for 120 min. This was confirmed by Tenno et al., who observed that nearly all the Poliovirus
1 genome remained infectious after exposure to 0.2 mg/L of ClO2 for 30 min. The ClO2 dose
relationship was clearly demonstrated by exposing the genome to a higher concentration
of ClO2 (5 mg/L) for 30 min, which resulted in a significant degradation of the viral RNA.

Tachikawa et al. asserted that ClO2 in drinking water may reduce a 4-log Poliovirus
load in 2.5 min at 20 ◦C and pH 7 [37–39].

The significant reduction of enteric virus outbreaks in developed countries is partly
due to the ClO2 efficacy in waters and wastewaters; this is also true for the most resistant
viruses, such as Poliovirus and other Picornaviridae.

The principal tests performed on the enteric viruses are summarized in Table 2.

Table 2. Literature data on the reduction of enteric viruses following chlorine dioxide treatments at different times
and concentrations.

Chlorine Dioxide
Concentration Exposure Time Viral Reduction Author and Year

0.67 mg/L (pH 8)
1.28 mg/L (pH 6) 1 min Adenovirus type 40 (4 log) Thurston-Enriquez 2005

7.5 mg/L 10 min Human Hepatitis A Virus
(100%, total genomic damage) Li 2004

0.8 mg/L 0.5 min Human Hepatitis A Virus (99%) Zoni 2007

0.4 mg/L 5 min Human Hepatitis A Virus (99%) Zoni 2007

0.5 mg/L 15 s Rotavirus (4log) Berman 1984

1 mg/L
10 mg/L

3 min
15 s

Norovirus (99.99%)
Norovirus (99.99%) Sanekata 2010

0.2 mg/L 30 min Feline Calicivirus (99.99%) Zoni 2007

0.4 mg/L 4 min Coxsackie B5 virus (99.99%) Zoni 2007

0.5 mg/L 30 min Enterovirus 71 (99.99%) Thurston-Enriquez 2005

0.5 mg/L 30 min Poliovirus 1 (RNA damage) Simonet 2005

1 mg/L 2.5 min Poliovirus (4 log) Tachikawa 1993
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1.4. ClO2 Activity on Bloodborne Viruses

Farr et al. tested the ClO2 activity in Human immunodeficiency virus type 1 (HIV-1)
inactivation. The virus was treated by adding 100 µL of ClO2 to 0.9 mL of HIV-1 stock for a
final concentration of 30 ppm. The preparation was incubated at 25 ◦C for 5 min. To test
the effect in human blood, 100 µL of ClO2 and 250 µL of human whole blood were added
to 650 µL of HIV-1 stock in order to achieve viral inactivation. In the presence of medical
supplies (plastic and paper materials), the virus was inactivated by adding 100 µL of ClO2
to 0.9 mL of HIV-1 stock. The results showed a viral reduction of 5.25 log. In the presence
of blood or medical devices, the HIV-1 reduction was higher than 4 log [40].

A group of Japanese researchers carried out a study on HCV-positive (human hepatitis
C) periodontitis patients in order to evaluate the viral elimination on the ultrasonic cleaning
device after a treatment with ClO2.

After the periodontal activity, the instrument was disinfected with 0.02% ClO2 for
10 min. The total absence of HCV genomic units was assessed in a RT-PCR test directly per-
formed on the devices [41]. Another study about the surgical instruments was performed
by Isomoto et al. on endoscope disinfection after procedures on HCV-positive patients.
The devices were reprocessed with 30 mg/L of ClO2 for 5 min. HCV genomic units were
not detected in the RT-PCR test after the treatment [42].

Aseptrol®, containing a noncorrosive formula of ClO2, may eliminate the Hepatitis B
virus (HBV) genome if it is used at 24 mg/L for 5 min on environmental surfaces [43].

The principal tests performed on the enteric viruses are summarized in Table 3.

Table 3. Literature data on the reduction of bloodborne viruses following chlorine dioxide treatments at different times
and concentrations.

Chlorine Dioxide Concentration Exposure Time Viral Reduction Author and Year

30 mg/L (in blood sample) 5 min Human Immunodeficiency Virus type 1 (4 log) Farr 1993

0.02%
30 mg/L

10 min
5 min

Hepatitis C Virus (periodontal device) (99.99%)
Hepatitis C Virus (endoscopy device) (99.99%)

Watamoto 2013
Isomoto 1998

24 mg/L (Aseptrol®) 5 min Hepatitis B Virus (99.99%) Ebonwu 2010

2. Conclusions

Chlorine dioxide has been widely applied in environmental matrix disinfections,
mostly for waters and wastewaters. In healthcare settings, disinfection procedures have
to ensure viral inactivation in order to prevent outbreaks and epidemic occurrences. The
use of ClO2 is the final step in a virucidal agent [44]. In 2018, the United Stated Environ-
mental Protection Agency (USEPA) [45] cited adenoviruses, caliciviruses, enteroviruses,
and hepatitis A virus as microbiological drinking water contaminants that may be dis-
seminated through aquatic environments. The evaluation of the efficacy of alternative
disinfectants such as ClO2 is important to perform in order to eliminate these virus species
from drinking water. There have been many studies reporting virucidal activity against wa-
terborne and nonwaterborne viruses, including nonenveloped viruses (e.g., adenoviruses
and enteroviruses) and enveloped viruses (e.g., influenza viruses).

Considering enteric viruses, ClO2 concentrations ranging from 0.2 to 1.0 mg/L ensure
at least a 99% viral reduction of AD40, HAV, Coxsackie B5 virus, Norovirus, Rotavirus, Fe-
line Calicivirus, and EV71 in less than 30 min. Moreover, ClO2 is the most-used disinfectant
for drinking water treatment, and its efficacy may be achieved by the routine of continuous
water chlorination, as described elsewhere (0.2 mg/L of chlorine dioxide) [46,47].

Similar results have been obtained for respiratory transmitted virus elimination. In
particular, 0.5–1.0 mg/L of ClO2 for less than 5 min can reduce influenza viruses by 99.9%
(the H1N1 virus included). Sewage and wastewaters may be treated with 20 mg/L of
ClO2 in order to obtain a total SARS-CoV-2 elimination. At last, considering bloodborne
viruses, 30 mg/L of ClO2 eliminates, in 5 min, HIV-1 in human organic fluids (blood) or
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medical supplies. HCV may be eliminated from medical devices after an application of
30 mg/L of ClO2 for 10 min. This narrative synthesis highlights the need for disinfection
procedures with ClO2 applied to different matrices. The versatility of ClO2 is widely
known for disinfection procedures in large and populated indoor environments, such as
hospitals and generic healthcare facilities. Moreover, considering the high vulnerability of
infected patients hosted in infectious disease wards and intensive care units, the application
of ClO2 may be the solution for routine disinfection protocols in order to minimize the
risk of viral agent transmissions (respiratory transmitted, enteric, or bloodborne viruses)
and nosocomial and community infections [48,49]. The international recommendations
published for SARS-CoV-2 prevention in hospital settings described the importance of
environmental sanitization using only biocides tested for virucidal activity, as required
by UNI EN 14476:2019 [50]. The Italian Institute of Health included ClO2 as a possible
disinfectant for hospital sanitization in rooms having a high infectious risk [51].

This narrative synthesis aimed to highlight the versatility and suitability of ClO2 in
different settings (mostly for waters) and against different viral agents.

It may be clear that ClO2 is not a therapeutic product. It cannot be used for healing
human or animal tissues, with the exception of skin and mucosa antisepsis.

In conclusion, ClO2 is one of the most-used biocides for different environmental
settings. It is a recognized versatile virucidal agent, and its efficacy is dose-dependent. It
may be used as a high-, intermediate-, or low-level agent [48,52], in accordance with the
suitable disinfection grade needed in different situations.

Author Contributions: A.B., G.P. and G.B.M.F. conceptualized the narrative synthesis. M.T., F.B. and
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