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The understanding of therapeutic properties is important in drug repositioning and
drug discovery. However, chemical or clinical trials are expensive and inefficient to
characterize the therapeutic properties of drugs. Recently, artificial intelligence (AI)-
assisted algorithms have received extensive attention for discovering the potential
therapeutic properties of drugs and speeding up drug development. In this study, we
propose a new method based on GraphSAGE and clustering constraints (DRGCC)
to investigate the potential therapeutic properties of drugs for drug repositioning.
First, the drug structure features and disease symptom features are extracted.
Second, the drug–drug interaction network and disease similarity network are
constructed according to the drug–gene and disease–gene relationships. Matrix
factorization is adopted to extract the clustering features of networks. Then, all the
features are fed to the GraphSAGE to predict new associations between existing
drugs and diseases. Benchmark comparisons on two different datasets show that
our method has reliable predictive performance and outperforms other six
competing. We have also conducted case studies on existing drugs and
diseases and aimed to predict drugs that may be effective for the novel
coronavirus disease 2019 (COVID-19). Among the predicted anti-COVID-19 drug
candidates, some drugs are being clinically studied by pharmacologists, and their
binding sites to COVID-19-related protein receptors have been found via the
molecular docking technology.
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INTRODUCTION

Traditional drug discovery is often based on a specific disease. It generally has a number of stages,
including target discovery, target validation, lead compound identification, lead optimization,
preclinical drug development, advancing to clinical trials, and clinical trials. Typically, the
development of an effective drug takes an average of 15 years and costs 800 million to 1.5
billion US dollars (Dudley et al., 2011) (Yu et al., 2015). However, the success rate is often not
high due to the lack of systematic evaluation of other indications that drugs can treat, as well as the
impact of our life, disease development, and market factors. These difficulties have caused
pharmaceutical companies very worrisome when developing new drugs, and the development
speed is slow (Booth and Zemmel, 2004).
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From cheminformatics and life sciences (Bader et al., 2008), it
is well acknowledged that one drug may work on multiple target
proteins, and one target protein is related to multiple diseases,
which is the basis of drug repositioning. Actually, drug
repositioning brings significant benefits to drug research and
related pharmaceutical companies. For example, minoxidil
(Varothai and Bergfeld, 2014), a drug originally used to relieve
hypertension and excessive tension was later found to effectively
treat symptoms such as hair loss. Antifungal and antitumor drug
itraconazole (ITZ) can act as a broad-spectrum enterovirus
inhibitor (Strating et al., 2015). However, this kind of drug
repositioning is mostly based on clinical accidental discoveries
and the experience of pharmacists, and it is difficult for large-scale
investigation.

With the development of cross-technology, more and more
researchers tend to use computational technologies to predict
new indications of existing drugs. These methods mainly include
network propagation, low-rank matrix approximation, and graph
neural network. Based on biological networks, similarity
measures and bi-random walk were proposed for drug
repositioning (Luo et al., 2016). Yu et al. combined miRNAs
and group specificity to predict potential therapeutic drugs for
breast cancer (Yu et al., 2018). A genome-wide positioning
systems network algorithm was developed for drug
repurposing (Cheng et al., 2019). Fiscon et al. presented a new
network-based algorithm SAveRUNNER and applied it to
COVID-19 (Fiscon et al., 2021). However, due to the
complexity and noise of interactions between organisms, the
prediction accuracy based on those existing methods cannot
meet the requirements. Some methods were developed based
on low-rank matrix approximation. Luo et al. proposed a drug
repositioning recommendation system (DRRS) to predict novel
drug indications based on low-rank matrix approximation and
randomized algorithms (Luo et al., 2018). Wang et al. proposed a
projection onto convex sets (Wang et al., 2019) to relocate the
functions of drugs. Weight graph regularized matrix factorization
was also used in drug response prediction (Guan et al., 2019). Wu
et al. usedmeta paths and singular value decomposition to predict
drug–disease associations (Wu et al., 2019). Yang et al. used a
bounded nuclear norm regularization (BNNR) method to
complete the drug–disease matrix (Yang et al., 2019). An
improved drug repositioning approach using Bayesian
inductive matrix completion also was proposed (Zhang W.
et al., 2020). Meng et al. used the similarity-constrained
probabilistic matrix factorization for drug repositioning and
applied it to COVID-19 (Meng et al., 2021). However, these
matrix-based methods did not take the biochemical properties of
drugs and diseases into consideration.

With the widespread application of artificial intelligence
technology, more and more machine learning and deep
learning methods are also applied to drug development and
other fields of bioinformatics. Regularized kernel classifier was
proposed to predict new drug–disease associations (Lu and Yu,
2018). Madhukar et al. used a Bayesian machine learning
approach to identify drug targets with diverse data types
(Madhukar et al., 2019). Huang et al. proposed a network
embedding-based method CMFMTL for predicting

drug–disease associations. CMFMTL handled the problem as
multi-task learning where each task is to predict one type of
association, and two tasks complement and improve each other
by capturing the relatedness between them (Huang et al., 2020).
Zhu et al. constructed a drug knowledge graph for drug
repurposingand transformed information in the drug
knowledge graph into valuable inputs to allow machine
learning models to predict drug repurposing candidates (Zhu
et al., 2020). Zeng et al. developed a network-based deep learning
approach, termed deepDR (Zeng et al., 2019), for in silico drug
repurposing. Li et al. used molecular structures and clinical
symptoms via a deep convolutional neural network to identify
drug–disease associations (Li Z et al., 2019). A network
embedding method called NEDD (Zhou et al., 2020) was
proposed to predict novel associations between drugs and
diseases using meta paths of different lengths.

Graph convolutional network (GCN) methods have also been
further used in the field of medicine. A layer attention graph
convolutional network (LAGCN) (Yu et al., 2020) was also used
by fusing heterogeneous information to the GCN. They
introduced a layer attention mechanism to combine
embeddings from multiple graph convolution layers for
further improving the prediction performance (Cai et al.,
2021). Wang et al. also proposed a global graph feature
learning method to predict associations (Wang et al., 2022).
Meta path-based methods such as metapath2vec and meta-
structure have also been developed (Zhang Y. et al., 2020; Lei
et al., 2021). Algorithms based on graph neural networks (GNNs)
or graph embeddings consider both biochemical characteristics
and network interactions, but they often have high time
complexity and do not consider the characteristic of drug
clusters or combination drugs. At the same time, when
extracting features of drug–disease associations, a large
number of methods only directly connect drug features and
disease features without considering the influence of different
features. The feature representation of association needs to be
improved.

While existing methods cannot accurately predict the
potential drug–disease associations, and the network is often
unchangeable after model training, we proposed a drug
repositioning method DRGCC based on network clustering
constraints and GraphSAGE. First, we extracted the molecular
structure features of drugs and the symptom features of diseases
as the biological attribute features. After that, we used the
associations between drugs and genes, as well as the
relationships between diseases and genes, to reconstruct a
drug–drug interaction network and establish a disease
similarity network. The third step was to use a clustering
algorithm to divide the two networks into some clusters. The
network clustering features of drugs and diseases were obtained
by matrix factorization with the divided cluster set as a condition
constraint, respectively. Finally, we built two GraphSAGEmodels
based on drug and disease networks and fed the attributes and
clustering features of drugs and diseases to the two models,
respectively, to obtain the potential treatment probability of
the existing drugs for the diseases. The method was applied to
the prediction of anti-COVID-19 drugs, and some case studies
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FIGURE 1 | Schematic diagrams of data processing and DRGCCmodel. 1) Reconstruct the drug interaction network and establish the disease similarity network,
2) extract the attributes feature of drugs and diseases, 3) obtain network clustering features of drugs and diseases, and 4) construct the GraphSAGE prediction model to
predict potential drug–disease relationships.
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were conducted. The framework of the method DRGCC is shown
in Figure 1. The main contributions of this work are summarized
as the following two points: 1) DRGCC integrates the clustering
features of networks, which can effectively improve the prediction
accuracy of drug–disease associations. 2) DRGCC can embed new
nodes in the existing network and predict their associations. In
addition, DRGCC is complementary to existing experimental
methods to enable rapid and accurate discovery of drug
candidates for anti-COVID-19 and other emerging viral
infectious diseases.

MATERIALS AND METHOD

In this section, we introduce the database used in the study and
how they were processed. The known associations of drug and
disease were obtained. The drug–drug interaction network was
reconstructed. The disease similarity network was calculated.
Their attribute features and network features were also
extracted. The purpose of our study is to predict potential
associations from known drug–disease associations, which can
be formulated as a classification problem. Therefore, we
developed a GNN model based on GraphSAGE, which takes
the obtained drug and disease attribute features and clustering
features as input, and outputs the possibility of potential
relationships between them.

Known Associations of Drugs and Diseases
Known drug and disease relationship data can be obtained
from the Comparative Toxicogenomics Database (CTD)
(Davis et al., 2021). CTD is a publicly available database
that aims to advance understanding of how environmental
exposures affect human health. It provides manually curated
information about drug compound–gene/protein interactions,
drug compound–disease, and gene–disease relationships. We
first screened 36,392 drug–disease associations marked with
therapeutic relationships in CTD (version 2021.2.26). They
corresponded to 6,699 drugs and 2,472 diseases. In order to
make it more focused and easier to verify the method later, we
extracted drugs with more than 10 disease treatment effects
and diseases that are affected by more than 10 drugs. We made
the corresponding PubChem Compound ID (CID) and
PubChem Substance ID (SID) (Kim et al., 2021) for each
drug compound. In the end, we extracted 780 drugs, 717
diseases, and 17,594 therapeutic associations. The known
drug–disease association matrix is marked as Y, if drug i
has a therapeutic effect on disease j, then Yij = 1; otherwise,
it is 0. In addition, we also considered the relational database of
viruses and drugs, HDVD (Meng et al., 2021), which includes

34 viruses, 219 drugs, and 455 human drug–virus interactions.
In the HDVD database, SARS-CoV-2, which has recently
attracted much attention, is included. The statistics of the
two datasets are shown in Table 1.

Reconstruction of Drug–Drug Interaction
Network
In daily life, we have known for a long time that there are
interactions between drugs and drugs. Some combinations of
drugs can promote the cure of diseases. The interactions
between drugs can also provide the basis for feature
extraction and fusion of drugs. DrugBank (Wishart et al.,
2018) provides us with a large number of drug–drug
interactions (DDIs). We found 2,669,764 interactions in the
database. We denote the drug–drug interaction matrix by
MDDI. Due to the non-correspondence of IDs, only 489 of
the 780 drugs were mapped to DrugBank. There are 56,439
interactions among 489 drugs. Therefore, we aimed to use
other biological properties of drugs to infer possible
associations between drugs. The clinical relevance of
drug–drug interactions also depends on the patient’s genetic
profile. Drug–drug–gene and drug–gene–gene interactions
affect the therapeutic properties of drugs (Hahn and Roll,
2021). A method for calculating drug similarity using
drug–gene associations was proposed by Groza et al. (2021).
Inspired by these studies, we aimed to use the drug–gene
relationship to complement the existing drug interactions.
The CTD also provides the relationships between drug
compounds and genes. We obtained 383,525 drug–gene
relationships from it. They covered 768 drugs and 34,184
genes. We denote the drug–gene association matrix by
Mdrug−gene; if drug i has an association with gene j, then
Mdrug−geneij = 1; otherwise, it is 0. The reconstructed
drug–drug interaction (RDDI) matrix MRDDI is calculated
as follows:

MRDDIij �
⎧⎪⎪⎨⎪⎪⎩

MDDIij if MDDIij ≠ 0,∣∣∣∣Mdrug−genei, ∩ Mdrug−genej,
∣∣∣∣∣∣∣∣Mdrug−genei, ∪ Mdrug−genej,
∣∣∣∣ if MDDIij � 0.

(1)

These associated genes often encode target proteins, and thus,
we considered the relationship between drugs and target proteins,
making the drug interaction network more complete.

Construction of Disease Similarity Network
There are also similarities between diseases, and a large number of
calculation methods for disease similarity have been developed in
the literature. In studying the relationship between miRNAs and
diseases, Cui et al. successively developed two versions of the
method (Wang et al., 2010) (Li J. et al., 2019), both of which
applied disease semantic similarity. All the denominations of
diseases were in accordance with the MeSH (Yu, 2018) database
(https://www.nlm.nih.gov/mesh/meshhome.html). Finally, we
obtained the semantic similarity matrix MDS of diseases
according to the method of Wang et al. (2010). Different from

TABLE 1 | Statistics of pre-processed CTD and HDVD database.

Dataset Drugs Diseases/viruses Known associations Density

CTD 780 717 17594 0.0315
HDVD 219 34 455 0.0611
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the method in Disease Ontology (Schriml et al., 2019) that only
builds an overall semantic tree, MESH divides diseases into 17
subcategories or sub-trees, so there are null values in the
calculated disease similarity for some different subcategory
diseases. Previous work has shown elucidating disease and
gene associations (Li et al., 2021). Similar to reconstructing the
MRDDI, we use disease–gene relationship to reconstruct the
disease similarity network. The CTD contains 13,775,363
disease–gene relationships, which cover 715 diseases and
50,827 genes. The disease–gene association matrix is denoted
by Mdis−gene. If disease i is related to gene j, then Mdis−geneij = 1;
otherwise, it is 0. The reconstructed disease similarity matrix
MRDS is calculated as follows:

MRDSij �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

MDSij if MDSij ≠ 0,

∑Ngene

k�1

Mdis−geneikM
T
dis−genekj

∑Ngene

p�1 Mdis−geneip∑Ngene

q�1 MT
dis−geneqj

if MDSij � 0,

(2)
where Ngene is the number of all genes.

Processing of Attribute Features
The attribute features of drugs can be described by their
structures. The PubChem system generates a binary
substructure fingerprint for chemical structures. These
fingerprints are used by PubChem for similarity neighboring
and similarity searching (Kim et al., 2021). The structure of a drug
can be described by 881 substructures, and a substructure is a
fragment of a chemical structure. The fingerprint is an ordered
list of binary bits (0/1). A Boolean value for each bit determines or
tests the presence of a chemical structure. Binary data are stored
in one-byte increments. Therefore, the length of the fingerprint is
111 bytes (888 bits), which include padding 7 bits at the end to
complete the last byte. The four-byte prefix including the
fingerprint bit length (881 bits) increases the size of the stored
PubChem fingerprint to 115 bytes (920 bits). To learn
embeddings of drugs, we also used latent semantic analysis
(Deerwester et al., 1990). Let Nsub denote the number of
substructures generated from all drugs. We employ a matrix
Mdrug−sub ∈ RNdrug×Nsub , and Mdrug−sub is defined as follows:

Mdrug−subij � tf(i, j) · idf(Ndrug, j), (3)
where tf(i, j) stands for the strength of the i-th drug having j-th
substructure. If substructure j appears in drug i, then tf(i, j) = 1/
Nsubi; otherwise, it is 0. Nsubi is the number of substructures in
drug i.

idf(Ndrug, j) � log
Ndrug∣∣∣∣{i ∈ drug: tf(i, j) ≠ 0}∣∣∣∣. (4)

idf (Ndrug, j) results in lower weights for more common
substructures and higher weights for less common
substructures. This is consistent with an observation in the
information theory that rarer events generally have higher
entropy and are thus more informative. Then, the matrix
Mdrug−sub was decomposed by singular value decomposition

(SVD) into three matrices R, Σ, andQ, such that
Mdrug−sub � RΣQ. Σ ∈ RNdrug×Nsub is a diagonal matrix with the
eigenvalues of Mdrug−sub, and R is an Ndrug × Ndrug matrix in
which each column is an eigenvector R.j of Mdrug−sub
corresponding to the eigenvalue Σjj. Afterward, in order to
embed the features into the low-dimensional space Rddrug , we
extracted the feature vectors corresponding to the top ddrug
largest singular values to form a new drug attribute feature
matrix Fdrug.

Similar to drug attribute feature extraction, disease attribute
features are also extracted. Diseases are often accompanied by a
large number of symptoms when they occur. Zhou et al.
established a disease–symptom network when studying the
commonalities between diseases (Zhou et al., 2014). They gave
322 common symptoms for each disease, established a
disease–symptom relationship matrix, and also used the term
frequency-inverse document frequency method to weight. After
that, we also used the SVD method to obtain a disease feature
matrix Fdis in Rddis space. The feature vectors corresponding to
the top ddis largest singular values form the disease attribute
feature matrix Fdis.

Extraction of Network Clustering Feature
In the previous section, we have obtained attribute features
of drugs and diseases. However, the network features
between drugs and diseases were not involved. On the
other hand, numerous studies have confirmed the
modularity that exists between biomolecules (Ni et al.,
2020) (Groza et al., 2021). Matrix factorization, as a
commonly used low-rank matrix approximation method,
can achieve the goal by adding expectation constraints.
Therefore, we aimed to use the matrix factorization
method to measure the features of the relationship
between drugs and diseases and consider the modularity
of drugs and diseases. Two constraints were added to matrix
factorization, one is sparsity and the other is clustering
constraints. For sparsity, it is desirable to obtain a basis
matrix with fewer parameters and be able to restore the
original associations. It can be written as follows:

min J(U,V) � min
U,V

{1 − 2α
2

‖P ⊙ (Y − UV)‖2F +
α

2
‖U‖2F +

α

2
‖V‖2F},

(5)
where U ∈ RNdrug×k, V ∈ Rk×Ndis are the feature matrices of drugs
and diseases, k can be used as the embedded feature dimension,
and P is the observation matrix. In this matrix, the elements
corresponding to positive and negative samples are marked as 1,
and the other elements are 0. ⊙ is the Hadamard product. For
clustering attributes, we first need to cluster nodes in the drug
network and disease network. MCODE (Bader and Hogue, 2003)
is a very mature network clustering method, which has been
widely used in a variety of network analyses. We used it to cluster
the reconstructed drug–drug interaction network and disease
similarity network. When extracting features for drug and
disease networks, the embedded features should satisfy the
property that drugs or diseases of different clusters have
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greater distinguishability. Using Euclidean distance as the
measure function of similarity between features, the matrix
factorization subject to clustering constraints can be written as
follows:

min J(U,V) � min
U,V

⎧⎨⎩1 − 2α − 2β
2

‖P ⊙ (Y − UV)‖2F +
α

2
‖U‖2F

− β

2
∑cdrug
i�1

����� �U(i) − �Uall

�����
2

2

+ α

2
‖V‖2F

− β

2
∑cdis
i�1

����� �V(i) − �Vall

�����
2

2

⎫⎬⎭, (6)

where cdrug and cdisease are the cluster number of drugs and
diseases, respectively; �U(i)( �V(i)) denotes the average vector of the
drug (disease) feature vectors in the i-th cluster; �Uall, ( �Vall) is the
average vector of all drug (disease) feature vectors; and α and β are
control parameters. We set si (s’i) to the node number of i-th drug
(disease) cluster, Ndrug � s1 + s2 + . . . + scdrug, and

Ndis � s1′ + s2′ + . . . + scdis
′. To facilitate the solution, let A(i)

drug �
[1si, 1si, . . . , 1si]1×si and A(i)

dis � [1
s’i
, 1
s’i
, . . . , 1

s’i
]T
s’i × 1

, so the average of

the feature values of i-th cluster samples can be calculated as
follows:

�U(i) � A(i)
drug[U(i)(1), U(i)(2),/ , U(i)(si)]T

�V(i) � [V(i)(1), V(i)(2),/ , V(i)(s′i)]A(i)
dis,

(7)

where U(i)(x)(V(i)(x)) is the x-th feature vector of i-th drug
(disease) cluster. The matrix formed by the average vector of all
clusters can be represented by

�U � [ �U(1), �U(2), ..., �U(cdrug)]T � AzdrugU

�V � [ �V(1), �V(2), ..., �V(cdis)] � VAzdis,
(8)

where

Azdrug �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A(1)

drug

A(2)
drug

1

A(cdrug)drug

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cdrug×Ndrug

Azdis �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A(1)

dis

A(2)
dis

1
A(cdis)

dis

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ndis×cdis

. (9)

Then, we defined matrices Bdrug and Bdisease as follows:

Bdrug �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1/Ndrug 1/Ndrug / 1/Ndrug

1/Ndrug 1/Ndrug / 1/Ndrug

..

. ..
.

1 ..
.

1/Ndrug 1/Ndrug / 1/Ndrug

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cdrug×Ndrug

Bdis �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1/Ndis 1/Ndis / 1/Ndis

1/Ndis 1/Ndis / 1/Ndis

..

. ..
.

1 ..
.

1/Ndis 1/Ndis / 1/Ndis

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ndis×cdis

. (10)

�Uall, ( �Vall) can be written in the following matrix form:

[ �Uall, �Uall, ..., �Uall]Tcdrug × k � BdrugU[ �Vall, �Vall, ..., �Vall]k×cdis � VBdis.
(11)

Therefore, the constraint term of clustering can be expressed
by formula (12):

∑cdrug
i�1

����� �U(i) − �Uall

�����22� tr((AzdrugU − BdrugU)(AzdrugU − BdrugU)T)
∑cdis
i�1

����� �V(i) − �Vall

�����22� tr((VAzdis − VBdis)T(VAzdis − VBdis)).
(12)

As a result, the constraint matrix factorization in formula (6)
has been transformed into

J(U,V) � 1 − 2α − 2β
2

tr((PT ⊙ YT)(P ⊙ Y))
− (1 − 2α − 2β)tr((P ⊙ (UV))(PT ⊙ YT))
+ 1 − 2α − 2β

2
tr(P ⊙ (UV)(PT ⊙ (VTUT)))

+ α

2
tr(UUT) + α

2
tr(VVT) − β

2
tr(AzdrugUU

TAT
zdrug

)
+ βtr(AzdrugUU

TBT
drug) − β

2
tr(BdrugUU

TBT
drug)

− β

2
tr(AT

zdis
VTVAzdis) + βtr(AT

zdis
VTVBdis)

− β

2
tr(BT

disV
TVBdis).

(13)
The partial derivatives of J(U, V) with respect to U and V are

calculated as follows:

zJ(U,V)
z(U) � −(1 − 2α − 2β)(P ⊙ Y)VT + (1 − 2α − 2β)(P ⊙ (UV))VT + αU

− βAT
zdrug

AzdrugU + βBT
drugAzdrugU − βBT

drugBdrugU + βAT
zdrug

BdrugU,

zJ(U,V)
z(V) � −(1 − 2α − 2β)UT(P ⊙ Y) + (1 − 2α − 2β)UT(P ⊙ (UV)) + αV

− βVAzdisA
T
zdis

+ βVBdisA
T
zdis

+ βVAzdisB
T
dis − βVBdisB

T
dis .

(14)

After the initialU and V are randomly given, solution is solved
as per the following iterative rules until the stopping condition is
met. Drug network clustering feature U and disease network
clustering feature V are obtained.
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Uij ← Uij

((1 − 2α − 2β)(P ⊙ Y)VT + βAT
zdrug

AzdrugU + βBT
drugBdrugU)

ij

((1 − 2α − 2β)(P ⊙ (UV))VT + αU + β(BT
drugAzdrug + AT

zdrug
Bdrug)U)

ij

,

Vij ← Vij

((1 − 2α − 2β)UT(P ⊙ Y) + βVAzdisA
T
zdis

+ βVBdisB
T
dis)ij

((1 − 2α − 2β)UT(P ⊙ (UV)) + αV + βV(BdisA
T
zdis

+ AzdisB
T
dis))ij.

(15)

Drug Repositioning Using GraphSAGE
GraphSAGE (SAmple and aggreGatE) (Hamilton et al., 2017) is a
new graph convolutional neural (GCN) (Defferrard et al., 2016)
model proposed, which has two improvements to the original
GCN. On the one hand, it used the strategy of sampling neighbors
to transform the GCN from a full graph training method to a
node-centric small batch training method, which made large-
scale data distributed training possible. On the other hand, the
algorithm extended the operation of aggregating neighbors. In
this study, we used the GraphSAGE model for the drug–drug
interaction network and disease similarity network, respectively,
to obtain their low dimensional embedding vectors and make
predictions through a simple neural network. The feature x of
each node v in these networks is marked as xv, vB, where B
denotes a batch sample set. In each iteration, only the nodes in the
batch set are trained. Assuming that the model has L layers when
sampling the nodes in the batch set, a top–down sampling
method is adopted. It collects nk nodes from each layer at a
time. Neighborhood sampling functions Hl of the l-th layer are
defined by sampling the nk most similar neighbors of the source
node B. Hl (v) represents the sampling set of nodes around the
node v of the l-th layer. The sampling process is from BL to B0

shown in the sampling section of Algorithm 1. Then we extract
the feature h0u of each node u in the B0 set as training features.
First, each node v aggregates the representations of the nodes in
its sampling neighborhood, {hl−1u , u ∈ Hl(v)} into a single vector
Hl

Hl(v). After aggregating the neighboring feature vectors,
GraphSAGE concatenates the node’s current representation,
hl−1v , with the aggregated neighborhood vector, Hl

Hl(v), and this
concatenated vector is fed to a fully connected layer with a
nonlinear activation function σ, which transforms the
representations to be used at the next step of the algorithm for
hlv. The embedding generation of a given drug node is shown in
the embedding section of Algorithm 1. The different aggregator
functions can be used in the aggregation steps:

Mean aggregator:

hlHl(v) ← mean({hl−1u , ∀u ∈ Hl(v)})
hlv ← σ(Wlconcat(hl−1v , hlHl(v)) + bl). (16)

MeanPool aggregator:

hlHl(v) ← mean({σ(Wlhl−1u + b),∀u ∈ Hl(v)})
hlv ← σ(Wlconcat(hl−1v , hlHl(v)) + bl). (17)

MaxPool aggregator:

hlHl(v) ← max({σ(Wlhl−1u + b),∀u ∈ Hl(v)})
hlv ← σ(Wlconcat(hl−1v , hlHl(v)) + bl). (18)

GCN aggregator:

hlv ← σ(Wlmean({hl−1v } ∪ {hl−1u , ∀u ∈ Hl(v)}) + bl). (19)
LSTM aggregator:

hlHl(v) ← LSTM(random order{hl−1u , ∀u ∈ Hl(v)})
hlv ← σ(Wlconcat(hl−1v , hlHl(v)) + bl), (20)

where Wl and bl are parameter matrix and bias of the l-th layer,
respectively. The final model outputs a low dimensional
embedding vector zv of node v. Since formula (19) is a linear
approximation of local spectral convolution, it is called a GCN
aggregator. It is important to note that LSTM is not inherently
symmetric because it processes inputs in a sequential manner.
GraphSAGE adopts LSTM to operate on an unordered set by
simply applying the LSTM to a random permutation. Unlike
GCN, GraphSAGE can perform batch sampling and save the
required neighbor features before the node feature aggregation
operation. After training, GraphSAGE can perform feature
embedding for newly added network nodes. In this way, the
network model is actually formed into a subnetwork model
according to the sampled nodes, which can increase the
learning speed of the model and is suitable for processing
larger samples. In this study, the relationship prediction of
two types of nodes is involved, and the number of samples is
Ndrug × Ndis, which is very large, so GraphSAGE has better
performance. The GraphSAGE minibatch forward propagation
is described in Algorithm 1.

Algorithm 1. GraphSAGE minibatch forward propagation in
drug–drug interaction or disease similarity network.

Specifically, we feed the drug attribute feature Fdrug and drug
network clustering feature U to the GraphSAGE to get the
embedded features zFdrug and zUdrug and feed the disease
attribute feature Fdis and disease network feature V to the
GraphSAGE to get the embedded features zFdis and zVdis. Then
we connected the drug embedding features with the disease
embedding features to obtain the association features, so as to
learn their low dimensional features and predict their
relationships. For example, to predict the association between
drug i and disease j, we connect zFdrug, zUdrug, zFdis and zVdis as
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concat (zFdrugi
, zUdrugi , z

F
disj

, zVdisj ), input it into a three-layer fully
connected network, and finally use the SoftMax function to find
its probability Pij.

Optimization
GraphSAGE can perform unsupervised learning (Xu et al., 2020),
but this objective function is completely based on the topological
properties of the network, ignoring the original features of the
nodes. If it is applied to this research, each training needs to use a
different network. Its essence can reflect the relationship of the
features between nodes very well, but it cannot predict the
relationship very well. Therefore, we still used the cross-
entropy function as the objective function. In order to prevent
the over-fitting problem, an L2-regularization is also adopted:

Loss � − ∑Ndrug

i�1
∑Ndis

j�1
(Yij log Pij + (1 − Yij)log(1 − Pij))

+ λ

N
∑L
l�1

∑
w∈Wl

w2, (21)

where Pij represents the associated probability of drug i and
disease j, Yij ∈ {0, 1} is the known associations, and
Ndrug(Ndis) is the drug (disease) sample size. Since no
negative samples are given in the two databases, extracting
reliable negative samples is also an important part of the
experiment. The usual operation is to randomly select the
same number of negative samples as positive samples from
unknown samples. But this will actually interfere with the
model learning, so we used the network double random walk
(Xie et al., 2012) method to determine the negative samples.
After the random walk, the same samples with the smallest
scores are regarded as negative samples.

EXPERIMENTAL RESULTS AND ANALYSIS

Based on previous works, we validate our method by answering
the following questions:

• Are the features we extracted valid, and can network
clustering features improve the performance of the method?

• Can DRGCC predict drug–disease associations with higher
accuracy?

• Can we verify that the predicted repositioning drugs are
effective, especially for COVID-19?

Experiment Setting
In our study, we used 5-fold cross-validation (5-fold CV) to
evaluate the prediction performance of DRGCC and other
competing methods. All samples were randomly divided into
five equal-sized parts, four parts of them were used as training
data, and the remaining one was used as test data. This process
was repeated 5 times, with each part of the data tested once, and
the average result of these 5 times was taken as the result of this
cross-validation. After that, the samples were randomly divided

again, cross-validation was also performed 5 times, and the results
were averaged. We mainly used seven metrics: area under the
receiver operating characteristic curve (AUC), area under the
precision and recall curve (PRAUC), F1_SCORE, ACCURACY,
SPECIFICITY, PRECISION, and RECALL (Yu et al., 2020), to
comprehensively evaluate the performance of the method. We
took the prediction threshold that maximizes the F1_SCORE and
built two-layer GraphSAGE models for drugs and diseases
separately. After further statistical analysis of drug and disease
features, we set some default parameters. The attribute feature
dimension ddrug of drugs was set to 300, while the attribute
feature dimension ddis of diseases was set to 100. The
network clustering feature dimension k was set to 200. In
GraphSAGE, the layer dimensions of drug attribute features
were {128, 64}, the layer dimensions of disease attribute
features were {64, 32}, and the layer dimensions of network
clustering features were {128, 32}. The number of epochs
was 30. The learning rate was 0.001. The value of λ in loss
function was 0.01. The layer dimensions of a fully connected
network were {64, 32, 2}. The dropout was set to 0.5. With
the MCODE (Bader and Hogue, 2003) algorithm, the drug
and disease (virus) networks in the CTD and HDVD
databases were split into 8, 14, and 15, 4 subnetworks,
respectively.

Parameter Sensitivity Analysis
In constraint matrix factorization, the regularization of
parameters α and β has an important influence on the
extraction of network clustering features. We tested all
possible combinations of α and β, as shown in Figure 2A.
We found that if α = 0.2, β = 0.1, the method has the best AUC
value on the CTD dataset. At the same time, since the
DRGCC is sampled and trained in batches, the size of the
batch is particularly important. If the batch is too small, it will
be difficult to converge. If the batch is too large, it demands a
large amount of computation. We tested the effect of different
batch_size on the method, as shown in Figure 2B. The
method has the best performance when the batch_size is
equal to 128.

For the GraphSAGE, there are a total of five different
aggregation methods. We performed comparisons on dataset
CTD and dataset HDVD, respectively. We can find that the
performance of the aggregation methods based on mean,
meanPool, and maxPool are similar in Figure 3 and are
significantly higher than that of the aggregation based on the
LSTM and GCN. This may illustrate that structural features
between drugs and symptom features between diseases can be
fused using linear methods. Finally, we used the mean method as
the aggregation method of the DRGCC.

We also evaluated the sampling number of network
neighbors. Similar to Cui et al. (2021), we tested 4 cases,
where nk is {3, 5, 10, 15} and finally determined that it is
better to take the nearest 5 neighbor nodes as aggregation
nodes. Figure 4 shows the distribution of AUC values for a
total of 25 times in 5 cross-validations. This test is run on the
HDVD network because it is sparser, and the test on the CTD
dataset has a similar effect.
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Effectiveness of Network Clustering
Features
To answer the first question of the experiment, we conduct
ablation experiments using only attribute features
DRGCC_Attribute and only network clustering features
DRGCC_Cluster for prediction, respectively. Table 2 shows
that the model with clustering features is slightly higher than
the model with only attribute features, and the fusion of the
two features has a prominent effect on the CTD database. In
Figure 5, the ROC curve of a 5-fold cross-validation is
depicted. The average of 5 times is also calculated. It is
clear that the performance of applying two features to
DRGCC at the same time is better than using a single one,
and the AUC is as high as 0.9809. The network clustering
feature has a better effect on improving the performance of the
method.

Comparative Analysis With Other Methods
To answer the second question of the experiment, we compared
DRGCC with six state-of-the-art drug repositioning methods in
this section, such as MBiRW (Luo et al., 2016), DRRS (Luo et al.,
2018), BNNR (Zhang W. et al., 2020), SCPMFDR (Meng et al.,
2021), NIMCGCN (Li et al., 2020), and LAGCN (Yu et al., 2020)
on CTD and HDVD datasets. These methods are mainly divided
into three categories: methods based on network propagation,
methods based on low-rank matrix approximation, and methods
based on the GNN.

• MBiRW (Luo et al., 2016) integrates drug or disease feature
information with known drug–disease associations, and the
comprehensive similarity measures are developed to calculate
similarity for drugs and diseases. They are incorporated into a
heterogeneous network with known drug–disease

FIGURE 2 | Parametric analysis, (A) effects α and β on prediction accuracy, and (B) effect of batch size.

FIGURE 3 | Impact of different aggregation methods on performance. (A) Performance of different aggregation methods on the CTD dataset; (B) Performance of
different aggregation methods on the HDVD dataset.
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interactions. Based on the drug–disease heterogeneous
network, the bi-random walk (BiRW) algorithm is used to
identify potential novel indications for a given drug.

• DRRS (Luo et al., 2018) is a matrix completion-based
recommendation system on a drug–disease heterogeneous
network to predict drug–disease associations.

• BNNR (Zhang W. et al., 2020) is a bounded nuclear norm
regularization method to complete a drug–disease
heterogeneous network.

• SCPMFDR (Meng et al., 2021) is implemented on an
adjacency matrix of a heterogeneous drug–virus network,
which integrates the known drug–virus interactions, drug
chemical structures, and virus genomic sequences. SCPMF
projects the drug–virus interactions matrix into two latent
feature matrices for the drugs and viruses, which reconstruct
the drug–virus interactions matrix when multiplied together,
and then introduces similarity constrained probabilistic matrix
factorization to predict associations.

• NIMCGCN (Li et al., 2020) use GCNs to learn latent feature
representations of miRNA and disease from the similarity
networks and then put the learned features into a neural
inductive matrix completion model to obtain a
reconstructed association matrix. NIMCGCN is a GCN-
based method proposed for the miRNA–disease association
prediction, and we adopt it as the baseline method for the
drug–disease association.

• LAGCN (Yu et al., 2020) integrates the known drug–disease
associations, drug–drug similarities, and disease–disease
similarities into a heterogeneous network and applies the
graph convolution operation to the network to learn the
embeddings of drugs and diseases. It combines the
embeddings from multiple graph convolution layers
using the attention mechanism.

In Table 3, the results show that our method outperforms
other methods on all 7 metrics for the CTD database. In large
networks, only considering the relationship between nodes in the
network and ignoring the biochemical properties of the nodes
themselves have poor prediction performance. For the drug–virus
prediction, disease similarity networks based on amino acid
sequences and structure-based on drug similarity networks
have been provided in HDVD. Since there are no features of
viruses in the original dataset, we used DRGCC_cluster for the
prediction problem. The prediction results are slightly lower than
the results on the CTD due to a large number of unknown
relationships and the inclusion of the new virus COVID-19, as
shown in Table 4. Except for the RECALL, the other evaluation
values are the highest. The AUC reaches 0.9222, and the PRAUC
reaches 0.9458. It can be seen that DRGCC has excellent
performance.

Case Studies
To answer the third question of the experiment, we presented
an analysis of the predicted repositioned drugs. The top 10
predicted drug–disease relationships were extracted, as shown
in Table 5. Among the top 10 prediction results, we can find
corroborations or explanations for 6 predictions from other
studies. Early evidence in rats suggested that acetazolamide
may inhibit sodium and water transport in the ileum in
addition to inhibiting bicarbonate secretion (Sladen, 1973).
It may have an influence on duodenal ulcer treatment.
Rimonabant was shown to be safe and effective in treating
the combined cardiovascular risk factors of smoking and
obesity (Cleland et al., 2004). Hypoosmolar hyponatremia
occurs in conditions of plasma volume depletion such as
cirrhosis and heart failure and syndromes of inappropriate
antidiuretic hormone secretion. Conventional proposals for
euvolemic and hypervolemic hyponatremia consist of lithium
carbonate (Gross, 2008). Peyrani et al. believed that
therapeutics beyond antibiotics (e.g., heparin or aspirin)
may be indicated during and after hospitalization for the
patients with community-acquired pneumonia (Peyrani and
Ramirez 2013). Newer antiemetic with prokinetic properties
(cisapride) have also been introduced in the management of

FIGURE 4 | Effect of the number nk of neighbor samples on
performance.

TABLE 2 | Comparison of different features on prediction performance.

Method AUC PRAUC F1_SCORE ACCURACY SPECIFICITY PRECISION RECALL

DRGCC_Attribute 0.9327 ± 0.0463 0.9379 ± 0.0467 0.9267 ± 0.0278 0.9141 ± 0.0442 0.8893 ± 0.0950 0.9283 ± 0.0459 0.9390 ± 0.0066
DRGCC_Cluster 0.9418 ± 0.0478 0.9477 ± 0.048 0.9430 ± 0.0295 0.9303 ± 0.0459 0.9083 ± 0.0964 0.9477 ± 0.0476 0.9524 ± 0.0050
DRGCC 0.9809 ± 0.0005 0.9871 ± 0.0003 0.9661 ± 0.0006 0.9668 ± 0.0006 0.9866 ± 0.0020 0.9861 ± 0.0020 0.9470 ± 0.0008
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gastrointestinal motility disturbances and inflammatory bowel
diseases. Some benzodiazepines have been shown to be
effective in treating certain anxiety disorders (Swedish
Council on Health Technology Assessment, 2005).

The novel coronavirus disease 2019 (COVID-19)
pandemic has triggered a massive health crisis and
upended economies across the globe. However, the
research and development of traditional medicines for the
new coronavirus is very expensive in terms of time,
manpower, and funds. Drug repurposing emerged as a
promising therapeutic strategy during the COVID-19 virus
crisis. We also predicted the top 10 possible drugs for anti-
COVID-19, as shown in Table 6. Excitingly, seven of them
have been reported by medical researchers, such as,
triazavirin is a guanine nucleotide analog antiviral that has
shown efficacy against influenza A and B, including the H5N1
strain. Given the similarities between SARS-CoV-2 and
H5N1, health scientists are investigating triazavirin as an
option to combat COVID-19 (Shahab and Sheikhi, 2021)

TABLE 3 | Performance of comparison methods on CTD dataset.

Method AUC PRAUC F1_SCORE ACCURACY SPECIFICITY PRECISION RECALL

MbiRW 0.8524±0.0006 0.8487±0.0004 0.7880±0.0016 0.7730±0.0026 0.7025±0.0086 0.7395±0.0047 0.8435±0.0046
DRRS 0.9647±0.0006 0.9655±0.0005 0.9020±0.0009 0.9010±0.0012 0.8909±0.0065 0.8933±0.0053 0.9111±0.0045
BNNR 0.9302±0.0007 0.9479±0.0004 0.8748±0.0012 0.8790±0.0009 0.9120±0.0052 0.9060±0.0045 0.8459±0.0055
SCPMFDR 0.9667±0.0003 0.9734±0.0002 0.9101±0.0011 0.9118±0.0011 0.9304±0.0036 0.9279±0.0032 0.8932±0.0029
NIMCGCN 0.7989±0.0130 0.7311±0.0221 0.8172±0.0081 0.7984±0.0093 0.71780±0.0194 0.7727±0.0173 0.8789±0.0054
LAGCN 0.9259±0.0044 0.7939±0.0054 0.8055±0.0052 0.8843±0.0035 0.8993±0.0091 0.7825±0.0061 0.8314±0.0119
DRGCC 0.9809±0.0005 0.9871±0.0003 0.9661±0.0006 0.9668±0.0006 0.9866±0.0020 0.9861±0.0020 0.9470±0.0008

TABLE 4 | Performance of comparison methods on HDVD dataset.

Method AUC PRAUC F1_SCORE ACCURACY SPECIFICITY PRECISION RECALL

MBiRW 0.9113±0.0059 0.9237±0.0052 0.8580±0.0061 0.8541±0.0070 0.8312±0.0149 0.8431±0.0119 0.8769±0.0084
DRRS 0.8936±0.0030 0.92539±0.0021 0.85451±0.0055 0.8664±0.0044 0.9477±0.0117 0.9439±0.0099 0.7851±0.0117
BNNR 0.9088±0.0086 0.93075±0.0062 0.8530±0.0103 0.8580±0.01120 0.8901±0.02428 0.8878±0.0202 0.8260±0.0174
SCPMFDR 0.8655±0.0073 0.8813±0.0064 0.8311±0.0089 0.8325±0.0082 0.8400 ±0.01992 0.8397±0.0141 0.8251±0.0194
NIMCGCN 0.6002±0.0103 0.5922±0.0108 0.7074±0.0034 0.6062±0.0125 0.2686±0.0448 0.5721±0.0167 0.9438±0.0202
LAGCN 0.7433±0.0164 0.5307±0.0097 0.6048±0.0060 0.6989±0.0165 0.6284±0.03212 0.4878±0.0156 0.8105±0.0315
DRGCC 0.9222±0.0080 0.9458±0.0042 0.8863±0.0052 0.8938±0.0048 0.9582±0.0171 0.9548±0.0166 0.8295±0.0165

TABLE 5 | Top 10 repositioned drugs predicted by the DRGCC.

Rank Drug name Disease name Evidence (PMID)

1 Acetazolamide Duodenal ulcer 4360063, Sladen (1973)
2 Salinomycin Stroke NA
3 Rimonabant Heart failure 15182777, Cleland et al. (2004)
4 Lithium carbonate Liver cirrhosis and biliary cirrhosis 18480571, Gross (2008)
5 Acetylcarnitine Hematologic neoplasms NA
6 Heparin Community-acquired infections 23398875, Peyrani and Ramirez (2013)
7 Icariin Sialorrhea NA
8 Cisapride Inflammatory bowel diseases 1974182, Lauritsen et al. (1990)
9 Moxifloxacin Insulin resistance NA
10 Benzodiazepines Stress disorders, post-traumatic 28876726, Swedish Council on Health Technology Assessment (2005)

FIGURE 5 | ROC and AUC comparison of DRGCC with different
features.
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(Valiulin et al., 2021). Aspergillus-producing diseases range
from allergic syndromes to chronic lung disease and invasive
infections and are frequently observed following COVID-19
infection. Posaconazole has better efficacy with less toxicity
for extensive infection and severe immunosuppression
(Cadena et al., 2021). In the reports on possible drugs for
COVID-19, Uddin et al. mentioned that mefloquine may be
one of the options (Uddin et al., 2021). In the research of
Solanich et al., methylprednisolone and tacrolimus were
considered that might be beneficial to treat those COVID-
19 patients progressing into severe pulmonary failure and
systemic hyperinflammatory syndrome (Solanich et al.,

2021). Molnupiravir (EIDD-2801) was originally designed
for the treatment of alphavirus infections. Painter et al.
described its evolution into a potential drug for the
prevention and treatment of COVID-19 (Painter et al.,
2021). Umifenovir was deemed one of the most hopeful
antiviral agents for improving the health of COVID-19
patients (Trivedi et al., 2020). The studies of Lai et al.
showed that the use of mycophenolic acid might be a
strategy to reduce viral replication (Lai et al., 2020).

In addition, we also analyzed the docking state of
unverifiable drugs and receptors. Angiotensin-converting
enzyme 2 (ACE2) was considered an important functional

TABLE 6 | Top 10 possible anti-COVID-19 drugs predicted by the DRGCC.

Rank Accession number Drug name 2D structure Evidence (PMID)

1 DB15622 Triazavirin 32436829, Shahab and Sheikhi (2021)
33249050, Valiulin et al. (2021)

2 DB01263 Posaconazole 34016284, Cadena et al. (2021)

3 DB00358 Mefloquine 34126913, Uddin et al. (2021)

4 DB00864 Tacrolimus 33495742, Solanich et al. (2021)

5 DB15661 EIDD-2801 34271264, Painter et al. (2021)

6 DB01601 Lopinavir NA

7 DB13609 Umifenovir 33336780, Trivedi et al. (2020)

8 DB11758 Cenicriviroc NA

9 DB01024 Mycophenolic acid 32639598, Lai et al. (2020)

10 DB00822 Disulfiram NA
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receptor for SARS and other coronaviruses (Li et al., 2003).
Like SARS-CoV, SARS-CoV-2 infects human respiratory
epithelial cells through invasion mediated by human cell
surface s-protein and ACE2 protein receptors. Obstructing
the combination of ACE2 and the virus has become one of the
effective means to prevent the respiratory infection of the
crown virus. The molecular docking technology allows us to
clearly determine the binding sites and bond strengths between
molecules (Meng et al., 2011). We examined the binding of 4
drug compounds triazavirin, posaconazole, lopinavir, and
cenicriviroc to the receptor protein ACE2. As shown in
Figure 6, triazavirin and ACE2 have 4 hydrogen bonds
bound to amino acids ILE and ASP, respectively. Lopinavir
has 2 hydrogen bonds bound to amino acid ARG in ACE2.
Posaconazole and cenicriviroc also have binding sites to ACE2.
It can be seen that only one of the 3 unreported drugs has not
been corroborated. It can be seen that these drugs may provide
some help in the treatment of COVID-19.

CONCLUSION

In this article, we have proposed a drug repositioning method
DRGCC to predict potential relationships between existing
drugs and new diseases. The method first reconstructed the
drug–drug interaction network, established the disease

semantic similarity network, then extracted the structural
features of drugs and disease symptoms as attribute
features, and obtained network clustering features through
matrix factorization. Finally, all features were fed to the
GraphSAGE model to obtain predictions of drug–disease
associations. With experiments testing on two datasets, it is
found that our method has better performance than other
competing methods. Experiments also demonstrated the
importance of network clustering features for accurate
prediction. At the same time, DRGCC is suitable for
training and predicting large-scale samples and can add
new nodes to the network after training, such as the SARS-
CoV-2 virus. After analyzing the predicted repositioning
drugs, we gave several possible drug treatment
combinations and recommended several anti-COVID-19
drugs. These predictions have been supported or discussed
by other studies. It can be seen that DRGCC has certain
reliability in drug repositioning studies.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These data
can be found here: http://ctdbase.org/; https://github.com/
luckymengmeng/HDVD; https://go.drugbank.com/; https://
pubchem.ncbi.nlm.nih.gov/.

FIGURE 6 | Ligand–protein binding mode between the predicted drugs and the protein receptor ACE2. The purple part is the protein ACE2, the blue part is the
drug compound, the yellow part is the amino acid residue, and the orange dotted line is the connecting hydrogen bond. The numbers represent atomic distances.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 87278513

Zhang et al. DRGCC: Drug Repositioning

http://ctdbase.org/
https://github.com/luckymengmeng/HDVD
https://github.com/luckymengmeng/HDVD
https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


AUTHOR CONTRIBUTIONS

YZ and XL proposed the concept and idea; YZ implemented the
algorithm and wrote the draft manuscript; F-XW provided the
method improvement strategy; XL, F-XW, and YP evaluated the
results and revised the manuscript; and YP and F-XW supervised
the whole study. All authors read and approved the final
manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (61972451, 61902230); the Shenzhen Science
and Technology Program (No. KQTD20200820113106007); the
Fundamental Research Funds for the Central Universities, Shaanxi
Normal University (2018TS079); and the program of China
Scholarships Council (No. 202006870037).

REFERENCES

Bader, G. D., and Hogue, C. W. (2003). An Automated Method for Finding
Molecular Complexes in Large Protein Interaction Networks. BMC
Bioinformatics 4, 2. doi:10.1186/1471-2105-4-2

Bader, S., Kühner, S., and Gavin, A. C. (2008). Interaction Networks for Systems
Biology. FEBS Lett. 582, 1220–1224. doi:10.1016/j.febslet.2008.02.015

Booth, B., and Zemmel, R. (2004). Prospects for Productivity. Nat. Rev. Drug
Discov. 3, 451–456. doi:10.1038/nrd1384

Cadena, J., Thompson, G. R., 3rd, and Patterson, T. F. (2021). Aspergillosis:
Epidemiology, Diagnosis, and Treatment. Infect. Dis. Clin. North. Am. 35,
415–434. doi:10.1016/j.idc.2021.03.008

Cai, L., Lu, C., Xu, J., Meng, Y., Wang, P., Fu, X., et al. (2021). Drug
Repositioning Based on the Heterogeneous Information Fusion Graph
Convolutional Network. Brief Bioinform 22, bbab319. doi:10.1093/bib/
bbab319

Cheng, F., Lu, W., Liu, C., Fang, J., Hou, Y., Handy, D. E., et al. (2019). A
Genome-wide Positioning Systems Network Algorithm for In Silico
Drug Repurposing. Nat. Commun. 10, 3476. doi:10.1038/s41467-019-
10744-6

Cleland, J. G., Ghosh, J., Freemantle, N., Kaye, G. C., Nasir, M., Clark, A. L., et al.
(2004). Clinical Trials Update and Cumulative Meta-Analyses from the
American College of Cardiology: WATCH, SCD-HeFT, DINAMIT,
CASINO, INSPIRE, STRATUS-US, RIO-Lipids and Cardiac
Resynchronisation Therapy in Heart Failure. Eur. J. Heart Fail. 6, 501–508.
doi:10.1016/j.ejheart.2004.04.014

Cui, C., Ding, X., Wang, D., Chen, L., Xiao, F., Xu, T., et al. (2021). Drug
Repurposing against Breast Cancer by Integrating Drug-Exposure
Expression Profiles and Drug-Drug Links Based on Graph Neural Network.
Bioinformatics 37, 2930–2937. doi:10.1093/bioinformatics/btab191

Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., Wiegers, J., Wiegers, T. C.,
et al. (2021). Comparative Toxicogenomics Database (CTD): Update 2021.
Nucleic Acids Res. 49, D1138–D1143. doi:10.1093/nar/gkaa891

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R.
(1990). Indexing by Latent Semantic Analysis. J. Am. Soc. Inf. Sci. 41, 391–407.
doi:10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). “Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering,” in 30th Conference
on Neural Information Processing Systems, Barcelona, Spain. NY, United
States: Curran Associates Inc., 3844–3852.

Dudley, J. T., Deshpande, T., and Butte, A. J. (2011). Exploiting Drug-Disease
Relationships for Computational Drug Repositioning. Brief Bioinform 12,
303–311. doi:10.1093/bib/bbr013

Fiscon, G., Conte, F., Farina, L., and Paci, P. (2021). SAveRUNNER: A Network-
Based Algorithm for Drug Repurposing and its Application to COVID-19. Plos
Comput. Biol. 17, e1008686. doi:10.1371/journal.pcbi.1008686

Gross, P. (2008). Treatment of Hyponatremia. Intern. Med. 47, 885–891. doi:10.
2169/internalmedicine.47.0918

Groza, V., Udrescu, M., Bozdog, A., and Udrescu, L. (2021). Drug Repurposing
Using Modularity Clustering in Drug-Drug Similarity Networks Based on
Drug-Gene Interactions. Pharmaceutics 13, 2117. doi:10.3390/
pharmaceutics13122117

Guan, N. N., Zhao, Y., Wang, C. C., Li, J. Q., Chen, X., and Piao, X. (2019).
Anticancer Drug Response Prediction in Cell Lines Using Weighted Graph
Regularized Matrix Factorization.Mol. Ther. Nucleic Acids 17, 164–174. doi:10.
1016/j.omtn.2019.05.017

Hahn, M., and Roll, S. C. (2021). The Influence of Pharmacogenetics on the Clinical
Relevance of Pharmacokinetic Drug-Drug Interactions: Drug-Gene, Drug-
Gene-Gene and Drug-Drug-Gene Interactions. Pharmaceuticals (Basel) 14,
187. doi:10.3390/ph14050487

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). “Inductive Representation
Learning on Large Graphs,” in Proceedings of the 31st International Conference
on Neural Information Processing Systems (Long Beach, California, USA:
Curran Associates Inc.).

Huang, F., Qiu, Y., Li, Q., Liu, S., and Ni, F. (2020). Predicting Drug-Disease
Associations via Multi-Task Learning Based on Collective Matrix Factorization.
Front. Bioeng. Biotechnol. 8, 218. doi:10.3389/fbioe.2020.00218

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2021). PubChem in
2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 49,
D1388–D1395. doi:10.1093/nar/gkaa971

Lai, Q., Spoletini, G., Bianco, G., Graceffa, D., Agnes, S., Rossi, M., et al. (2020).
SARS-CoV2 and Immunosuppression: A Double-Edged Sword. Transpl. Infect.
Dis. 22, e13404. doi:10.1111/tid.13404

Lauritsen, K., Laursen, L. S., and Rask-Madsen, J. (1990). Clinical
Pharmacokinetics of Drugs Used in the Treatment of Gastrointestinal
Diseases (Part I). Clin. Pharmacokinet. 19, 11–31. doi:10.2165/00003088-
199019010-00002

Lei, X.-J., Bian, C., and Pan, Y. (2021). Predicting CircRNA-Disease Associations
Based on Improved Weighted Biased Meta-Structure. J. Comput. Sci. Technol.
36, 288–298. doi:10.1007/s11390-021-0798-x

Li, J., Zhang, S., Liu, T., Ning, C., Zhang, Z., and Zhou, W. (2020). Neural Inductive
Matrix Completion with Graph Convolutional Networks for miRNA-Disease
Association Prediction. Bioinformatics 36, 2538–2546. doi:10.1093/
bioinformatics/btz965

Li, J., Zhang, S., Wan, Y., Zhao, Y., Shi, J., Zhou, Y., et al. (2019). MISIM v2.0: aWeb
Server for Inferring microRNA Functional Similarity Based on microRNA-
Disease Associations. Nucleic Acids Res. 47, W536–W541. doi:10.1093/nar/
gkz328

Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., et al. (2003).
Angiotensin-converting Enzyme 2 Is a Functional Receptor for the SARS
Coronavirus. Nature 426, 450–454. doi:10.1038/nature02145

Li, Y., Wang, K., and Wang, G. (2021). Evaluating Disease Similarity Based on
Gene Network Reconstruction and Representation. Bioinformatics 37,
3579–3587. doi:10.1093/bioinformatics/btab252

Li, Z., Huang, Q., Chen, X., Wang, Y., Li, J., Xie, Y., et al. (2019). Identification of
Drug-Disease Associations Using Information of Molecular Structures and
Clinical Symptoms via Deep Convolutional Neural Network. Front. Chem. 7,
924. doi:10.3389/fchem.2019.00924

Lu, L., and Yu, H. (2018). DR2DI: a Powerful Computational Tool for Predicting
Novel Drug-Disease Associations. J. Comput. Aided Mol. Des. 32, 633–642.
doi:10.1007/s10822-018-0117-y

Luo, H., Li, M., Wang, S., Liu, Q., Li, Y., and Wang, J. (2018). Computational
Drug Repositioning Using Low-Rank Matrix Approximation and
Randomized Algorithms. Bioinformatics 34, 1904–1912. doi:10.1093/
bioinformatics/bty013

Luo, H., Wang, J., Li, M., Luo, J., Peng, X., Wu, F. X., et al. (2016). Drug
Repositioning Based on Comprehensive Similarity Measures and Bi-random
Walk Algorithm. Bioinformatics 32, 2664–2671. doi:10.1093/bioinformatics/
btw228

Madhukar, N. S., Khade, P. K., Huang, L., Gayvert, K., Galletti, G., Stogniew, M.,
et al. (2019). A Bayesian Machine Learning Approach for Drug Target
Identification Using Diverse Data Types. Nat. Commun. 10, 5221. doi:10.
1038/s41467-019-12928-6

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 87278514

Zhang et al. DRGCC: Drug Repositioning

https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1016/j.febslet.2008.02.015
https://doi.org/10.1038/nrd1384
https://doi.org/10.1016/j.idc.2021.03.008
https://doi.org/10.1093/bib/bbab319
https://doi.org/10.1093/bib/bbab319
https://doi.org/10.1038/s41467-019-10744-6
https://doi.org/10.1038/s41467-019-10744-6
https://doi.org/10.1016/j.ejheart.2004.04.014
https://doi.org/10.1093/bioinformatics/btab191
https://doi.org/10.1093/nar/gkaa891
https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
https://doi.org/10.1093/bib/bbr013
https://doi.org/10.1371/journal.pcbi.1008686
https://doi.org/10.2169/internalmedicine.47.0918
https://doi.org/10.2169/internalmedicine.47.0918
https://doi.org/10.3390/pharmaceutics13122117
https://doi.org/10.3390/pharmaceutics13122117
https://doi.org/10.1016/j.omtn.2019.05.017
https://doi.org/10.1016/j.omtn.2019.05.017
https://doi.org/10.3390/ph14050487
https://doi.org/10.3389/fbioe.2020.00218
https://doi.org/10.1093/nar/gkaa971
https://doi.org/10.1111/tid.13404
https://doi.org/10.2165/00003088-199019010-00002
https://doi.org/10.2165/00003088-199019010-00002
https://doi.org/10.1007/s11390-021-0798-x
https://doi.org/10.1093/bioinformatics/btz965
https://doi.org/10.1093/bioinformatics/btz965
https://doi.org/10.1093/nar/gkz328
https://doi.org/10.1093/nar/gkz328
https://doi.org/10.1038/nature02145
https://doi.org/10.1093/bioinformatics/btab252
https://doi.org/10.3389/fchem.2019.00924
https://doi.org/10.1007/s10822-018-0117-y
https://doi.org/10.1093/bioinformatics/bty013
https://doi.org/10.1093/bioinformatics/bty013
https://doi.org/10.1093/bioinformatics/btw228
https://doi.org/10.1093/bioinformatics/btw228
https://doi.org/10.1038/s41467-019-12928-6
https://doi.org/10.1038/s41467-019-12928-6
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Meng, X. Y., Zhang, H. X., Mezei, M., and Cui, M. (2011). Molecular Docking: a
Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided
Drug Des. 7, 146–157. doi:10.2174/157340911795677602

Meng, Y., Jin, M., Tang, X., and Xu, J. (2021). Drug Repositioning Based on
Similarity Constrained Probabilistic Matrix Factorization: COVID-19 as a Case
Study. Appl. Soft Comput. 103, 107135. doi:10.1016/j.asoc.2021.107135

Ni, P., Wang, J., Zhong, P., Li, Y., Wu, F. X., and Pan, Y. (2020). Constructing
Disease Similarity Networks Based on Disease Module Theory. Ieee/acm Trans.
Comput. Biol. Bioinform 17, 906–915. doi:10.1109/TCBB.2018.2817624

Painter, G. R., Natchus, M. G., Cohen, O., Holman, W., and Painter, W. P. (2021).
Developing a Direct Acting, Orally Available Antiviral Agent in a Pandemic: the
Evolution of Molnupiravir as a Potential Treatment for COVID-19. Curr. Opin.
Virol. 50, 17–22. doi:10.1016/j.coviro.2021.06.003

Peyrani, P., and Ramirez, J. (2013). What Is the Association of Cardiovascular Events
with Clinical Failure in Patients with Community-Acquired Pneumonia? Infect.
Dis. Clin. North. Am. 27, 205–210. doi:10.1016/j.idc.2012.11.010

Schriml, L. M., Mitraka, E., Munro, J., Tauber, B., Schor, M., Nickle, L., et al.
(2019). Human Disease Ontology 2018 Update: Classification, Content and
Workflow Expansion. Nucleic Acids Res. 47, D955–D962. doi:10.1093/nar/
gky1032

Shahab, S., and Sheikhi, M. (2021). Triazavirin - Potential Inhibitor for 2019-nCoV
Coronavirus M Protease: A DFT Study. Curr. Mol. Med. 21, 645–654. doi:10.
2174/1566524020666200521075848

Sladen, G. E. (1973). The Pathogenesis of Cholera and Some Wider Implications.
Gut 14, 671–680. doi:10.1136/gut.14.8.671

Solanich, X., Antolí, A., Padullés, N., Fanlo-Maresma, M., Iriarte, A., Mitjavila, F.,
et al. (2021). Pragmatic, Open-Label, single-center, Randomized, Phase II
Clinical Trial to Evaluate the Efficacy and Safety of Methylprednisolone
Pulses and Tacrolimus in Patients with Severe Pneumonia Secondary to
COVID-19: The TACROVID Trial Protocol. Contemp. Clin. Trials
Commun. 21, 100716. doi:10.1016/j.conctc.2021.100716

Strating, J. R., Van Der Linden, L., Albulescu, L., Bigay, J., Arita, M., Delang, L.,
et al. (2015). Itraconazole Inhibits Enterovirus Replication by Targeting the
Oxysterol-Binding Protein. Cell Rep 10, 600–615. doi:10.1016/j.celrep.2014.
12.054

Swedish Council on Health Technology Assessment (2005). “SBU Systematic Review
Summaries,” in Treatment of Anxiety Disorders: A Systematic Review (Stockholm:
Swedish Council on Health Technology Assessment (SBU) Copyright).

Trivedi, N., Verma, A., and Kumar, D. (2020). Possible Treatment and Strategies
for COVID-19: Review and Assessment. Eur. Rev. Med. Pharmacol. Sci. 24,
12593–12608. doi:10.26355/eurrev_202012_24057

Uddin, E., Islam, R., AshrafuzzamanBitu, N. A., Bitu, N. A., Hossain, M. S., Islam,
A. N., et al. (2021). Potential Drugs for the Treatment of COVID-19: Synthesis,
Brief History and Application. Curr. Drug Res. Rev. 13, 184–202. doi:10.2174/
2589977513666210611155426

Valiulin, S. V., Onischuk, A. A., Dubtsov, S. N., Baklanov, A. M., An’kov, S. V.,
Plokhotnichenko, M. E., et al. (2021). Aerosol Inhalation Delivery of Triazavirin
in Mice: Outlooks for Advanced Therapy against Novel Viral Infections.
J. Pharm. Sci. 110, 1316–1322. doi:10.1016/j.xphs.2020.11.016

Varothai, S., and Bergfeld, W. F. (2014). Androgenetic Alopecia: An Evidence-
Based Treatment Update. Am. J. Clin. Dermatol. 15, 217–230. doi:10.1007/
s40257-014-0077-5

Wang, D., Wang, J., Lu, M., Song, F., and Cui, Q. (2010). Inferring the Human
microRNA Functional Similarity and Functional Network Based on
microRNA-Associated Diseases. Bioinformatics 26, 1644–1650. doi:10.1093/
bioinformatics/btq241

Wang, Y., Lei, X., and Pan, Y. (2022). Predicting Microbe-Disease Association
Based on Heterogeneous Network and Global Graph Feature Learning. Chin.
J. Electro. 31, 1–9. doi:10.1049/cje.2020.00.212

Wang, Y. Y., Cui, C., Qi, L., Yan, H., and Zhao, X. M. (2019). DrPOCS: Drug
Repositioning Based on Projection onto Convex Sets. Ieee/acm Trans. Comput.
Biol. Bioinform 16, 154–162. doi:10.1109/TCBB.2018.2830384

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R.,
et al. (2018). DrugBank 5.0: a Major Update to the DrugBank Database
for 2018. Nucleic Acids Res. 46, D1074–D1082. doi:10.1093/nar/
gkx1037

Wu, G., Liu, J., and Yue, X. (2019). Prediction of Drug-Disease Associations Based
on Ensemble Meta Paths and Singular Value Decomposition. BMC
Bioinformatics 20, 134. doi:10.1186/s12859-019-2644-5

Xie, M., Hwang, T., and Kuang, R. (2012). “Prioritizing Disease Genes by Bi-
random Walk,” in Advances in Knowledge Discovery and Data Mining. Editors
P.-N. Tan, S. Chawla, C. K. Ho, and J. Bailey (Kuala Lumpur, Malaysia: Springer
Berlin Heidelberg), 292–303. doi:10.1007/978-3-642-30220-6_25

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., and Achan, K. (2020). “Inductive
Representation Learning on Temporal Graphs,” in 2020 International
Conference on Learning Representations, Barcelona, Spain. NY, United
States: Curran Associates Inc., 1–17.

Yang, M., Luo, H., Li, Y., and Wang, J. (2019). Drug Repositioning Based on
Bounded Nuclear Norm Regularization. Bioinformatics 35, i455–i463. doi:10.
1093/bioinformatics/btz331

Yu, G. (2018). Using Meshes for MeSH Term Enrichment and Semantic Analyses.
Bioinformatics 34, 3766–3767. doi:10.1093/bioinformatics/bty410

Yu, L., Huang, J., Ma, Z., Zhang, J., Zou, Y., and Gao, L. (2015). Inferring Drug-
Disease Associations Based on Known Protein Complexes. BMC Med.
Genomics 8, S2. doi:10.1186/1755-8794-8-S2-S2

Yu, L., Zhao, J., andGao, L. (2018). Predicting Potential Drugs for Breast Cancer Based on
miRNA and Tissue Specificity. Int. J. Biol. Sci. 14, 971–982. doi:10.7150/ijbs.23350

Yu, Z., Huang, F., Zhao, X., Xiao, W., and Zhang, W. (2020). Predicting Drug-
Disease Associations through Layer Attention Graph Convolutional Network.
Brief Bioinform 22 (4), bbaa243. doi:10.1093/bib/bbaa243

Zeng, X., Zhu, S., Liu, X., Zhou, Y., Nussinov, R., and Cheng, F. (2019). deepDR: a
Network-Based Deep Learning Approach to In Silico Drug Repositioning.
Bioinformatics 35, 5191–5198. doi:10.1093/bioinformatics/btz418

Zhang, W., Xu, H., Li, X., Gao, Q., and Wang, L. (2020). DRIMC: an Improved
Drug Repositioning Approach Using Bayesian Inductive Matrix Completion.
Bioinformatics 36, 2839–2847. doi:10.1093/bioinformatics/btaa062

Zhang, Y., Lei, X., Fang, Z., and Pan, Y. (2020). CircRNA-disease Associations
Prediction Based on Metapath2vec++ and Matrix Factorization. Big Data Min.
Anal. 3, 280–291. doi:10.26599/bdma.2020.9020025

Zhou, R., Lu, Z., Luo, H., Xiang, J., Zeng, M., and Li, M. (2020). NEDD: a Network
Embedding Based Method for Predicting Drug-Disease Associations. BMC
Bioinformatics 21, 387. doi:10.1186/s12859-020-03682-4

Zhou, X., Menche, J., Barabási, A. L., and Sharma, A. (2014). Human Symptoms-
Disease Network. Nat. Commun. 5, 4212. doi:10.1038/ncomms5212

Zhu, Y., Che, C., Jin, B., Zhang, N., Su, C., and Wang, F. (2020). Knowledge-driven
Drug Repurposing Using a Comprehensive Drug Knowledge Graph. Health
Inform. J 26, 2737–2750. doi:10.1177/1460458220937101

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Lei, Pan andWu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 87278515

Zhang et al. DRGCC: Drug Repositioning

https://doi.org/10.2174/157340911795677602
https://doi.org/10.1016/j.asoc.2021.107135
https://doi.org/10.1109/TCBB.2018.2817624
https://doi.org/10.1016/j.coviro.2021.06.003
https://doi.org/10.1016/j.idc.2012.11.010
https://doi.org/10.1093/nar/gky1032
https://doi.org/10.1093/nar/gky1032
https://doi.org/10.2174/1566524020666200521075848
https://doi.org/10.2174/1566524020666200521075848
https://doi.org/10.1136/gut.14.8.671
https://doi.org/10.1016/j.conctc.2021.100716
https://doi.org/10.1016/j.celrep.2014.12.054
https://doi.org/10.1016/j.celrep.2014.12.054
https://doi.org/10.26355/eurrev_202012_24057
https://doi.org/10.2174/2589977513666210611155426
https://doi.org/10.2174/2589977513666210611155426
https://doi.org/10.1016/j.xphs.2020.11.016
https://doi.org/10.1007/s40257-014-0077-5
https://doi.org/10.1007/s40257-014-0077-5
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.1049/cje.2020.00.212
https://doi.org/10.1109/TCBB.2018.2830384
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1186/s12859-019-2644-5
https://doi.org/10.1007/978-3-642-30220-6_25
https://doi.org/10.1093/bioinformatics/btz331
https://doi.org/10.1093/bioinformatics/btz331
https://doi.org/10.1093/bioinformatics/bty410
https://doi.org/10.1186/1755-8794-8-S2-S2
https://doi.org/10.7150/ijbs.23350
https://doi.org/10.1093/bib/bbaa243
https://doi.org/10.1093/bioinformatics/btz418
https://doi.org/10.1093/bioinformatics/btaa062
https://doi.org/10.26599/bdma.2020.9020025
https://doi.org/10.1186/s12859-020-03682-4
https://doi.org/10.1038/ncomms5212
https://doi.org/10.1177/1460458220937101
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	Drug Repositioning with GraphSAGE and Clustering Constraints Based on Drug and Disease Networks
	Introduction
	Materials and Method
	Known Associations of Drugs and Diseases
	Reconstruction of Drug–Drug Interaction Network
	Construction of Disease Similarity Network
	Processing of Attribute Features
	Extraction of Network Clustering Feature
	Drug Repositioning Using GraphSAGE
	Optimization

	Experimental Results and Analysis
	Experiment Setting
	Parameter Sensitivity Analysis
	Effectiveness of Network Clustering Features
	Comparative Analysis With Other Methods
	Case Studies

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


