
PhenoGeneRanker: Gene and Phenotype Prioritization Using 
Multiplex Heterogeneous Networks

Cagatay Dursun,
Department of Biomedical Engineering Medical College of Wisconsin, Marquette University, 
Milwaukee, WI 53226 USA.

Anne E. Kwitek,
Department Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 USA.

Serdar Bozdag
Department of Computer Science and Engineering, University of North Texas, Denton TX, 76203 
USA.

Abstract

Uncovering genotype-phenotype relationships is a fundamental challenge in genomics. Gene 

prioritization is an important step for this endeavor to make a short manageable list from a 

list of thousands of genes coming from high-throughput studies. Network propagation methods 

are promising and state of the art methods for gene prioritization based on the premise that 

functionally related genes tend to be close to each other in the biological networks. Recently, 

we introduced PhenoGeneRanker, a network-propagation algorithm for multiplex heterogeneous 

networks. PhenoGeneRanker allows multi-layer gene and phenotype networks. It also calculates 

empirical p values of gene and phenotype ranks using random stratified sampling of seeds of genes 

and phenotypes based on their connectivity degree in the network. In this study, we introduce the 

PhenoGeneRanker Bioconductor package and its application to multi-omics rat genome datasets to 

rank hypertension disease-related genes and strains. We showed that PhenoGeneRanker performed 

better to rank hypertension disease-related genes using multiplex gene networks than aggregated 

gene networks. We also showed that PhenoGeneRanker performed better to rank hypertension 

disease-related strains using multiplex phenotype network than single or aggregated phenotype 

networks. We performed a rigorous hyperparameter analysis and, finally showed that Gene 

Ontology (GO) enrichment of statistically significant top-ranked genes resulted in hypertension 

disease-related GO terms.
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1 INTRODUCTION

Identifying the causal relationship between a gene and complex trait is a challenging 

problem in functional genomics as their relationship relies on complex and nonlinear 

interactions of molecular entities [1]. The phenotypic outcome of the genotypic effect is 

the result of biological activities that involve the coordinated expression and interaction 

of proteins or nucleic acids [2]. There are multiple layers of biological processes between 

genotypic effects to phenotypic outcomes, such as epigenome, transcriptome, proteome, and 

metabolome that could alter the genotypic effects in many ways.

To represent the multilayered molecular basis of complex traits, biological networks have 

been utilized extensively [3]. These networks also facilitate data integration, which is 

a useful technique to capture the nonlinear interactions of molecular variations from 

different layers of biological processes while avoiding the limitations and biases of single 

data types [4], [5]. Each interactome data type could represent a different aspect of the 

genotype-phenotype relationship. For instance, physical interactome data such as protein-

protein interactions (PPI) might have many non-functional and missing true interactions, 

therefore they are usually complemented by functional interactions [6]. Integrative network 

models can incorporate datasets from multiple modalities to provide a more comprehensive 

framework to capture the underlying biology. Analysis of such networks is a powerful 

approach to demystify the complexity of multilayered molecular interactions and elucidate 

the genotype-phenotype relationship.

Thousands of candidate genes are usually reported to be potentially related to a complex 

trait by using high-through-put experimental studies such as genome-wide association 

studies (GWAS). Gene prioritization is essential to shorten a list of thousands of candidate 

genes into a smaller most probable gene list to facilitate experimental testing [7]. Network 

propagation methods are promising and state of the art methods for gene prioritization based 

on the premise that functionally related genes tend to be close to each other in biological 

networks such as co-expression, PPI and biological pathways [8].

A number of network propagation-based gene prioritization algorithms were previously 

developed [9], [10], [11], [12], [13], [14], [15], [16]. Among those, random walk with 

restart (RWR) algorithms are known to utilize both underlying global network topology and 

closeness to the known nodes in the network with its restarting property [8].

Recently, a new random walk algorithm called Random Walk with Restart on Multiplex 

Heterogeneous Networks (RWR-MH) has been developed [17] as an extension to RWR in 

heterogeneous networks [18]. RWR-MH performs RWR on a multilayered gene network, 

which is connected to a single-layer disease similarity network and ranks disease-associated 

genes based on a set of known disease-associated genes.

Although RWR-MH can utilize multiple gene layers, it can utilize only one layer of 

phenotype network. Furthermore, bias toward highly connected nodes in the network is 

a known artifact of the RWR algorithm [8], [10].
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To address these limitations, we recently developed PhenoGeneRanker, an RWR algorithm 

to rank genes and phenotypes using multiple layers of both genes and phenotypes (Fig. 1) 

[19]. PhenoGeneRanker generates empirical p values for gene and phenotype rankings to 

account for the bias of the RWR algorithm toward high-degree nodes. In this study, we 

developed a Bioconductor package for PhenoGeneRanker, and to assess the performance 

of PhenoGeneRanker we applied it to multidimensional rat (Rattus norvegicus) datasets 

of genes and phenotypes to prioritize the hypertension disease-related rat genes. Also, we 

rigorously analyzed the effects of its hyperparameters on gene and phenotype prioritization 

performance.

PhenoGeneRanker Bioconductor package can be accessed on https://bioconductor.org/

packages/PhenoGeneRanker/

2 METHODS

2.1 PhenoGeneRanker

PhenoGeneRanker is a computational tool that utilizes an RWR algorithm on multiplex 

heterogeneous networks to rank disease-specific genes and phenotypes. RWR is a type 

of network propagation algorithm where the information from pre-specified seed node(s) 

diffuses through the edges of the nodes on the underlying network. RWR on a heterogeneous 

network was developed to enable random walk by connecting two types of networks, 

namely disease and protein networks, by establishing bipartite relations between diseases 

and proteins using disease-associated gene mutations [18].

Li and Patra proposed an RWR approach for heterogeneous networks where they connected 

a gene network to a phenotype network with a bipartite network of genes and phenotypes 

[20]. They represent gene, phenotype and bipartite networks with adjacency matrices 

AG, AP and B, respectively. The adjacency matrix of the heterogeneous network is then 

represented as matrix A.

A =
AG B

BT AP
(1)

B and its transpose BT represents the bipartite connections between gene-phenotype and 

phenotype-gene networks, respectively. The matrix A is then normalized to create a 

transition matrix (walk matrix) W.

W =
W G W GP

W PG W P
(2)

In Eq. (2), WG and WP represent the transition matrices within gene and phenotype 

networks, respectively, and WPG and WGP represents transition matrices between phenotype 

to gene and gene to phenotype networks, respectively.
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The transition probability of a gene gi to a gene gj in the network with n genes and m 
phenotypes can be calculated using.

W G(i, j) =

AG(i, j)
∑k = 1

n AG(i, k)
,   if∑k = 1

m B(i, k) = 0

(1 − λ)AG(i, j)
∑k = 1

n AG(i, k)
,   otℎerwise  

(3)

In Eq. (3), λ is the probability of jumping between gene and phenotype networks with a 

default value of 0.5. Similarly, the transition probability of a phenotype hi to a phenotype 

hj in the network is calculated by replacing the gene adjacency matrix AG with phenotype 

adjacency matrix AP, and gene to phenotype bipartite connections B with phenotype to gene 

bipartite connections BT in Eq. (3). The transition probability for a gene gi to a phenotype hj 

in the network can be calculated using.

W GP(i, j) =

λB(i, j)
∑k = 1

m B(i, k)
,   if   ∑

k = 1

m
B(i, k) ≠ 0

 0, otℎerwise  

(4)

Equivalently, phenotype transition matrix WPG is created using Eq. (4) by replacing the 

gene to phenotype bipartite connections B with phenotype to gene bipartite connections BT. 

Eqs. (3) and (4) imply that higher values of λ increases the utilization of bipartite relations 

instead of gene and phenotype networks.

RWR can run on the heterogeneous network of genes and phenotypes utilizing the transition 

matrix W. Let p0 and pt be state vectors that represent the probability distribution of genes 

and phenotypes in the network at step 0 and t, respectively, and r represents the restart 

probability of random walk to specified seed nodes. pt+1 is computed using.

pt + 1 = (1 − r)W pt + rp0 (5)

RWR-MH was developed to extend this approach by combining multiple gene networks 

into a multiplex gene network and utilizing the heterogeneous network consisting of gene-

disease connections and a single-layer disease network [17]. They generated a multiplex 

gene network by combining L undirected gene networks that share a set of n genes. If a gene 

exists in only some of the gene layers, then it is added to the multiplex gene network with 

nonzero edge weights in these layers only, and with 0 edge weight in the other layers. The 

single network of genes and phenotypes is called as layer in the rest of the paper.
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Multiplex gene network is represented as nL x nL size square matrix as in Eq. (6) where n 
is the number of genes, L is the number of gene layers and δ is the jumping probability of 

random walk to other gene layers.

AMG =

(1 − δ)A1 δ
(L − 1)I … δ

(L − 1)I

δ
(L − 1)I (1 − δ)A2 … δ

(L − 1)I

⋮ ⋮ ⋱ ⋮

δ
(L − 1)I δ

(L − 1)I … (1 − δ)AL

(6)

In Eq. (6), Ai represents the adjacency matrix of the ith gene layer, and I is the identity 

matrix. Main diagonal elements of AMG matrix represent transitions within a single layer 

and other elements of the matrix represent the transitions between different layers of the 

multiplex gene network. The default value of δ = 0.5, giving equal weight to either to stay in 

the current gene layer or jump to another gene layer.

We extend RWR-MH algorithm by making it compatible with multiplex phenotype 

networks. We create multiplex phenotype adjacency matrix, AMP represented in Eq. (7), 

by combining K undirected weighted phenotype layers with m phenotype nodes. AMP is 

mK x mK size square matrix, and ζ is the jumping probability of random walk to other 

phenotype layers within the multiplex phenotype network

AMP =

(1 − ζ)A1 ζ
(K − 1)I … ζ

(K − 1)I

ζ
(K − 1)I (1 − ζ)A2 … ζ

(K − 1)I

⋮ ⋮ ⋱ ⋮

ζ
(K − 1)I ζ

(K − 1)I ⋯ (1 − ζ)AK

(7)

In Eq. (7), Ai. represents the adjacency matrix of the ith phenotype layer and I is the identity 

matrix. Like AMG, diagonal elements of AMP matrix represent transitions within the single 

phenotype layer and other elements of the matrix represent the transitions between different 

layers of the multiplex phenotype network. The default value of ζ is set to 0.5, giving equal 

weight to either to stay in the current phenotype layer or jump to another phenotype layer. 

To connect the multiplex gene and phenotype networks we integrate Bnxm
1, …, (L + K) identical 

bipartite adjacency matrices. Bipartite adjacency matrix BMGMP, which has a size of nL x 

mK is created as in Eq. (8). Within BMGMP bipartite matrix, Bnxm
ij bipartite matrix represents 

the connections for the ith gene layer to the jth phenotype layer.
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BMGMP =
Bnxm

11 ⋯ Bnxm
1K

⋮ ⋱ ⋮

Bnxm
L1 ⋯ Bnxm

LK
(8)

In PhenoGeneRanker, the column-normalized transition matrix of multiplex heterogeneous 

network is encoded by a matrix WPhenoGeneRanker as in Eq. (9).

W PℎenoGeneRanker  =
W MG W MGMP

W MPMG W MP
(9)

In Eq. (9), WMG is the transition matrix of the multiplex gene network, WMP is the transition 

matrix of the multiplex phenotype network, WMPMG is the transition matrix of the multiplex 

phenotype-multiplex gene bipartite network, and WMGMP is the transition matrix of the 

multiplex gene-multiplex phenotype bipartite network (i.e., the transpose of WMPMG). WMG 

is calculated using Eq. (3) by replacing the AG with AMG and B with BMGMP matrices. 

Equivalently, WMP is calculated using the same equation by replacing the AG with AMP and 

B with BMPMG matrices. WMGMP and WMPMG are calculated using Eq. (4) by replacing 

the matrix B with BMGMP and BMPMG, respectively. The whole algorithm is shown in 

Algorithm 1.

2.2 Running RWR on PhenoGeneRanker Transition Matrix

To apply RWR using Eq. (5) to PhenoGeneRanker transition matrix we need to modify 

the vectors pt+1, pt and p0 in the equation for multiplex heterogeneous network structure. 

WPhenoGeneRanker is (nL + mK) x (nL + mK) square matrix, and the dimension of the state 

vectors is nL + mK. Therefore, we modify the state vectors to hold the state for n genes from 

each L gene layer and m phenotypes from each K phenotype layer.
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Algorithm 1. PhenoGeneRanker algorithm for generating
the final transition matrix and power‐iterator computation
of propagation scores .

Input: Multiple gene, phenotype networks, a bipartite connection
network.

L: number of gene layers, K: number of phenotype layers,
n: number of genes, m: number of phenotypes

1 Generate multiplex gene adjacency matrix AMG (See Eq. 6)
2 Generate multiplex phenotype adjacency matrix AMP  (See

Eq. 7)
3 Generate bipartite adjacency matrix BMGMP  (See Eq. 8)
4   for   i = 1 : n do
5  for   j = 1 : m do
6 if   Gene   i   ℎas   edge(s)   witℎ   pℎenotypes   then

7   W MGMP (i, j) = λB(i, j)
∑k = 1

mxK B i, k
 

8 else
9 W MGMP (i, j) = 0

10 end
11   end
12 end
13   for   i = 1 : m do
14   for   j = 1 : n do
15 if Pℎenotype   i   ℎas   edge(s)   witℎ   genes   then

16     W MPMG(i, j) = λB(i, j)
∑k = 1

nxL B i, k
 

17 else
18 W MPMG(i, j) = 0
19 end
20   end
21 end
22   for   i = 1 : n do
23    for   j = 1 : m do
24 if   Gene   i   ℎas   no   edge   witℎ   pℎenotypes then

25     W MG(i, j) =
AMG(i, j)

∑k = 1
nxL AMG(i, k)

26 else

27 W MG(i, j) =
(1 − λ)AMG(i, j)

∑k = 1
nxL AMG(i, k)

28 end
29   end
30 end
31 for   i = 1 : m do
32     for   j = 1 : n do
33 if   Pℎenotype   i   ℎas   no   edge   witℎ   genes   then

34     W MP (i, j) =
AMP (i, j)

∑k = 1
mxk AMP (i, k)

35 else

36     W MP (i, j) =
(1 − λ)AMP (i, j)

∑k = 1
mxk AMP (i, k)

37 end
38   end
39 end
40 Generate final transition matrix W PℎenoGeneRanker (See Eq. (9))
41 Initialize p0 with gene and phenotype seed nodes (See Eq .

 (10))
42 while not converged do
43 pt + 1 = (1 − r)W PℎenoGeneRankerpt + rp0
44 end
45 Calculate p values (See Algorithm 2)
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p0 state vector holds the initial states of the nodes, which correspond to the seeds used for 

RWR. p0 is initialized using τ, ϕ and η parameters to control the restart probabilities to each 

gene, phenotype layer and multiplex network, respectively. τ is defined as τ = [ τ1 … τL ] 

for gene layers [17] where τi is n size vector for n genes. We introduced ϕ as ϕ = [ ϕ1 … 

ϕK ] for restart probabilities to phenotype layers where ϕj is m size vector for m phenotype 

nodes. By default, we use equal restart probabilities to gene and phenotype layers using [τ, 
ϕ] vector. The importance of gene and phenotype layers can be adjusted by modifying τ and 

ϕ parameters.

The restart probability to multiplex gene and phenotype networks can be set by η. High η 
means that RWR will restart more likely to phenotype multiplex network. Initial state vector 

p0 is set by using.

p0 =
(1 − η)u0

ηv0
(10)

In Eq. (10), u0 and v0 represent the probability distributions of genes and phenotypes, 

respectively, in p0 after applying [τ, ϕ] normalization;p0 = [τ, ϕ] · p0, where “·” is element-

wise multiplication. Eq. (5) is run until pt reaches a stationary state distribution. Then 

random walk scores of genes and phenotypes are calculated by taking the geometric mean of 

L and K layer scores of genes and phenotypes, respectively.

Algorithm 2. Calculation of Empirical p Values .
Input: Sample N random gene and phenotype seed sets
using stratified random sampling strategy based on node
degree .

1 foreach   i ∈ Genes ∪ Pℎenotypes   do
2   for   j = 1:N do
3  Initialize p0 with random   seeds (See Eq. (10))
4  while   not   converged   do
5 pt + 1 = (1 − r)W PℎenoGeneRankerpt + rp0
6  end
7  Calculate random rank ranki;  j
8  if   ranki, j ≤   ranki,  actual  +   offset   then
9 rankf i, j =1

10  else  
11 rankf i, j =0
12  end
13   end

14 p   valuei =
∑j = 1

N rankf i, j
N

15   end

2.3 Empirical p Value Calculation

Network propagation-based gene prioritization methods are known to be biased toward the 

high-degree nodes in the network [10]. The rank of a node is determined by two criteria: 
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topology of the underlying network and closeness to the seed nodes used for the information 

propagation. To assess the degree bias of each node rank, PhenoGeneRanker employs an 

empirical p value calculation based on random seeds. A low p value suggests that the rank 

of the node is due to its closeness to the seed nodes and its degree together, whereas a high 

p value suggests that the rank of the node is due to its degree rather than its closeness to the 

seed nodes.

PhenoGeneRanker randomly samples seed nodes using stratified sampling based on the 

degree of the gene and the phenotype nodes in the network and performs gene and 

phenotype prioritization. The number of random seed nodes is set same as the number 

of actual gene and phenotype seeds. This process is repeated N times where N = 1000 by 

default. The p values are calculated based on:

p   valuei = ∑j = 1
N rankf i, j

N
(11)

In Eq. (11), rankf(i, j) is an indicator function, and rankf(i, j) = 1 if rank of gene i for 

jth iteration ranki,j ≤ (ranki, actual + offset), and 0 otherwise. ranki, actual is the rank of 

gene i using actual seeds and we set offset to 100 and 5 for gene and phenotype p value 

calculations, respectively, with the assumption that number of phenotype nodes is in the 

order of 100. Adding an offset value to the comparison ensures realistic p values particularly 

for the top-ranked nodes; otherwise, it would be biased to get extremely low p values for the 

top-ranked nodes. The calculation of p values is shown in Algorithm 2.

2.4 Complete Multiplex Heterogeneous Network for Rat Organism

To rank the rat genes to discover hypertension disease-related genes, we applied 

PhenoGeneRanker on a previously created multiplex heterogeneous rat network [21]. Below 

we briefly describe the generation of this multiplex heterogeneous network of rat genes and 

strains.

First, we created a three-layer gene interaction network, namely co-expression, PPI and 

pathway layers. We utilized the RNA-seq expression dataset from the Gene Expression 

Omnibus (GEO) [22] database (GSE50027) to create a liver gene co-expression layer from 

six Lyon Hypertensive (LH) and six Lyon Normotensive (LN) rats [23]. We downloaded 

rat PPI dataset from the STRING V11 database [62] and filtered the dataset to use only 

physical interactions. We created the pathway layer using the pathway annotation of genes 

and the pathway ontology tree from the Rat Genome Database (RGD) [24]. We calculated 

the semantic similarity scores of genes using the ontologyX R package [25]. Ontology-

based semantic similarity measures the degree of relatedness between two entities by the 

similarity in meaning of their annotations over a set of ontology terms by utilizing the graph 

representation of the terms [26].

Next, we created a three-layer phenotype network for rat strains, utilizing RGD annotation 

data of mammalian phenotype ontology (MPO) term-based similarity, disease ontology 

(DO) term-based similarity and quantitative phenotype (ǪP) measurements-based similarity 
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of strains [27]. All strain layers were created based on their similarity to each other in 

the hypertension disease context. We computed a vector of semantic similarity scores of 

each strain that represents its similarity to the set of hypertension disease-related MPO 

terms (Supplementary Table 1, which can be found on the Computer Society Digital 

Library at http://doi.ieeecomputersociety.org/10.1109/TCBB.2021.3098278.) and DO terms 

(Supplementary Table 2, available online). Then, we calculated the similarity of strains 

based on DO and MPO by dot-product of those semantic similarity vectors. We used the 

quantitative phenotype measurements, namely systolic blood pressure, heart rate and heart 

weight annotated to the samples for various strains in RGD to create the ǪP measurements-

based strain similarity layer by calculating Euclidean distance of those measurements.

2.4.1 Gene-Strain Bipartite Layer—The gene-strain bipartite layer connects the 

multiplex gene and strain networks based on their semantic similarity of MPO annotations. 

To make the gene-strain bipartite layer context specific, similar to MPO and DO-based strain 

similarity layers, we calculated a semantic similarity vector for each gene and strain that 

represents their similarity to the set of hypertension disease-related MPO terms. In order 

to include more genes into the bipartite layer, we downloaded MPO annotations of mouse 

orthologs of rat genes from Mouse Genome Informatics [28].

All the layers were composed of undirected and weighted edges. Edge weights for all 

networks were scaled to [0.001, 1] interval.

2.5 Seeds and Restart Probabilities

Seeds are used as information sources for the RWR algorithm. The RWR algorithm restarts 

to the seed genes and strains at each restart based on the probability value set by the 

parameter η, τ and ϕ. Lower η means RWR is more likely to restart to gene seeds. We set 

η = 0.5 for our performance analysis. τ and ϕ vector parameters are used to give different 

weights to individual gene and phenotype layers, respectively. PhenoGeneRanker sets the 

default values to give equal weights to the individual layers.

2.6 Ranking Hypertension Disease-Related Genes and Strains

To determine the ground truth hypertension disease-related genes, we used the rat gene 

disease annotations in RGD. We included hypertension disease-annotated genes with 

experimental evidence codes only, then excluded the genes having only expression-based 

experimental evidence codes (Supplementary Table 3, available online). We used 167 

hypertension disease-related rat genes in our experiments. To evaluate the performance of 

PhenoGeneRanker, iteratively we used one hypertension disease-related gene as seed gene 

with one fixed strain seed and measured the rank of the remaining genes. To determine 

the fixed strain seed, we selected strains that had DO and MPO annotations and ǪP 

measurements at the same time to be able to utilize all the phenotype layers effectively. 

Then, we ranked the strains by their measurement values of systolic blood pressure, heart 

rate, and heart weight, and picked the top strain according to this rank as the seed strain for 

each run. We used only statistically significant ranks based on their corresponding empirical 

p value for the performance evaluations of the ranks (p ≤ 0.05).
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To determine the set of hypertension disease-related strains, we used the hypertension 

disease-related DO annotations of strains in RGD. We labeled strains that are annotated with 

these terms as hypertension disease-related strains. There were 78 hypertension disease-

related strains in our experiments. Similar to evaluation of gene ranks, we iterated the set 

of hypertension disease-related strains. At each iteration we used one hypertension disease-

related strain as seed strain with one fixed gene seed and measured the rank of the remaining 

strains. We selected the fixed gene seed from the set of hypertension disease-related genes 

having the most diverse and highest number of experimental annotations. Since we used 

the DO annotations to determine the set of hypertension disease-related strains, we did not 

use the DO-based strain similarity layer in the network combinations to rank the strains. To 

determine the statistically significant strain ranks, we used p ≤ 0.1 as opposed to p ≤ 0.05 

threshold because the number of statistically significant ranks at p ≤ 0.05 was only 12.

3 RESULTS

We developed PhenoGeneRanker as a Bioconductor package to rank genes and phenotypes 

using the RWR algorithm on a multiplex heterogeneous network of genes and phenotypes. 

PhenoGeneRanker integrates multiplex gene and phenotype networks and computes the 

empirical p values of the ranks to prevent the bias inherent in RWR.

To evaluate the performance of PhenoGeneRanker, we applied it to rat model organism 

datasets to rank the hypertension disease-related rat genes and strains. To assess the 

impact of multiplexity on the performance, we generated different combinations of gene 

and phenotype networks. We generated heterogeneous networks involving single gene 

and phenotype layers, and multiplex and aggregated gene and phenotype networks. We 

created aggregated networks by taking the union of the single layers and calculating 

the geometric means of weights of common edges across layers. We conducted GO 

enrichment analyses for the top- and bottom-ranked genes. Finally, we investigated the 

effects of PhenoGeneRanker hyperparameters on the gene and strain ranks. To measure 

the performance of PhenoGeneRanker, we used cumulative distribution function (CDF) 

plots of statistically significant gene and phenotype ranks. For a fair comparison, we 

used the intersection of the statistically significant gene and strain ranks in the compared 

combinations when generating the CDF plots. We used the Kolmogorov-Smirnov test 

implementation in R [29] to generate p values for the comparisons of the CDFs. To ensure 

statistical power in comparing CDFs, we only plotted a pair of CDFs if they have rankings 

of at least 30 genes/phenotypes in common.

3.1 PhenoGeneRanker Was More Efficient on Multiplex Phenotype Network Than on 
Aggregated and Single Layer Phenotype Networks on Strain Ranking

Unlike the previous RWR algorithms PhenoGeneRanker can utilize a multiplex phenotype 

network as well as a multiplex gene network. To evaluate the impact of phenotype network 

multiplexity on the performance of PhenoGeneRanker based on strain ranking, we used 

MPO and ǪP layers to create multiplex, single, and aggregated phenotype networks. 

PhenoGeneRanker performed significantly better on multiplex phenotype network than on 

the aggregated phenotype network on strain ranking (p < 0.001) (Fig. 2A). The performance 
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difference of PhenoGeneRanker on multiplex phenotype network and network of single 

MPO layer was even higher than the difference compared to aggregated network (p < 
0.001) (Fig. 2B). We could not compare the performance of PhenoGeneRanker on multiplex 

network with network of the single ǪP layer, as the number of common strain ranks 

was only two between the two results. Further, we analyzed the effect of the multiplex 

gene network on the phenotype ranks by comparing it to the aggregated gene network. 

We observed that usage of a multiplex gene network slightly improved the hypertension 

disease-related strain ranks, but the difference was not significant (Fig. 2C).

3.2 PhenoGeneRanker Was More Efficient on Multiplex Gene Networks Than on 
Aggregated Gene Networks on Gene Ranking

To evaluate the impact of gene network multiplexity on the performance of 

PhenoGeneRanker based on gene rankings, we compared the performance of 

PhenoGeneRanker on different combinations of multiplex and aggregated gene networks 

We observed that PhenoGeneRanker performed significantly better on each multiplex gene 

network than on its aggregated counterpart (Fig. 3).

To assess the impact of individual gene layers on gene ranking, we computed the 

performance of PhenoGeneRanker when one or two of gene layers were eliminated (Fig. 

4). For these comparisons, we used the multiplex phenotype network of three phenotype 

layers. We observed that the performance of PhenoGeneRanker based on gene ranking 

slightly but significantly dropped when co-expression (Fig. 4A) or PPI layer (Fig. 4C) was 

not utilized (p < 0.001). On the other hand, we did not observe a significant performance 

change when the pathway layer was not utilized (Fig. 4B). PhenoGeneRanker performed 

slightly better on multiplex network of PPI and pathway for the lower gene ranks than 

on multiplex network of three gene layers (Fig. 4A). Increased performance difference of 

PhenoGeneRanker utilizing multiplex gene network and PPI network was evident except 

for the gene ranks lower than 10 (Fig. 4D). Interestingly, PhenoGeneRanker utilizing the 

single PPI layer performed better for the top 10 gene ranks. PhenoGeneRanker performed 

better on the multiplex gene network compared to single pathway network for the gene ranks 

lower than 100 (Fig. 4E). Finally, PhenoGeneRanker performed better on the multiplex gene 

network compared to the single co-expression network for the gene ranks lower than 75 

(Fig. 4F).

3.3 PhenoGeneRanker Top-Ranked Genes Were Enriched in Hypertension Disease-
Related GO Terms

We performed a Gene Ontology (GO) enrichment analysis on the top-ranked genes predicted 

by PhenoGeneRanker to assess their role in hypertension-related biological processes. 

To do this, we used all the 167 hypertension disease-related genes as gene seeds and 

all the hypertension disease-related strains as strain seeds. We ran PhenoGeneRanker 

using multiplex gene network of three gene layers and multiplex phenotype network of 

three strain layers. The 185 top-ranked significant genes identified by PhenoGeneRanker 

were submitted to the Multi-Ontology Enrichment Tool (MOET) available at RGD1. 

1. https://rgd.mcw.edu/rgdweb/enrichment/start.html 
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GO: Biological Processes (BP) enrichment analysis identified 824 terms with Bonferroni 

Corrected enrichment p < 0.001 (Table 1). In comparison, the 185 genes with the lowest 

ranking had only two enriched terms with corrected p < 0.001. The hypertension-related 

terms ‘blood circulation (GO:0008015)’ and ‘circulatory system process (GO:0003013)’ 

were the top two most significant GO:BP in the top-ranked genes, whereas no hypertension- 

or cardiovascular-related terms were enriched in the bottom-ranked genes.

Further, we performed a deeper analysis using the enriched GO terms for hypertension 

disease-related genes. We chose the enriched GO:BP terms at Bonferroni corrected p value 

< 0.001 and compared their p values for the PhenoGeneRanker-ranked genes in different 

quartiles (Fig. 5). We observed a high concordance in GO:BP terms between the genes in the 

highest-ranked quartile and terms enriched in established hypertension disease-related genes.

3.4 Hyperparameter Analysis

Hyperparameters of PhenoGeneRanker can be classified as transition matrix-related 

hyperparameters and RWR-related hyperparameters. Fig. 6 shows the effect of each 

hyperparameter perturbation on the CDF of statistically significant hypertension disease-

related gene ranks. While one parameter was being perturbed, other parameters were fixed to 

their default values. We used the multiplex heterogeneous network of three gene layers and 

three phenotype layers for the hyperparameter analysis.

3.4.1 Transition Matrix Hyperparameters—Transition matrix-related 

hyperparameters of PhenoGeneRanker are λ, δ and ζ with default value of 0.5.

Parameter λ is the probability of jumping between multiplex networks of genes and 

phenotypes. By increasing λ, PhenoGeneRanker gives a higher weight to the bipartite 

relations between genes and phenotypes. We observed the highest and lowest gene ranking-

based performance when λ = 0.9 and λ = 0.1, respectively (p < 0.001) (Fig. 6A). The 

performance of the high value of λ indicates the high contribution of the bipartite layer 

of genes and phenotypes to hypertension disease-related gene ranks. We could not analyze 

the effect of λ on strain ranks as the numbers of common strain ranks for the network 

combinations of different λ values were less than 30.

Parameter δ is the inter-layer jump probability within the multiplex gene network. High δ 
means high likelihood to jump to other gene layers within the multiplex gene network. Gene 

ranking-based performance was significantly better when δ = 0.1 or δ = 0.5 compared to δ 
= 0.9 (p < 0.01) (Fig. 6B). For the lower gene ranks, gene ranking-based performance was 

slightly but insignificantly better when δ = 0.1 compared to δ = 0.5 (p = 0.4). On the other 

hand, strain ranking performance was significantly better when δ = 0.9 compared to δ = 0.1 

and δ = 0.5 (p < 0.001) (Fig. 7A).

Parameter ζ is the inter-layer jump probability within the multiplex phenotype network. 

High ζ means high likelihood to jump to other phenotype layers within the multiplex 

phenotype network. There was no distinguishable effect of different ζ values on the 

performance of hypertension disease-related gene ranks (Fig. 6C). When ζ = 0.1, 
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PhenoGeneRanker had a slightly but insignificantly higher strain ranking-based performance 

than cases when ζ = 0.5 and ζ = 0.9 (Fig. 7B).

3.4.2 RWR Hyperparameters—RWR-related hyperparameters of PhenoGeneRanker 

with default values are: r = 0.7, η = 0.5, τ = (1/L, 1/L,…1/L) and ϕ = (1/K, 1/K,…,1/K).

The global restart probability for RWR, r, controls the probability of jumping back to the 

seed nodes during the random walk. Fig. 8 shows the effects of different r values on the 

CDF of hypertension disease-related gene ranks. We observed that PhenoGeneRanker had 

a significantly higher gene ranking-based performance for r = 0.7 and r = 0.9 compared to 

r = 0.1 (p < 0.001). Overall, as the value of r increased, the performance got better. Larger 

r values cause RWR not to diffuse the information to the farther distances, rather it keeps 

the diffusion close to the seed node. Better performance of higher value of r indicates that 

the hypertension disease-related genes were close to each other in the network. We could 

not analyze the effect of r on strain ranks as the numbers of common strain ranks for the 

network combinations of different r values were less than 30.

Parameter η is the probability of restarting to a gene or phenotype seed in the network. High 

value of η means a high likelihood to restart to a phenotype seed. PhenoGeneRanker’s gene 

ranking-based performance was significantly better for η = 0.9 and η = 0.5 compared to η = 

0.1 (p < 0.001) (Fig. 6D). This result suggests that strain network has more contribution 

on the ranks of hypertension disease-related genes than the gene network. This could 

be due to the high number of hypertension disease-related genes (161 out of 167) that 

have connections to all the strains in the bipartite layer. Utilization of strain layers has 

larger effect on hypertension disease-related gene ranks, because of the existing bipartite 

relations between hypertension disease genes and strains. This result was consistent with the 

perturbation of the λ, for higher values of which PhenoGeneRanker utilized the bipartite 

layer more and achieved higher gene ranking-based performance (Fig. 6A). We could not 

analyze the effect of η on strain ranks as the numbers of common strain ranks for the 

network combinations of different η values were less than 30.

Parameter τ is the restart probability vector for gene layers. Different weights to different 

gene layers can be given by changing the specific values in τ. We observed that the results 

from perturbation of τ (Fig. 6E) were consistent with the results generated by different 

multiplex gene networks combinations (Section 3.2). We observed that pathway layer was 

contributing more to the strain ranks, compared to the co-expression layer (Fig. 7C). All 

CDFs in Fig. 7C were significantly different from each other at p < 0.001 level except for 

the CDFs for τ = (1, 1, 1)/3 vs. τ = (0.1, 1, 1.9)/3.

Parameter ϕ is the restart probability vector for PhenoGeneRanker to different phenotype 

layers. Different weights to different phenotype layers can be given by changing specific 

values in ϕ. We observed that there was no discernable effect of ϕ on the gene rank 

performance of PhenoGeneRanker (Fig. 6F). On the other hand, giving higher weight to the 

ǪP layer generated significantly better strain ranks compared to giving higher weight to the 

MPO layer (p ≤ 0.001) (Fig. 7D), indicating a larger contribution of quantitative phenotype 

measurements on the strain ranks.
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7 DISCUSSION

In this study we developed PhenoGeneRanker, a Bioconductor package that ranks genes 

and phenotypes using the RWR algorithm on a multiplex heterogeneous network of genes 

and phenotypes. PhenoGeneRanker integrates multiplex gene and phenotype networks and 

computes the empirical p values of the ranks to prevent the bias inherent in RWR.

We applied PhenoGeneRanker on multidimensional rat genotype and phenotype datasets to 

prioritize hypertension disease-related rat genes and strains. To evaluate PhenoGeneRanker, 

we ran it using single gene and strain seeds, and ranked the remaining hypertension 

disease-related genes and strains. We plotted the rankings for each network/hyperparameter 

combination using empirical CDFs.

We showed that PhenoGeneRanker performed better on multiplex phenotype networks than 

on single and aggregated phenotype networks and ranked more hypertension disease-related 

strains in the lower ranks (Figs. 2A and 2B). PhenoGeneRanker also performed slightly but 

insignificantly better at ranking hypertension disease-related strains while utilizing multiplex 

gene networks compared to aggregated gene networks (Fig. 2C).

Furthermore, we compared the performance of PhenoGeneRanker using multiplex, 

aggregated and single gene layer network combinations on ranking hypertension disease-

related genes. Overall, we showed that PhenoGeneRanker utilizing multiplex gene networks 

performed better in ranking hypertension disease-related genes than the aggregated networks 

as multiplex networks preserve the different topologies of individual layers [30] (Figs. 3 and 

4).

We conducted a GO enrichment analysis of statistically significant genes within top 200 

ranked genes, after running PhenoGeneRanker with all hypertension disease-related genes 

and strains as seeds. We then compared the overrepresented terms in each quartile of the 

ranked list with that of known hypertension-related genes. There was substantial enrichment 

in GO:BP terms related to hypertension with the strongest concordance in the highest ranked 

quartile, indicating that PhenoGeneRanker predicted hypertension-related genes with high 

confidence (Fig. 5). PhenoGeneRanker also identified genes that had not previously been 

annotated for hypertension-related disease at RGD. For example, Ptger1, ranked 10th by 

PhenoGeneRanker, has three publications indicating its involvement in hypertension disease 

[31], [32], [33]. Other examples include Gnaq [34], [35], ranked 40th, and Gna11 [36], 

ranked 42nd by PhenoGeneRanker.

PhenoGeneRanker has several hyperparameters that could be grouped into transition matrix- 

and RWR-related hyperparameters. We analyzed the effects of hyperparameters on gene 

and strain ranking-based performance. We observed that perturbation of λ, the jumping 

probability between multiplex gene and phenotype networks, and η, probability to restart to 

either a gene or phenotype seed showed substantial performance differences. This indicates 

that bipartite connections in heterogeneous networks have huge impact on the rankings of 

genes and phenotypes. Furthermore, perturbation of τ, the probability of restarting to single 

gene layers, and ϕ, the probability of restarting to single phenotype layers showed some 
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performance differences in the gene and strain ranks. Those parameters can be tuned to get 

higher performance using the labeled data as we did in this study.

PhenoGeneRanker is a powerful network analysis tool as it enables the early integration of 

multiple gene and phenotype datasets. It addresses the high-degree node bias by generating 

empirical p values for the gene and phenotype ranks. It has some limitations; it cannot 

utilize directed networks, which could provide more fine-grained information. Moreover, 

available datasets might have patterns of missing data [5] and usually they are not specific 

for a particular complex trait in question [23]. Finally, it has recently been shown that 

mutated genes can cause rewiring of molecular interactions [37]. Since PhenoGeneRanker 

is an unsupervised network propagation tool, it cannot handle the non-condition specific 

datasets efficiently. Developing a supervised network propagation tool to prioritize genes 

and phenotypes could address those challenges.

In this study, we used PhenoGeneRanker for the prioritization of hypertension disease-

related genes and strains. There are several other researches that investigate disease micro-

RNA or lncRNA associations [38], [39], [40], [41]. PhenoGeneRanker can directly be 

applied for these research problems by utilizing relevant biological networks. Furthermore, 

it can also be utilized effectively with other research problems such as drug-gene interaction 

studies where the researcher is interested in prioritizing both type of nodes simultaneously.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Framework of PhenoGeneRanker. First, PhenoGeneRanker creates the transition matrix 

of multiplex heterogeneous network using L gene layers and K phenotype layers. In the 

second step, PhenoGeneRanker ranks the genes and phenotypes using the provided seed 

genes and phenotypes by running RWR on multiplex heterogeneous network of genes and 

phenotypes. Then, PhenoGeneRanker generates p values of the ranks by using random gene 

and phenotype seeds generated via stratified random sampling based on the degree of gene 

and phenotype nodes.
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Fig. 2. 
Effects of different combinations of phenotype and gene layers on the CDF of hypertension 

disease-related strains ranks. A) Multiplex phenotype network vs aggregated phenotype 

network. B) Multiplex phenotype networks vs. phenotype network of single layer. Multiplex 

network of PPI, PWY, EXPR were used in A and B. C) Multiplex gene network vs. 

aggregated gene network, multiplex network of MPO and QP were used in C. Mx: 

Multiplex; Agg.: Aggregated.; PPI: Protein-protein Interaction; PWY: Pathway; EXPR: 

Co-expression.
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Fig. 3. 
Effect of multiplex and aggregated gene networks on the CDF of hypertension disease-

related gene ranks. For all configurations three phenotype layers are used as multiplex 

phenotype network. Mx: Multiplex; Agg.: Aggregated. PPI: Protein-protein Interaction; 

PWY: Pathway; EXPR: Co-expression.
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Fig. 4. 
Effects of different multiplex combinations of gene layers on CDF of hypertension disease-

related genes rank. Multiplex phenotype network of MPO, DO and QP layers were used 

for all network combinations. PPI: Protein-protein Interaction; PWY: Pathway; EXPR: Co-

expression.
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Fig. 5. 
Heatmap of the negative log of GO enrichment results for ranked gene sets from different 

quartile intervals. PhenoGeneRanker ranked genes using three-layer multiplex gene and 

phenotype networks with the hypertension disease-related genes and strains as seeds. 

Reference GO:BP terms are selected from the enriched terms for hypertension disease-

related genes at Bonferroni corrected p < 0.001 significance level.
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Fig. 6. 
Effect of different hyperparameters on the CDF of statistically significant hypertension 

disease-related gene ranks. Panels A-C show the effects for transition matrix-related 

hyperparameters. Panels D-F show the effects for RWR related hyperparameters. All other 

parameters were fixed at default values while a hyperparameter was perturbed. Multiplex 

and heterogeneous networks of three gene layers and three phenotype layers were used. The 

order of gene layers for hyperparameter τ was PPI, pathway and co-expression. The order of 

phenotype layers for hyperparameter ϕ was DO, MPO and QP.
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Fig. 7. 
Effect of different hyperparameters on the CDF of statistically significant hypertension 

disease-related strain ranks. Panels A-B show the effects for transition matrix-related 

hyperparameters. Panels C-D show the effects for RWR related hyperparameters. All other 

parameters were fixed at default values while a hyperparameter was perturbed. Multiplex 

and heterogeneous networks of three gene layers and two phenotype layers were used. The 

order of gene layers for hyperparameter τ was PPI, pathway and co-expression. The order of 

phenotype layers for hyperparameter ϕ was MPO and QP.
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Fig. 8. 
Effect of different r values on statistically significant hypertension disease-related gene 

ranks.
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TABLE 1

Enriched GO: BP Terms in Top- and Bottom-Ranked Genes From PhenoGeneRanker

GO:Biological Process (BP) Term Genes (#) Corrected p value

Top-Ranked Gene Enrichment

blood circulation (GO:0008015) 74 3.81E-62

circulatory system process (GO:0003013) 75 7.42E-62

regulation of biological quality (GO:0065008) 144 2.33E-57

homeostatic process (GO:0042592) 107 1.55E-54

chemical homeostasis (GO:0048878) 89 6.01E-50

regulation of multicellular organismal process (GO:0051239) 117 1.75E-47

response to oxygen-containing compound (GO:1901700) 106 4.61E-46

regulation of system process (GO:0044057) 66 5.08E-46

cellular response to chemical stimulus (GO:0070887) 124 1.89E-45

response to endogenous stimulus (GO:0009719) 97 9.45E-43

Bottom-Ranked Gene Enrichment:

homophilic cell adhesion via plasma membrane adhesion molecules (GO:0007156) 12 2.01E-07

cell-cell adhesion via plasma-membrane adhesion molecules (GO:0098742) 14 4.74E-07

*
Top 10 enriched terms from 824 terms with Bonferroni corrected p<0.001.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2022 November 28.


	Abstract
	Introduction
	Methods
	PhenoGeneRanker
	Running RWR on PhenoGeneRanker Transition Matrix
	Empirical p Value Calculation
	Complete Multiplex Heterogeneous Network for Rat Organism
	Gene-Strain Bipartite Layer

	Seeds and Restart Probabilities
	Ranking Hypertension Disease-Related Genes and Strains

	Results
	PhenoGeneRanker Was More Efficient on Multiplex Phenotype Network Than on Aggregated and Single Layer Phenotype Networks on Strain Ranking
	PhenoGeneRanker Was More Efficient on Multiplex Gene Networks Than on Aggregated Gene Networks on Gene Ranking
	PhenoGeneRanker Top-Ranked Genes Were Enriched in Hypertension Disease-Related GO Terms
	Hyperparameter Analysis
	Transition Matrix Hyperparameters
	RWR Hyperparameters


	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	TABLE 1

