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Abstract: Deep learning methods have been introduced for fault diagnosis of rotating machinery.
Most methods have good performance when processing bearing data at a certain rotating
speed. However, most rotating machinery in industrial practice has variable working speed.
When processing the bearing data with variable rotating speed, the existing methods have low
accuracies, or need complex parameter adjustments. To solve this problem, a fault diagnosis
method based on continuous wavelet transform scalogram (CWTS) and Pythagorean spatial pyramid
pooling convolutional neural network (PSPP-CNN) is proposed in this paper. In this method,
continuous wavelet transform is used to decompose vibration signals into CWTSs with different scale
ranges according to the rotating speed. By adding a PSPP layer, CNN can process CWTSs in different
sizes. Then the fault diagnosis of variable rotating speed bearing can be carried out by a single CNN
model without complex parameter adjustment. Compared with a spatial pyramid pooling (SPP) layer
that has been used in CNN, a PSPP layer locates as front layer of CNN. Thus, the features obtained
by PSPP layer can be delivered to convolutional layers for further feature extraction. According to
experiment results, this method has higher diagnosis accuracy for variable rotating speed bearing
than other methods. In addition, the PSPP-CNN model trained by data at some rotating speeds can
be used to diagnose bearing fault at full working speed.

Keywords: convolutional neural network; spatial pyramid pooling; fault diagnosis; bearing;
wavelet transform

1. Introduction

As most rotating machinery are the key equipment in production and work in a high-speed
rotating environment, their failures will cause major economic losses and safety accidents. Therefore,
it is important to detect equipment failure as soon as possible. An intelligent fault diagnosis method has
the motivation that it can detect the fault of operating machinery in real time without manual operation.
With the popularization of online vibration monitoring systems, manufacturers have accumulated
a large amount of data that can support intelligent fault diagnosis methods. Many intelligent fault
diagnosis methods have been proposed to diagnose bearing faults [1–5]. However, most of them use
a simple classifier and focus on fault feature extraction algorithms. When these methods are used
to diagnose bearings with complex operating conditions, the simple classifier cannot process large
amounts of monitoring data and can easily cause over fitting.

As the advanced representation of intelligent algorithms, deep learning methods have greatly
changed our daily life. They are successfully applied in many different areas such as computer vision,
object detection, natural language processing, and even disease diagnosis [6–10]. Deep learning
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methods can recognize high-dimensional complex input, get rid of the reliance on signal processing
techniques and hand-engineered feature extraction algorithms. Unlike most previous artificial
intelligent methods that can only process one-dimensional hand-engineered features [11], they can
process the two-dimensional results of some basic signal processing methods directly. With these
advantages, deep learning methods have been introduced to the fault diagnosis of rotating machinery,
such as convolutional neural network (CNN), deep belief nets (DBN), and recurrent neural networks
(RNN) [12–17]. Most methods perform well when dealing with bearing data at a certain rotating speed.
However, in practical use, most machinery, such as wind turbines, pumps, and fans, have varying
rotating speed. The performance of the methods has not been verified when processing data with
varying rotating speed. Liu et al. [18] propose a dislocated time series CNN method for bearing
diagnosis and apply it to varying rotating speed data by testing different network parameters to
achieve the best result. However, the number of parameters that can be tested is limited, and the
method is difficult to realize in practical applications. Meanwhile, in practical use, faults may not
happen fully in all working speeds. Then there will not be enough fault data that covers full working
speeds. Therefore, there needs to be a new deep learning fault diagnosis framework which can deal
with data with varying rotating speed without complex parameters attempt. In addition, it needs to be
able to realize diagnosis in all working speed based on limited fault data.

The continuous wavelet transform (CWT) has been proved to be a useful method to analyze
vibration signals [19–21]. As a time-frequency analysis method, the result contains the complete
time-frequency domain information of the vibration signal and avoids information loss of the original
signal. In addition, it is suitable for detecting bearing faults which is usually presented as shock
signals. When used in fault diagnosis of bearings, it has advantages compared with some other
time-frequency methods, such as Short-time Fourier Transform (STFT), Discrete Wavelet Transform
(DWT), Wavelet Package Decomposition (WPD) and Empirical Mode Decomposition (EMD).

Short-time Fourier Transform is the time-frequency transform based on Fourier transform.
Because the window size is fixed, it only applies to stationary signals with small frequency fluctuations.
In addition, the result is susceptible to noise interference. DWT is the discretization of the scale and
displacement of CWT according to the power of 2. It retains less time-frequency information than
CWT and may lose the key information near fault characteristic frequencies of bearing. WPD is an
improved method of CWT. It provides a more detailed decomposition of high-frequency components.
The fault characteristic frequencies of a bearing are usually less than 12 multiples of the rotating
frequency. With the high sampling frequency, all the information near fault characteristic frequencies
can be got by CWT. There is no need to use WPD, which is a more time-consuming method than CWT.
Empirical Mode Decomposition decomposes the signal based on the time scale characteristics of the
signal itself. Without a preset basis function, the location of the fault feature is uncertain in EMD
when it applies to signals of different sensors. Therefore, when used for deep learning method, CWT,
which uses a fixed wavelet basis function to decompose all the signals, is a better choice.

However, in most cases, a feature exaction method is used to exact a one-dimensional vector from
the two-dimensional continuous wavelet transform coefficients. It may result in the loss of key fault
information. Continuous wavelet transform scalogram (CWTS) contains all the continuous wavelet
transform coefficients. It is a two-dimensional matrix which contains the complete time-frequency
domain information of the vibration signal. With its powerful image recognition ability, CNN is the
most suitable deep learning method to deal with CWTS. When applied to data with varying rotating
speed, the CWTSs will have different size if they have the same frequency multiplication range of
the rotating frequency. Without a cropping or warping operation, ordinary CNN can only process
the input in the same size. Therefore, a CNN with new structure is needed to process CWTSs in
different sizes.

To overcome the problems and challenges above, this paper proposes a fault diagnosis method
based on continuous wavelet transform and Pythagorean spatial pyramid pooling (PSPP) CNN.
This method uses a continuous wavelet transform to decompose vibration signals into CWTS in
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different scales according to the rotating speed. Using the PSPP strategy, CNN could then process
the different size scalograms. Therefore, the fault diagnosis of data at variable rotating speed can be
carried out by a single CNN model. The PSPP strategy is an improvement on spatial pyramid pooling
(SPP). A PSPP layer can locate as front layer of CNN. Thus, the features obtained by the PSPP layer
can be delivered to the convolutional layers for further feature extraction. Experiments are carried out
on data from two different testbeds, constant rotating speed data and variable rotating speed data,
respectively. The results demonstrate the effectiveness of the proposed approach. The contributions of
the proposed approach are as follows:

(1) Compared with features extraction method used before when dealing with continuous wavelet
transform coefficients, using a two-dimensional CWTS for fault diagnosis directly can retain the
complete time-frequency domain information of signal and avoid the loss of fault information.

(2) A PSPP layer is proposed based on the SPP layer. In contrast with SPP-CNN, PSPP-CNN can
place convolutional layers after the PSPP layer for further feature extraction. A PSPP layer can
also retain position information of input feature maps. Experiment results show that PSPP-CNN
performs better than SPP-CNN.

(3) A CWTS cropping method is presented to crop CWTSs to different sizes according to rotating
speed and sample frequency. The objects recognition using CNN is concerned with the shape of
the object. However, in signal processing area, the location of the signal features should also be
paid attention to. The cropped CWTSs have the same frequency and time domain range. It helps
the PSPP-CNN to achieve a more accurate and faster convergence.

(4) The proposed method can process data in different rotating speeds using a single CNN without
complex parameter selection. PSPP-CNN trained by data at some rotating speeds can be used to
diagnose bearing fault in full working speed. The experiments provide a good result.

The paper is organized as follows. Section 2 presents the fault diagnosis method that combines
CWTS and PSPP-CNN for fault diagnosis, with a detailed procedure of the proposed method and
SPP, the proposed PSPP layer, and the structure of PSPP-CNN used in this paper. Experimental
verification of the method which includes constant rotating speed data and variable rotating speed
data is described in Section 3. Finally, the concluding remarks are given in Section 4.

2. Proposed Method

As described above, CNN has been successfully applied to fault diagnosis. However, the proposed
fault diagnosis models lack the diagnosis of variable rotating speed data, which has practical
engineering value for online diagnosis of variable speed equipment such as the wind turbine. Therefore,
this paper proposes a fault diagnosis framework based on CWTS and PSPP-CNN. Figure 1 illustrates
the procedure of the proposed method. First, accelerators are used to collect the vibration signals of
bearing. Second, continuous wavelet transform is used to decompose vibration signals into CWTSs.
Next, as fault characteristic frequencies of bearings are related to rotating speed, the CWTSs are
cropped into different sizes according to rotating speed. Then using PSPP strategy, CNN can deal
with the input of different sizes. Therefore, the CWTSs in different sizes can be trained using a single
PSPP-CNN. Finally, the test signals of bearing with variable rotating speed need to be decomposed
into CWTSs with different scale ranges according to rotating speed. Using the CWTSs as the input of
the trained PSPP-CNN, fault diagnosis of the signals can be achieved. Details of the main steps of the
proposed method are described as follows:
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Figure 1. Flow chart of proposed fault diagnosis method. CWTS represents Continuous Wavelet
Transform Scalogram, and PSPP-CNN represents Pythagorean Spatial Pyramid Pooling Convolutional
Neural Network.

2.1. Continuous Wavelet Transform Scalogram

The continuous wavelet transform decomposes a signal in the time-frequency domain by using
a family of wavelet functions to obtain feature values. Next, by analyzing the continuous wavelet
coefficients or using the classification algorithm, we gain insight about the fault condition of the
equipment. The process of continuous wavelet transformation can be described as:

Ψa,b(t) = |a|−
1
2 Ψ
(

t− b
a

)
a, b ∈ R a 6= 0 (1)

Ca(k) =
∫

x(t)Ψa,b(t)dt (2)

where Ψa,b(t) is a wavelet function whose shape and displacement are determined by a, the scale
parameter, and b, the translation parameter. x is a signal with m data points. The wavelet coefficient
of x(t) at the a-th scale is Ca (a = 1,2,3,· · · ,l). k is time order (k = 1,2,3,· · · ,m). Ψa,b(t) is the complex
conjugate of the wavelet function at scale a and translation b.

To show the change of wavelet coefficients intuitively, a CWTS is proposed [22]. The CWTS
expresses continuous wavelet coefficients by a two-dimensional image in the time-frequency domain.
Put all wavelet coefficients in a matrix P = [C1,C2,· · · ,Cl]. The graph of wavelet coefficients matrix P is
called a CWTS.

Figure 2 shows the CWTS of a ball fault bearing signal with a 2400 rpm rotating speed sampled
at 12 kHz. It is decomposed by the Morlet wavelet from 1 to 300-scale and has 300 data points in
time series. The horizontal axis represents the position along the time direction, and the vertical axis
represents the scale. Morlet wavelet is chosen as the wavelet used in this paper. Because it has the
similar shape with the shock signal caused by bearing faults [23]. In addition, the signal extracted by
the Morlet wavelet has the higher energy-to-Shannon entropy ratio than the other common wavelet
types. Energy-to-Shannon entropy ratio is an important indicator to measure the fitness of wavelet
functions [24].



Sensors 2018, 18, 3857 5 of 19
Sensors 2018, 18, x FOR PEER REVIEW  5 of 18 

 

 
Figure 2. Continuous Wavelet Transform Scalogram (CWTS) of a ball fault bearing signal. The darker 
pixels correspond to larger wavelet coefficients. 

2.2. Continuous Wavelet Transform Scalogram Cropping 

The object recognition using CNN is concerned with the shape of the object. If the shape appears 
in the image, the existence of the object is detected. However, in signal processing area, the axes of 
images constructed usually have clearly defined meanings. The appearance of the same shape in 
different location may indicate different fault modes. Therefore, the location of the features should 
also be paid attention to. 

As the vertical axis of CWTS represents the scale, different positions on the vertical axis relate to 
different frequencies. As we know, the fault characteristic frequencies of bearings are related to 
rotating speed. If the input CWTSs of PSPP-CNN can be ensued to have the same time domain range 
and frequency multiplication of the rotating frequency, the fault characteristic of the same fault could 
appear at the similar position in CWTSs. Thus, the classification of CWTSs will achieve a 
comparatively accurate result. Therefore, a CWTS cropping step is proposed in this paper. 

Suppose a vibration signal x(i) (i = 1,2,…m) is collected at a sampling frequency f (Hz) with m 
sampling data points. The rotating speed is n (rpm), corresponding to a machine rotating frequency 
fm = n/60. The integer multiple f to fm is 

q =  ඌ f
fm

+ 1
2
ඐ = ቔ60f

n
+ 1

2
ቕ (3) 

From Equation (1), we can calculate that the central frequency of a wavelet function is inversely 
proportional to scale a. Suppose fj =  k j⁄ , where fj is the central frequency at scale j, and k is the 

proportionality coefficient. According to the Morlet wavelet function, 

k = f0 × f (4) 

where f0 is the center frequency of the wavelet function, and the range is from 0.796 to 0.955. In this 
paper, 0.955 is chosen as f0. Therefore, we choose scale 1 as the starting scale of cropping which 
corresponds to a high frequency. To make the end scale the same multiple of the rotating frequency, 
we choose q as the end scale. Scale q corresponds to the frequency: 

fq = k q⁄ = k f⁄  × fm =  f0 × fm (5) 

Thus, fq is the f0 multiplication of the rotating frequency. As the fault characteristic frequencies 
of bearings are larger than the rotating frequency, the cropping from scale 1 to q at the scale axis is 
sufficient for bearing fault diagnosis. The cropped CWTS will contain all the fault characteristic 
frequencies of bearings needed for analysis. 

For the time domain axis, the time of q length data points is t = q/f ≈ 60/n, which is about the time 
duration of a rotor rotation cycle.  

Figure 2. Continuous Wavelet Transform Scalogram (CWTS) of a ball fault bearing signal. The darker
pixels correspond to larger wavelet coefficients.

2.2. Continuous Wavelet Transform Scalogram Cropping

The object recognition using CNN is concerned with the shape of the object. If the shape appears
in the image, the existence of the object is detected. However, in signal processing area, the axes of
images constructed usually have clearly defined meanings. The appearance of the same shape in
different location may indicate different fault modes. Therefore, the location of the features should
also be paid attention to.

As the vertical axis of CWTS represents the scale, different positions on the vertical axis relate
to different frequencies. As we know, the fault characteristic frequencies of bearings are related to
rotating speed. If the input CWTSs of PSPP-CNN can be ensued to have the same time domain range
and frequency multiplication of the rotating frequency, the fault characteristic of the same fault could
appear at the similar position in CWTSs. Thus, the classification of CWTSs will achieve a comparatively
accurate result. Therefore, a CWTS cropping step is proposed in this paper.

Suppose a vibration signal x(i) (i = 1,2, . . . m) is collected at a sampling frequency f (Hz) with m
sampling data points. The rotating speed is n (rpm), corresponding to a machine rotating frequency
fm = n/60. The integer multiple f to fm is

q =
f

fm
+

1
2
=

60 f
n

+
1
2

(3)

From Equation (1), we can calculate that the central frequency of a wavelet function is inversely
proportional to scale a. Suppose f j = k/j, where fj is the central frequency at scale j, and k is the
proportionality coefficient. According to the Morlet wavelet function,

k = f0 × f (4)

where f 0 is the center frequency of the wavelet function, and the range is from 0.796 to 0.955. In this
paper, 0.955 is chosen as f 0. Therefore, we choose scale 1 as the starting scale of cropping which
corresponds to a high frequency. To make the end scale the same multiple of the rotating frequency,
we choose q as the end scale. Scale q corresponds to the frequency:

fq = k/q = k/ f × f m = f 0 × f m (5)

Thus, fq is the f 0 multiplication of the rotating frequency. As the fault characteristic frequencies
of bearings are larger than the rotating frequency, the cropping from scale 1 to q at the scale axis
is sufficient for bearing fault diagnosis. The cropped CWTS will contain all the fault characteristic
frequencies of bearings needed for analysis.
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For the time domain axis, the time of q length data points is t = q/f ≈ 60/n, which is about the
time duration of a rotor rotation cycle.

Therefore, in this paper, the original CWTS is cropped from scale 1 to q, and q length in the time
domain axis. Thus, the cropped CWTSs with different rotating speeds have the same time domain
range and frequency multiplication relative to the rotating speed.

2.3. Pythagorean Spatial Pyramid Pooling Convolutional Neural Network Training

2.3.1. Pythagorean Spatial Pyramid Pooling Convolutional Neural Network

A CNN comprises convolutional layers, pooling layers, and fully connected layers. Most CNNs
require a fixed input size. So before being sent into the first CNN layer, images need a cropping or
warping operation. Convolutional layers and pooling layers do not need a fixed input size. However,
the fully connected layers require a fixed input and output size to maintain constant number of the full
connections. SPP can pool the mixed-size images into fixed-length outputs, thus meeting the need for
fixed inputs in the fully connected layers.

Spatial pyramid pooling (or spatial pyramid matching) was first used in computer vision.
Used together with feature extraction and classification algorithms, it has shown good results in
image classification [25–27], object recognition [28–30], semantic concept detection [31], and image
memorability [32]. Next, the SPP layer was introduced to CNN to remove the fixed-size input
constraint of CNN [33]. The SPP-CNN method has been used in remote sensing hyperspectral
image classification [34], handwritten word image categorization [35], and action recognition [36].
According to these applications, SPP is useful in CNN. It can reduce the cropping and warping
operations used to fit a fixed-size CNN input, and avoid information loss in the operations.

The ordinary pooling layer in CNN is used to compress the input feature maps. It helps to reduce
the feature maps and simplify the computational complexity of the network. It also extracts the main
features from the original maps. There are two general types of pooling operations: average pooling
and max pooling. Figure 3 shows an example of max pooling process in CNN, where filter is the filter
size that indicates the range of pooling operation. stride is the space between pooling operations. It is
clear that if the input image size changes more than the stride, the output size will change. This will
make the classification algorithm impossible to continue.
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Figure 3. Max pooling process. Get the maximal value in the range of each pooling operation.

To resolve the requirement for a fixed input size, SPP is introduced to CNN as the last pooling
layer. As shown in Figure 4, the feature images are pooled to different levels in the SPP layer. We will
get an l × l size image in level l. Thereafter, a fixed-length output can be obtained by n level pooling.

Feature values
n
∑

i=1
i2 will be sent into the fully connected layer for classification.
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Figure 4. Convolutional neural network (CNN) with a spatial pyramid layer. Each input image is
pooled to several levels. The results are transformed into one-dimension vectors to form the spatial
pyramid pooling (SPP) output.

To get an l × l size image in level l, the filter size and stride should change by level. The filter and
stride can be computed by

f ilter = [m/l] (6)

stride = [m/l] (7)

where m × m is the size of the feature maps from the last layer. Table 1 shows an example of 4-level
SPP. Two input images with different size 15 × 15 and 20 × 20 get the same 30 length output by a
4-level SPP layer. If the input size changes, the pooling parameters will change to ensure the outputs
have the same length.

Table 1. Parameters of a 4-level SPP.

Input Size Level Filter Stride Output Size Output Length

15 × 15

1 15 15 1 × 1

30
2 8 7 2 × 2
3 5 5 3 × 3
4 4 3 4 × 4

20 × 20

1 20 20 1 × 1

30
2 10 10 2 × 2
3 7 6 3 × 3
4 5 5 4 × 4

Although SPP-CNN has shown good performance in image classification, there are still some
problems. As the SPP layer lies at the last, before the fully connected layer in CNN, the outputs of
the SPP layer are sent directly into the fully connected layer for classification. However, with no
convolutional layer, the features obtained by the SPP layer may not be fully used. In addition, some of
the location information will be lost. Meanwhile, the fully connected layer will have a large input
matrix. It will greatly increase the connections in fully connected layer. Then there will be much more
parameters to be trained. Therefore, a PSPP layer is proposed to make full use of the features and
reduce the parameters.

The structure of the PSPP layer is shown in Figure 5. SPP is used to pool the input images into
two different levels. Next, the output of the two levels will be used to compose new feature maps
rather than a feature vector in the SPP layer. Thus, the output feature maps can be delivered to the
convolutional layer for another round of feature extraction.
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Figure 5. Structure of Pythagorean spatial pyramid pooling (PSPP) layer. It constructs the output
using the results of two pooling levels. The position information of the higher-level pooling result A
are retained.

To facilitate the composition of two SPP outputs, the pooling levels a, b (a > b) are chosen from
the smaller two numbers of the Pythagorean triple. Hence, the output feature maps will have the size
of the largest number c in the Pythagorean triple. To retain some position information of the feature
maps, the composition is processed in the following way. The output matrix of the higher pooling level
A will be retained. Next, the smaller output matrix B is reshaped as (c + a) × (c − a). The reshaped
matrix is used to expand A to C on the right side and down side.

Using the PSPP layer in CNN, the fixed input problem can be solved. In addition, the output
of the layer are square matrices which can be extracted in the following steps. The structure of the
PSPP-CNN used in multi-size training of this paper is shown in Figure 6. Two convolutional layers are
added after the PSPP layer for further feature extraction. The convolutional layers will also reduce the
size of feature maps. Then the connections in fully connected layer is reduced.
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Figure 6. Structure of PSPP-CNN used in this paper. It is the PSPP-CNN used in all the following
experiments, as PSPP-CNN has ability to process multi-size input.

It is recommended that the PSPP layer be in the middle layers of PSPP-CNN. As the PSPP layer
has a larger feature reduction than normal 2 × 2 or 3 × 3 max pooling, the ahead position PSPP layer
will lead to the premature loss of features. The PSPP layer at the back position is more like an SPP
layer without enough convolutional layers to use the features obtained.

The size of convolutional and pooling kernels is changeable according to the input image size.
However, big kernel size may result in information loss and increase computational complexity.
Therefore, we choose to add more convolutional layers when processing large input images.
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2.3.2. Pythagorean Spatial Pyramid Pooling Convolutional Neural Network Training Method

According to the previous description, the forward process is easy to realize. The filter size and
stride can be pre-computed before the pooling. However, the back-propagation process in PSPP-CNN
training requires some strategy.

When a back-propagation result is received from the last layer, the result is first divided to levels
in the same order as the forward process. Next, the result in each PSPP level is restructured as a square
matrix. The square matrices apply back-propagation separately. Thus, 2 back-propagation matrices are
obtained. Hence, there are two ways to calculate the back-propagation matrix of an PSPP layer: (1) the
mean of 2 back-propagation matrices, and (2) the weighted mean of 2 back-propagation matrices
according to the level. The calculations can be presented by (8) and (9)

d(i) =
1
2

2

∑
k=1

dk(i + 1) (8)

d(i) =
1

∑2
k=1 k2

2

∑
k=1

k2dk(i + 1) (9)

where d(i) is the back-propagation matrix of layer i in CNN, dk(i + 1) is the level k back-propagation
matrix of layer i + 1 which is an PSPP layer. The two methods are tested using the same CNN structure,
samples, and learning rate. The samples are part of the data used in Section 3.1. The results are listed
in Table 2. Training error rate less than 0.05% is consider as achieving convergence.

Table 2. Convergence time and accuracy using two back-propagation methods.

Method Training Steps Convergence Time/Min Time of Each Step/Min Accuracy/%

1 63 324 5.14 92.43
2 51 263 5.16 92.52

As shown in Table 2, the two methods have similar accuracy and during time of each training
step. However, the back-propagation using the second method has a faster convergence rate. This is
because that the high-level pooling in PSPP reserves more features from feature maps. Therefore,
the high weight of high-level pooling will lead the training to the right direction.

When PSPP-CNN is applied to multi-size images training, an important problem is the training
order of the multi-size samples. To prevent the network from fitting a single image size, the multi-size
samples in our work will be trained by turns. After all the samples of one size are trained, we will
switch to another size. When the training error rates of samples in each size are less than 0.1%,
the PSPP-CNN is considered to be achieving convergence.

3. Experiment

To verify the validity of the proposed method, two series of experiments are presented in this paper.
Fault diagnosis of constant and variable rotating speed data are conducted using the proposed method.

3.1. Constant Rotating Speed Data

The bearing fault data from the Case Western Reserve University (CWRU) Bearing Data
Center [37] is selected to verify the validity of the method in a constant rotating speed environment.
The bearing test stand used in the experiment is shown in Figure 7. There are four bearing states:
normal, ball fault, inner race fault, and outer race fault. In each bearing fault state, the bearings have
fault diameters of 0.007 inches, 0.014 inches, and 0.021 inches. There are also 0.028 inches fault data of
ball fault and inner race fault. Thus, there are 12 conditions in total. The fault bearings are installed on
the drive end. Three accelerometers are installed on the fan end, drive end, and the base, respectively.
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The rotating speed of the shaft is about 1800 rpm with the motor load ranging from 0 to 3 HP. All the
data selected were sampled at a frequency of 12 kHz.Sensors 2018, 18, x FOR PEER REVIEW  10 of 18 
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In our fault diagnosis experiment, all the data are divided into 12 conditions according to the fault
states and fault diameters. The influences of fault bearing location, accelerometer location, and motor
load are ignored. Because the data were stored as a long array with more than 250,000 data points,
the data were divided into several samples. Each sample contains 1024 data points. The size of each
condition used for training set and test set are listed in Table 3. The selection of training samples is
random. The ratio of training samples to test samples is 2 to 1.

Table 3. Sizes of training and test sets in 12 conditions.

Fault None
(NO) Ball (BA) Inner Race (IR) Outer Race (OR) Total

Diameters/in 0 0.007 0.014 0.021 0.028 0.007 0.014 0.021 0.028 0.007 0.014 0.021
Training set size 24720 10080 10080 10080 3360 10080 10080 10080 3360 30240 10080 30240 162480

Test set size 12360 5040 5040 5040 1680 5040 5040 5040 1680 15120 5040 15120 81240

Because the sampling frequency of all data is the same, and the change in rotating speed is very
small, it can be considered that the sampling frequency of all data is equal to the same multiple of
the rotating frequency, namely a 400 multiple. At the same time, because the characteristic frequency
of these bearing faults is higher than a two multiple of the rotating frequency, in this experiment,
the continuous wavelet transform of the bearing data is carried out from 1 to 200 scales. Hence,
200 × 200 CWTSs are obtained as the CNN input.

To compare the diagnosis effectiveness of the three networks, CNN, SPP-CNN, and PSPP-CNN,
on constant rotating speed data, three models are built to diagnose the samples. The structures of the
CNNs are listed in Table 4:

As shown in Table 4, the first five layers of the CNNs are set as the same. Because the SPP layer
and PSPP layer can reduce more image size than the max pooling layer, the original CNN has more
layers and more connections. PSPP-CNN has two more convolutional layers than SPP-CNN for further
feature exaction. The selection of CNNs parameters is problem dependent and obtained by trial and
error. The selection of the parameters of the first 5 layers was based on the principles proposed in [38].
Then a validation set was built to optimize the parameters of the layers after layer 5 in three networks.
The parameters that have best performance on validation set were chosen as the final CNN parameters.
The training rate of all three CNNs is set to 0.002 and changed to 0.0005 when the training error is
reduced to 1%.
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Table 4. Structure of three Convolutional neural networks.

Layer 1 2 3 4 5 6 7 8 9 10 11

CNN
Conv

5 × 5 × 1
50

MaxPool
2 × 2

Conv
5 × 5 × 50

50

MaxPool
2 × 2

Conv
4 × 4 × 50

100

MaxPool
2 × 2

Conv
5 × 5 × 100

100

MaxPool
2 × 2

Conv
4 × 4 × 100

200

MaxPool
3 × 3 FC

SPP-CNN
Conv

5 × 5 × 1
50

MaxPool
2 × 2

Conv
5 × 5 × 50

50

MaxPool
2 × 2

Conv
4 × 4 × 50

100

MaxPool
2 × 2

Conv
5 × 5 × 100

100

SPP
5 FC

PSPP-CNN
Conv

5 × 5 × 1
50

MaxPool
2 × 2

Conv
5 × 5 × 50

50

MaxPool
2 × 2

Conv
4 × 4 × 50

100

PSPP
(8,6)

Conv
5 × 5 × 100

100

MaxPool
2 × 2

Conv
3 × 3 × 100

200
FC
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MATLAB is used to implement the training on the computer with two E5-2667 v3 CPUs,
a GTX1080Ti GPU, 32 GB memory, and a 1 TB driver. Based on Matconvnet toolkit [39], the SPP-CNN
and PSPP-CNN layer are implemented by adding new layer types to it. After the convergence of the
CNNs, the test samples are sent into CNNs for fault diagnosis. The convergence and accuracy of
CNNs are listed in Table 5:

Table 5. Convergence and accuracy of Convolutional neural networks.

Model Number of Parameters Training Steps Convergence Time/Min Accuracy/%

CNN 1.1e6 38 208 97.86%
SPP-CNN 1.5e6 48 281 97.23%

PSPP-CNN 5.8e5 44 211 97.79%

From Table 5, it is clear that the accuracy of SPP-CNN is a bit lower than that of CNN in Constant
rotating speed data classification. SPP-CNN may lose some important information during SPP layer
which is a big feature reduction. However, the convolutional layer following a PSPP layer can
re-extract fault features. PSPP-CNN has a diagnosis accuracy similar with the CNN method, and better
than SPP-CNN. It has a much shorter training time of each steps, for it has much less parameters
to be trained. This shows that the PSPP layer retains the main fault features while reducing the
total number of features. The fault diagnosis accuracy of PSPP-CNN in 12 conditions is shown in
Table 6. All the conditions have an accuracy greater than 91.03%. Compared with diagnosis accuracies
listed in [37], PSPP-CNN has equivalent accuracy, lower proportion of training samples and more
conditions. This shows that the method we proposed has good performance in a constant rotating
speed data diagnosis.

Table 6. Accuracy of test samples in 12 conditions using Pythagorean Spatial Pyramid Pooling
Convolutional Neural Network (PSPP-CNN).

Fault None Ball Inner Race Outer Race Total

Diameters/in 0 0.007 0.014 0.021 0.028 0.007 0.014 0.021 0.028 0.007 0.014 0.021
Accuracy/% 99.98 95.32 95.99 91.03 99.64 99.94 94.17 99.01 99.88 98.09 96.96 99.31 97.79

3.2. Variable Rotating Speed Data

The fault diagnosis of equipment with variable rotating speed is an important issue that has not
been solved satisfactorily. The proposed method is capable of handling variable rotating speed data.
Therefore, a variable rotating speed experiment is carried out to show its advantages.

The test bed used in this experiment, the Machinery Fault Simulator-Rotor Dynamics Simulator
(MFS-RDS), is shown in Figure 8. Bearing fault experiments were conducted on this test bed.
The bearing used is ER-16K LINK-BELT (LBX Company LLC, Lexington, KY, USA). There are four
bearing fault modes: normal (NO), ball fault (BA), inner race fault (IR), and outer race fault (OR).
The fault bearings can be installed at the drive or non-drive end, and each experiment has at most
one fault bearing. Two accelerators are installed on the vertical direction of the two bearing housings.
The load is constant in the experiment. Under each bearing fault condition, three sets of data are
collected at the rotating speed of 1800 rpm, 2400 rpm, and 2900 rpm, respectively, and the sampling
time of each set is approximately 10 min. The sampling frequency of all data is 12 kHz.



Sensors 2018, 18, 3857 13 of 19Sensors 2018, 18, x FOR PEER REVIEW  13 of 18 

 

 

Figure 8. Machinery Fault Simulator-Rotor Dynamics Simulator (MFS-RDS) test bed. It can be used 
to simulate shaft, motor and bearing faults. The eddy current sensors are used to monitor the state of 
shaft. The data of them are not used for bearing diagnosis experiment. (1) speed controller, (2) rigid 
coupling, (3) accelerometer, (4) electromotor, (5) bearing base, (6) bearing, (7) shaft, (8) eddy current 
sensor, (9) rotary table. 

In the fault diagnosis experiment, the data are divided into 12 cases according to the fault status 
and rotating speeds. The influence of fault bearing position and sensor position is neglected. Because 
the data are stored as continuous time series, the data are divided into several samples. Each sample 
contains 1200 data points. Next, 5376 samples are obtained in each case; half of them, 2688 samples, 
are used for training, and the remaining 2688 samples are for test. The ratio of training samples to 
test samples is 1:1. Therefore, we have 32,256 training samples and 32,256 test samples totally. The 
fault diagnosis aims to classify the data into four categories based on the fault status. 

Because all data samples have the same sampling frequency of 12 kHz, this corresponds to 400, 
300, and 248 multiples of the rotating speed at 1800 rpm, 2400 rpm, and 2900 rpm, respectively. Thus, 
the continuous wavelet transform of three sets of bearing data is carried out from 1 to 400 scales, 300 
scales, and 248 scales, respectively. In the time axis, the middle 400, 300, and 248 coordinates are 
chosen, because they have data points of one rotating period and can neglect the first and last few 
points of each sample. Hence, the CWTSs are chopped to square CWTSs that have a size of 400 × 400, 
300 × 300, and 248 × 248, respectively. 

The PSPP-CNN structure used in this experiment is shown in Figure 4 and Table 4. There are 
five convolutional layers, three max pooling layers, one PSPP layer, and one fully connected layer. 
The training rate is initially set to 0.002 and changed to 0.0005 when the training error is reduced to 
1%. The training environment is the same as the constant rotating speed data training. It takes 317 
min to achieve convergence after 44 training steps which means the error of training samples is less 
than 0.1%. 

The confusion matrix of fault diagnosis result is shown in Table 7. The first row represents the 
rotating speed and labels of the test data. The first shows the diagnosis result labels. The method has 
a high diagnosis accuracy of 99.11%, and an accuracy of more than 97.61% is obtained for the data of 
each fault condition. This indicates that the PSPP-CNN method is suitable for bearing fault diagnosis 
with variable rotating speed. 

Table 7. Accuracy of test samples at different rotating speeds using PSPP-CNN. 

Labels 
NO 
1800 
rpm 

IR 
1800 
rpm 

OR 
1800 
rpm 

BA 
1800 
rpm 

NO 
2400 
rpm 

IR 
2400 
rpm 

OR 
2400 
rpm 

BA 
2400 
rpm 

NO 
2900 
rpm 

IR 
2900 
rpm 

OR 
2900 
rpm 

BA 
2900 
rpm 

Accuracy 
% 

NO 2631 0 0 48 2686 1 0 17 2688 3 0 31 99.27 
IR 0 2687 7 0 0 2685 5 3 0 2678 8 25 99.83 
OR 0 1 2681 0 0 2 2683 0 0 7 2680 69 99.75 
BA 57 0 0 2640 2 0 0 2668 0 0 0 2563 97.61 

Accuracy% 97.88 99.96 99.74 98.21 99.93 99.89 99.81 99.26 100 99.63 99.70 95.35 99.11 

1 2 3

9

4 5 6

7 8

Figure 8. Machinery Fault Simulator-Rotor Dynamics Simulator (MFS-RDS) test bed. It can be used to
simulate shaft, motor and bearing faults. The eddy current sensors are used to monitor the state of
shaft. The data of them are not used for bearing diagnosis experiment. (1) speed controller, (2) rigid
coupling, (3) accelerometer, (4) electromotor, (5) bearing base, (6) bearing, (7) shaft, (8) eddy current
sensor, (9) rotary table.

In the fault diagnosis experiment, the data are divided into 12 cases according to the fault
status and rotating speeds. The influence of fault bearing position and sensor position is neglected.
Because the data are stored as continuous time series, the data are divided into several samples.
Each sample contains 1200 data points. Next, 5376 samples are obtained in each case; half of them,
2688 samples, are used for training, and the remaining 2688 samples are for test. The ratio of training
samples to test samples is 1:1. Therefore, we have 32,256 training samples and 32,256 test samples
totally. The fault diagnosis aims to classify the data into four categories based on the fault status.

Because all data samples have the same sampling frequency of 12 kHz, this corresponds to 400,
300, and 248 multiples of the rotating speed at 1800 rpm, 2400 rpm, and 2900 rpm, respectively. Thus,
the continuous wavelet transform of three sets of bearing data is carried out from 1 to 400 scales,
300 scales, and 248 scales, respectively. In the time axis, the middle 400, 300, and 248 coordinates are
chosen, because they have data points of one rotating period and can neglect the first and last few
points of each sample. Hence, the CWTSs are chopped to square CWTSs that have a size of 400 × 400,
300 × 300, and 248 × 248, respectively.

The PSPP-CNN structure used in this experiment is shown in Figure 4 and Table 4. There are
five convolutional layers, three max pooling layers, one PSPP layer, and one fully connected layer.
The training rate is initially set to 0.002 and changed to 0.0005 when the training error is reduced to 1%.
The training environment is the same as the constant rotating speed data training. It takes 317 min to
achieve convergence after 44 training steps which means the error of training samples is less than 0.1%.

The confusion matrix of fault diagnosis result is shown in Table 7. The first row represents the
rotating speed and labels of the test data. The first shows the diagnosis result labels. The method has a
high diagnosis accuracy of 99.11%, and an accuracy of more than 97.61% is obtained for the data of
each fault condition. This indicates that the PSPP-CNN method is suitable for bearing fault diagnosis
with variable rotating speed.

To compare the diagnosis effect with CNN and SPP-CNN, two other models are built using
the CNN and SPP-CNN structures, as listed in Table 4. As CNN can only accept fixed-size images,
all the data to 400 × 400, 300 × 300, and 248 × 248 CWTSs are translated to train the CNN separately.
Accordingly, the CNN structure changes by adding a convolutional layer of a different size before the
fully connected layer. SPP-CNN uses the same input images as those used by PSPP-CNN. 400 × 400,
300 × 300, and 248 × 248 CWTSs are also used to train SPP-CNN and PSPP-CNN. The diagnosis
accuracy of seven different CNN models are listed in Table 8 and Figure 9.
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Table 7. Accuracy of test samples at different rotating speeds using PSPP-CNN.

Labels
NO
1800
rpm

IR
1800
rpm

OR
1800
rpm

BA
1800
rpm

NO
2400
rpm

IR
2400
rpm

OR
2400
rpm

BA
2400
rpm

NO
2900
rpm

IR
2900
rpm

OR
2900
rpm

BA
2900
rpm

Accuracy
%

NO 2631 0 0 48 2686 1 0 17 2688 3 0 31 99.27
IR 0 2687 7 0 0 2685 5 3 0 2678 8 25 99.83
OR 0 1 2681 0 0 2 2683 0 0 7 2680 69 99.75
BA 57 0 0 2640 2 0 0 2668 0 0 0 2563 97.61

Accuracy% 97.88 99.96 99.74 98.21 99.93 99.89 99.81 99.26 100 99.63 99.70 95.35 99.11

Table 8. Accuracy of test samples using different CNN models.

Input Size CNN SPP-CNN PSPP-CNN

248 × 248 94.74 94.62 94.70
300 × 300 95.31 95.26 95.76
400 × 400 95.89 96.34 96.55

400 × 400, 300 × 300, 248 × 248 96.79 99.11
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models with single-size or multi-size input. Figure 9 shows that the accuracy increases along with 
the size and diversity of input samples. The method we propose using PSPP-CNN and multi-size 
input has the best diagnosis accuracy 96.58%. It shows a nearly two-percent improvement over SPP-
CNN. The SPP-CNN model with multi-size does not get a big accuracy improvement. It is because 
that different from image recognition tasks, fault diagnosis needs precisely feature positioning in 
CWTS. A SPP layer before fully connect layer will lose more position information in CWTS than a 
PSPP layer which can locate as front layer of PSPP-CNN. In addition, using the normal CNN, the 
diagnosis accuracy increases with the increase of input image size. According to our analysis, this is 
mainly owing to the increase of 1800 rpm data accuracy which are 92.05%, 94.22%, 95.53% separately. 
The reason may be that the 300 × 300 and 248 × 248 cropping of CWTSs will lose some of the fault 
features of 1800 rpm data. An input size larger than 400 × 400 will not increase the accuracy. 

To compare this PSPP-CNN method with other CNN-based fault diagnosis methods, several 
proposed methods are applied using the same dataset. Deep Convolution Neural Network with Wide 
first-layer kernels (WDCNN) [12] is a bearing diagnosis method that uses raw vibration signals as 
input, and wide kernels in first layer for feature extraction and high-frequency noise suppression. 
Dislocated Time Series Convolutional Neural Network (DTS-CNN) [18] is proposed for mechanical 
signals by adding a dislocate layer to CNN. DTS-CNN can extract the relationship between signals 
with different intervals in periodic mechanical signals. Resample-CNN [38] uses a resample method 

Figure 9. Accuracy of test samples using different input size and CNN models.

As shown in Table 8, PSPP-CNN has a better diagnosis accuracy than other CNN and SPP-CNN
models with single-size or multi-size input. Figure 9 shows that the accuracy increases along with the
size and diversity of input samples. The method we propose using PSPP-CNN and multi-size input
has the best diagnosis accuracy 96.58%. It shows a nearly two-percent improvement over SPP-CNN.
The SPP-CNN model with multi-size does not get a big accuracy improvement. It is because that
different from image recognition tasks, fault diagnosis needs precisely feature positioning in CWTS.
A SPP layer before fully connect layer will lose more position information in CWTS than a PSPP
layer which can locate as front layer of PSPP-CNN. In addition, using the normal CNN, the diagnosis
accuracy increases with the increase of input image size. According to our analysis, this is mainly owing
to the increase of 1800 rpm data accuracy which are 92.05%, 94.22%, 95.53% separately. The reason
may be that the 300 × 300 and 248 × 248 cropping of CWTSs will lose some of the fault features of
1800 rpm data. An input size larger than 400 × 400 will not increase the accuracy.

To compare this PSPP-CNN method with other CNN-based fault diagnosis methods,
several proposed methods are applied using the same dataset. Deep Convolution Neural Network
with Wide first-layer kernels (WDCNN) [12] is a bearing diagnosis method that uses raw vibration
signals as input, and wide kernels in first layer for feature extraction and high-frequency noise
suppression. Dislocated Time Series Convolutional Neural Network (DTS-CNN) [18] is proposed for
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mechanical signals by adding a dislocate layer to CNN. DTS-CNN can extract the relationship between
signals with different intervals in periodic mechanical signals. Resample-CNN [38] uses a resample
method to normalize the data to make sampling frequencies are the same multiples of the rotating
frequency. The three proposed methods are used to compare the fault diagnosis accuracy using the
same dataset, for they are all proposed for the diagnosis of machinery using vibration signals based
on CNN. Because the data used in the papers have similar testbed structure, sampling frequency and
rotating speed, WDCNN and DTS-CNN use the same network parameters as those in the papers.
Resample-CNN uses the 400 × 400 CNN structure for they have the same input size. As all the three
methods use the ordinary CNN and have the similar CNN structures, the changes of CNN parameters
will not change the diagnosis result greatly. What we need to focus on is the construction of deep
learning input. As the accuracies shown in Table 9, the method proposed in this paper has the best
performance in the diagnosis of variable rotating speed data.

Table 9. Fault diagnosis result using other proposed CNN-based methods.

Model
Deep Convolution

Neural Network with
Wide first-layer kernels

Dislocated Time Series
Convolutional Neural

Network
Resample-CNN PSPP-CNN

Accuracy/% 97.76 96.20 98.15 99.11

The reason for the comparison made on this set of data is that the accuracies on this case can
reflect the effectives of the methods both on constant speed and variable speed data. In addition,
in practical use, most variable speed machines work like this case at a certain speed range or some
preset optimal speed points.

To further study the effectiveness of the method at full working speed range, an experiment to
diagnosis the full working speed data is carried on using the PSPP-CNN trained above. The data of
four bearing conditions were collected with 12 kHz on MFS-RDS. The fault bearing was installed on
drive end. The rotation speed ranges from 300 to 3000 r/min. The rotation frequency increases at
0.15 Hz/s. Figure 10 shows the vibration signals of drive end accelerator in four fault conditions.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 18 

 

to normalize the data to make sampling frequencies are the same multiples of the rotating frequency. 
The three proposed methods are used to compare the fault diagnosis accuracy using the same dataset, 
for they are all proposed for the diagnosis of machinery using vibration signals based on CNN. 
Because the data used in the papers have similar testbed structure, sampling frequency and rotating 
speed, WDCNN and DTS-CNN use the same network parameters as those in the papers. Resample-
CNN uses the 400 × 400 CNN structure for they have the same input size. As all the three methods 
use the ordinary CNN and have the similar CNN structures, the changes of CNN parameters will not 
change the diagnosis result greatly. What we need to focus on is the construction of deep learning 
input. As the accuracies shown in Table 9, the method proposed in this paper has the best 
performance in the diagnosis of variable rotating speed data. 

The reason for the comparison made on this set of data is that the accuracies on this case can 
reflect the effectives of the methods both on constant speed and variable speed data. In addition, in 
practical use, most variable speed machines work like this case at a certain speed range or some preset 
optimal speed points.  

Table 9. Fault diagnosis result using other proposed CNN-based methods. 

Model 

Deep 
Convolution 

Neural Network 
with Wide first-

layer kernels 

Dislocated Time 
Series 

Convolutional 
Neural Network 

Resample-CNN PSPP-CNN 

Accuracy/% 97.76 96.20 98.15 99.11 

To further study the effectiveness of the method at full working speed range, an experiment to 
diagnosis the full working speed data is carried on using the PSPP-CNN trained above. The data of 
four bearing conditions were collected with 12 kHz on MFS-RDS. The fault bearing was installed on 
drive end. The rotation speed ranges from 300 to 3000 r/min. The rotation frequency increases at 0.15 
Hz/s. Figure 10 shows the vibration signals of drive end accelerator in four fault conditions.  

  
                         (a)                                             (b) 

 
                     (c)                                             (d) 

Figure 10. Vibration signals of four fault conditions. (a) normal (b) ball (c) inner race (d) outer race. 

To test the PSPP-CNN trained, the data of drive end accelerator in each condition are divided 
into 440 samples. Each sample contains 8192 data points. We get the cropped CWTS of each sample 
according to rotating speed. Therefore, the size of cropped CWTSs are ranges from 240 × 240 to 2400 

Figure 10. Vibration signals of four fault conditions. (a) normal (b) ball (c) inner race (d) outer race.



Sensors 2018, 18, 3857 16 of 19

To test the PSPP-CNN trained, the data of drive end accelerator in each condition are divided
into 440 samples. Each sample contains 8192 data points. We get the cropped CWTS of each sample
according to rotating speed. Therefore, the size of cropped CWTSs are ranges from 240 × 240 to
2400 × 2400. Then the cropped CWTSs are sent into PSPP-CNN for fault diagnosis. The accuracy of
each fault condition is listed in Table 10.

Table 10. Accuracy of four fault conditions at full rotating speeds using PSPP-CNN.

Fault None Ball Inner race Outer race Total

Accuracy/% 90.23 91.82 92.05 92.95 91.76

As shown in Table 10, PSPP-CNN has diagnosis accuracies more than 90% for each fault conditions.
It means that the PSPP-CNN trained by data at some rotating speed can be used to diagnosis bearing
fault in full working speed. Through analysis, the accuracy of data under 1200 rpm is a little lower.
Adding an incremental training using low speed data will increase the accuracy. It shows that the
PSPP-CNN trained using data of few certain rotating speeds can be used to diagnose bearing fault in
full working speed.

Through the fault diagnosis experiments of constant and variable rotating speed data, we can
know that the PSPP-CNN method proposed is an effective solution for fault diagnosis of bearing.
When applied to intelligent diagnosis system, the method has some advantages. First, the PSPP-CNN
proposed in this paper can be easily implemented by adding a PSPP layer to the ordinary CNN
code based on max pooling layer. There are some mature CNN frameworks based on MATLAB,
Net Framework or Python. All of them can be easily built. Second, the fault diagnosis process
has high power efficiency. As shown in Table 5, PSPP-CNN has less parameters than an ordinary
CNN with the same front layers. It reduces the computation of each training and test epoch.
Although the training of PSPP-CNN is still time-consuming in the computer without GPU accelerated
computing, the diagnosis process using trained PSPP-CNN model can be completed quickly even
at laptop computer. Third, with the de-noising ability of wavelet transform, the diagnosis system
has good robustness. Diagnosis result will not be affected by the background noise in signal of
practical equipment.

In practical applications, we can gather the experiment data or online monitoring data from the
varying working speed bearing and use the data to train PSPP-CNN for fault diagnosis. The intelligent
fault diagnosis method proposed in this paper has been used for online fault diagnosis of wind
turbine bearings in a wind farm. The fault diagnosis software is exploited by C#& MATLAB
combined programming. The signal is transmitted to MATLAB for CWTS calculation and classification.
The diagnosis result can be obtained in 5 s. The training data was collected from the online
vibration monitoring system installed on wind turbines. The fault data was picked out by referencing
fault records.

4. Conclusions

In this paper, we propose an intelligent fault diagnosis method for a variable rotating speed
bearing. The proposed approach is built upon CWTS and PSPP-CNN. This method decomposes
vibration signals of bearing into CWTSs of different scales according to the rotating speed. In addition,
the different size CWTSs are sent into PSPP-CNN for fault diagnosis. The PSPP-CNN that we proposed
is an improvement of the SPP-CNN. The PSPP layer can fully use the pooling result for further feature
extraction than SPP layer as they all can pool the input of different sizes to a fixed size. A series
of experiments are carried out using constant rotating speed data and variable rotating speed data.
The results show that the proposed approach is an effective solution. The method has been used in
practical applications.

Although many fault diagnosis methods based on deep learning have been proposed,
most methods are totally data-driven and focus on the small improvement of deep learning algorithm.
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The domain knowledge that has been used for fault diagnosis in recent decades is barely used.
In addition, the working condition information is not considered in the input of deep learning
algorithm. This paper takes the fault characteristics frequency of bearing and working speed into
consideration. However, more domain knowledge and working condition information, such as load
and output power, can be combined with deep learning. It may improve the accuracy and robustness,
and the features extracted will be more interpretable.
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