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Abstract: Nano-engineered implants are a promising orthopedic implant modification enhancing
bioactivity and integration. Despite the lack of destruction of an oxide layer confirmed in ex vivo and
in vivo implantation, the testing of a microrupture of an anodic layer initiating immune-inflammatory
reaction is still underexplored. The aim of this work was to form the compact and nanotubular oxide
layer on the Ti6Al4V ELI transpedicular screws and electrochemical detection of layer microrupture
after implantation ex vivo by the Magerl technique using scanning electron microscopy and highly
sensitive electrochemical methods. For the first time, the obtained results showed the ability to form
the homogenous nanotubular layer on an Ti6Al4V ELI screw, both in α and β-phases, with favorable
morphology, i.e., 35 ÷ 50 ± 5 nm diameter, 1500 ± 100 nm height. In contrast to previous studies,
microrupture and degradation of both form layers were observed using ultrasensitive electrochemical
methods. Mechanical stability and corrosion protection of nanotubular layer were significantly better
when compared to compact oxide layer and bare Ti6Al4V ELI.
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1. Introduction

The Ti6Al4V ELI (Grade 23) alloy is the most commonly used biomaterial for dental and orthopedic
implants, and its advantages include good mechanical properties, machinability, biocompatibility,
and excellent fatigue resistance [1]. However, the major concern of using this alloy in clinics is the
presence of infiltrated aluminum and vanadium ions in its chemistry, which can potentially increase
the expressions of pro-inflammatory factors and cause osteolysis, exhibiting a toxic effect in the body.
Products of implant degradation in the form of metallic ions or corrosion products could influence
intercellular space or penetrate cells, which leads to metallosis [2]. Therefore, surface treatment methods
are very important in forming physicochemical protection and biocompatibility of titanium alloys.

To improve in vivo osteointegration, the Ti6Al4V ELI is subjected to surface treatments, such
as nitriding, electropolishing, and electrochemical oxidation. Thermal oxidation [3] or plasma [4] is
distinguished on the alloy surface from the processes of oxide layer production, but, more often, the
anodic surface is subjected to anodizing [5–8]. The major advantages of the anodizing process are
ability to control the fine-tuning of oxide film thickness, feature size, topography, and chemistry, as
well as its simplicity, low-cost, ease of implementation, and scalability at the industrial level [6].

The electrochemical formation of compact and porous oxide layers on the surface of the Ti6Al4V
alloy is difficult. The presence of vanadium favors the adsorption of anions, and, in addition, it is
well dissolved in solutions containing fluoride and chloride ions [9]. The thickness of the film, the
size, and distribution of the pores depend on the underlying substrate structure: the dissolution is
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slightly faster on top of the vanadium-enriched β-phase than on top of the α-phase. The thickness
and topography of the oxide layers formed on the alloy depend, as in the case of titanium, on factors
such as the electrolyte composition, current parameters, and anodizing time. The oxide layer controls
the biological response by accelerating the formation of hydroxyapatite or osteoblastics in growth,
and also reduces the formation of corrosive foci—the main sources of release of toxic metals into
the bloodstream and surrounding tissues. In literature, nanostructures in the form of compact oxide
films, disordered porous films, and self-organized porous and nanotubular films were fabricated by
anodization using various electrolytes, such as NH4F, CH3COOH, H2SO4, HF, Na2HPO4, NaF, NaOH,
and NH4Cl [10].

Macak et al. [11] and Filova et al. [12] anodized Ti6Al4V in 1 M (NH4)2SO4 electrolytes containing
varying concentrations of NH4F and successfully obtained self-assembled nanotubular oxide films only
in the α-phase. For the β-phase, enhanced etching was observed, leading to selective dissolution and
inhomogeneous pore formation. Kulkarni et al. [13] examined the morphology of nanotubular oxide
films in the α and β-phases of Ti6Al4V anodized in 1 M H3PO4 and 0.2 wt.% HF electrolyte. Similarly,
only the α-phase exhibited nanotubular structures upon anodizing, while the β-phase did not form
any nanostructures, indicative of different reactivities of each phase for fluoride containing electrolytes.
Anodic oxidation in non-organic electrolyte proceeds with complete oxidation and formation of a
nanotubular layer in the α-phase of Ti6Al4V and/or loss of the β-phase grains and formation of the
nanotubes on the underlying α-phase matrix.

Park et al. [14] and Acquesta et al. [15] examined the growth behavior of nanotubular oxide on
Ti6Al4V foil in glycerol solution containing NH4F. Anodized surfaces showed a wide distribution of
nanotubular diameters and smooth side walls; nanotubes with smaller diameters formed across spaces
were present between nanotubes with larger diameters. Interestingly, diameters of the nanotubular
features increased toward the base of the nanotubes as opposed to the commonly observed tapered
nanotubular morphology. Attempts to fabricate a nanotubular layer on the Ti6Al4V alloy by anodizing
in ethylene glycol solution were performed by Saharudin et al. [16] and Fraoucene et al. [17]. With an
increase in water content, the nanotubular structure is formed in the α + β phases with different
morphological parameters. However, an inner diameter of nanotubes formed in α + β phases was
between 81 and to 206 nm, which is not desirable for protein/cell adsorption and thus does not favor
osteointegration [18]. Previous attempts of nanotubular layer formation on Ti6Al4V ELI foil [9] and
on Ti6Al4V ELI cervical screws [19] allowed for the production of a layer of regular nanotubes with
diameters ranging from 35–65 nm; these were rich in vanadium oxides in both (α + β) phases of the
Ti6Al4V alloy by anodizing in 99.0% ethylene glycol with the addition of 0.5–0.7 wt.%. NH4F, but this
layer was nonhomogeneous and cracked.

Regardless of the tremendous progress made in nanotubular surface modified implants, there are
still numerous research gaps that prevent their successful shift to clinical testing and the commercial
market. In fact, mechanical stress and abrasion can lead to the formation of cracks and delamination,
and finally to complete implant failure.

Hitherto, several attempts have been made to produce the nanotubular oxide layer on orthopedic
devices, such as screws, plates, etc. During clinical implantation, implants are subjected to high
mechanical stresses, causing the degradation of the nanotubular layer and/or corrosion. The titania
nanotubes (TNT) were successfully produced on Ti6Al7Nb screws [20], Ti CP2 screws [21], and
Ti6Al4V ELI screws [19,22], etching to the Ti6Al4V screw [23]. Though the implantation process was
not considered in this attempt, the formed nanotubular layer of TiO2 was cracked [19] or produced
exclusively in the α-phase [20–23]. This is extremely urgent for obtaining the homogenous layer of
compact and nanotubular oxide on the surface of implantable devices and to ensure protection against
microrupture, ion release, and corrosion that has not yet been done.

The aim of this work was to produce a homogenous nanotubular and compact oxide layer on
the Ti6Al4V ELI transpedicular screws, both in the α and β-phases and examine its delamination
and chemical stability after ex vivo implantation with the use of the Magerl technique. The primary
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objective of this work is to evaluate how the TiO2 nanotubes degrade during implantation, and if TNT
debris could influence tissue response.

Secondly, in the study, researchers examined corrosion resistance of a compact and nanotubular
oxide layer before and after implantation. This examination allowed for determination of corrosion
resistance of the implant in the state after implantation, without the additional procedure of screwing
the implant, which has been analyzed so far. Finally, the measurement carried out helped researchers
in the study prove that nanotubular layer modification makes clinical sense.

2. Materials and Methods

Transpedicular screws (5 mm in diameter and 40 mm in length, LfC, Zielona Gora, Poland) made
of Ti6Al4V ELI purchased from DERO-SGL System (Self Guided Lock System) were used to correct
and stabilize the thoracolumbar spine. Ethylene glycol (EG, purity 99.8%), ammonium fluoride (NH4F,
purity ≥ 99.99%), sodium chloride (NaCl, purity ≥ 99.5%), phosphate-buffered saline (PBS, yields
0.01 M phosphate buffer, 0.0027 M potassium chloride, and 0.137 M sodium chloride, pH 7.4), acetone
(purity ≥ 99.9%), ethanol (purity ≥ 99.5%) were purchased from Sigma-Aldrich (Poznan, Poland) and
used as supplied. All solutions were prepared from high purity reagents and distilled water.

2.1. Oxide Film Preparation on Ti6Al4V ELI Transpedicular Screws

Prior to the anodizing process, Ti6Al4V ELI screws were sequentially cleaned for 10 min in acetone,
ethanol, and deionized water using an ultrasonic bath and dried in nitrogen.

The anodic oxidation treatment was performed by using the potentiostat/galvanostat AUTOLAB
model PGSTAT-302N from AutoLab (EcoChemie, Utrecht, The Netherlands) connected to a
two-electrode system, with a cylindrical platinum as cathode and the Ti6Al4V ELI screws as anode.
The formation process of compact and nanotubular oxide layer consists of two stages: the first
potentiodynamic and the second potentiostatic according to parameters presented in Table 1.

Table 1. Summary of parameters used during the anodic oxidation process of the Ti6Al4V ELI
transpedicular screw.

Samples Solution Voltage [V] Time [min]

Ti6Al4V - - -
Compact Ti6Al4V 1 M H3PO4 20 20

Nanotubular Ti6Al4V EG + 0.6 wt. % NH4F + 1 wt.% H2O 22 20

The compact oxide layer was formed on the Ti6Al4V ELI screw during anodizing in 1 M H3PO4

solution at 20 V with 0.5 V/s scan rate for 20 min.
The nanotubular oxide layer formation: at the beginning, the screws were polarized up to the set

potential (22 V) with a 0.5 V/s scan rate and then kept at the set potential (22 V) for further anodizing
time (20 min) in ethylene glycol aqueous solution (99%) with 0.6 wt.%. NH4F.

At the end of each process, the samples were washed in deionized water.

2.2. Implantation of Ti6Al4V ELI Transpedicular Screws

The Ti6Al4V ELI transpedicular screws were used to study delamination and damage of passivate,
compact, and nanotubular oxide layers upon implantation into the Th8 vertebra from fully grown pigs.
Fresh spines were harvested, cleaned for soft tissues, and stored frozen at a temperature of −20 ◦C.
Prior to the testing day, spines were defrosted at room temperature for 24 h. Th8 vertebrae were chosen
to be examined due to the commonly used stabilization in thoracolumbar vertebra and lower holding
power of transpedicular screws in thoracic vertebrae compared to lumbar one [24]. According to the
Magerl technique, in each vertebrae convergent 40-mm pilot holes for transpedicular screws were
made by means of a 3-mm drill [25]. Afterwards, transpedicular solid fully threaded screws were
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inserted through a vertebral body. The Ti6Al4V ELI screws were then removed and cleaned and further
used to examine degradation and chemical stability of an oxide layer after implantation.

2.3. Degradation and Chemical Stability Analysis

The sample surface was studied using field emission scanning electron microscopy (FE-SEM,
JEOL JSM-7600F, Tokyo, Japan) and energy-dispersive X-ray spectroscopy (EDS, Oxford INCA).

Chemical stability of a transpedicular screw covered by varying types of TiO2 oxide layer
before and after implantation were characterized by open circuit potential (OCP) and electrochemical
impedance spectroscopy (EIS) measurements. OCP measurements were recorded for 1200 s. EIS spectra
were measured over a frequency range of 105–0.1 Hz with an acquisition of 10 points per decade and
with a signal amplitude of 10 mV. In order to select the equivalent circuit the Nova 2.1.4 software
(EcoChemie, Utrecht, The Netherlands) was used.

The AutoLab (EcoChemie, Utrecht, The Netherlands) PGSTAT-302N potentiostat/galvanostat was
used to perform these experiments. All measurements were performed in the standard three-electrode
configuration with Ti6Al4V ELI transpedicular screw as the working electrode, the standard silver
chloride electrode (EAg/AgCl = 0.222 V vs. Standard Hydrogen Electrode, SHE) as the reference electrode,
and a platinum foil as the auxiliary electrode in 0.9% NaCl solution and 0.01 M PBS solution (pH 7.4)
at 25 ± 2 ◦C.

3. Results and Discussion

3.1. Anodizing of Ti6Al4V ELI Transpedicular Screws

Surface modifications are known to improve surface morphology and chemistry of titanium
alloys. Anodic layers were formed on Ti6Al4V ELI transpedicular screws in an anodizing process
according to the parameters shown in Table 1. The microscopic analysis of the Ti6Al4V ELI screw was
performed in a cross section and top-view on tip (initial zone), and on the threaded shank of the screw.
The FE-SEM micrographs of the bare Ti6Al4V ELI transpedicular screws, Ti6Al4V ELI transpedicular
screws anodized in inorganic electrolyte, and Ti6Al4V ELI transpedicular screws anodized in organic
electrolyte with fluoride addition were shown in Figure 1.
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Figure 1. SEM images showing the threaded shrank and tip of Ti6Al4V ELI transpedicular screws: 

(A) non-modified, (B) anodized in 1 M H3PO4 and (C) anodized in ethylene glycol (99%) + 0.6 wt.%.

NH4F before implantation.
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at higher anodizing potentials, which promote its resistance to cell adhesion [27,28]. 

As can be clearly noted in Figure 1C, the Ti6Al4V ELI screw anodized in EG (99%) + 0.6 wt.%. 

NH4F results in the growth of the TiO2 nanotubes perpendicular to the surface of the anodized
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Figure 1. SEM images showing the threaded shrank and tip of Ti6Al4V ELI transpedicular screws: (A)
non-modified, (B) anodized in 1 M H3PO4 and (C) anodized in ethylene glycol (99%) + 0.6 wt.%. NH4F
before implantation.

Morphology of the substrate surface of Ti6Al4V ELI transpedicular screw shown in Figure 1A is
very smooth when compared with an anodized (Figure 1B,C) one. The Ti6Al4V ELI screw anodized in
1 M H3PO4 shown in Figure 1B presents thick continuous oxide of TiO2, with thickness of 100 ± 10
nm, similar to the research carried out by Kumari and Krishna [26]. Formation of compact TiO2 was
performed in phosphoric acid due to the potential presence of phosphate inclusion possible to obtain
at higher anodizing potentials, which promote its resistance to cell adhesion [27,28].

As can be clearly noted in Figure 1C, the Ti6Al4V ELI screw anodized in EG (99%) + 0.6 wt.%.
NH4F results in the growth of the TiO2 nanotubes perpendicular to the surface of the anodized sample.
FE-SEM images show arrays of opened from the top, closed at the bottom, and vertically oriented
nanotubes. The nanotubular layer is entirely formed of screw surface covered uniformly both the
threaded shrank and tip of screw. The mean outer diameter of nanotubes in α-phase was 35 ± 5 nm,
while in the β-phase was 50 ± 5 nm. The differences in diameter of TNT on α and β-phases result
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in favoring adsorption of anions and dissolving well in fluoride ions of vanadium [9]. The layer has
average total thickness of length 1500 ± 100 nm. The use of high concentration of ethylene glycol
and low pH of this electrolyte by the addition of a high concentration of fluoride allowed to form
homogenous TNT in α and β-phases, which has not been obtained yet [14,15], or the layer was
cracked [28].

The obtained morphology of nanotubular layer is compatible with reports on cell adhesion on TiO2

nanotubes: a small TNT diameter (~30 nm) stimulated the highest degree of osteoblast adhesion [29],
diameters of 15–20 nm increased cell adhesion, proliferation as well as alkaline phosphatase (ALP)
activity and bone matrix deposition [30]; higher spreading of cytoskeletal actin was found on the
surface with a small nanotube diameter (30 nm) [31]. To our knowledge, the influence of titania
nanotubes length on cell adhesion has not yet been reported. However, we assume that the length of
applied nanotubular substrates does not influence the outcome of the microbial tests because the cells
are in contact with the open tube ends. Furthermore, it has been theoretically calculated that the ideal
implant surface features at the micro-scale should be 1500 nm long [32,33]. Therefore, the parameter
of anodizing process in EG with F- addition was determined using the elaborated mathematical
model [34] to ensure the length of TNT being 1500 nm.

Results of the EDS analysis shown in Table 2 confirm the presence of titanium, aluminium,
vanadium, and oxygen in a layer formed on the Ti6Al4V ELI transpedicular screw. As it can be seen,
the presence of oxygen was observed only for an anodized layer, and the weight percentage correlates
with the length of the oxide layer, i.e., is higher for nanotubular layer (~1500 nm) than compact
layer (~200 nm). As a result, the weight percentage of titanium in these samples decreased to the
stoichiometric, nearly perfect TiO2 for nanotubular oxide. In the case of implants, the stoichiometric
defects and low stability of this film can lead to their delamination and loosening [19,22]. For a
nanotubular oxide layer formed on the Ti6Al4V ELI screw, the division into an α-phase rich in
aluminum and β-phase rich in vanadium was observed. Despite the presence of toxic vanadium in the
β-phase of Ti6Al4V ELI, the anodizing process caused its oxidation reducing toxic effect from a metal
substrate [2,35,36].

Table 2. Chemical composition of the Ti6Al4V ELI transpedicular screws: (A) non-modified, (B)
anodized in 1 M H3PO4 and (C) anodized in ethylene glycol (99%) + 0.6% wt. NH4F.

Ti6Al4V ELI Transpedicular Screws Ti [wt. %] Al [wt. %] V [wt. %] O [wt. %]

(A) Non-modified 91.15 5.96 3.53 —

(B) Anodized in 1 M H3PO4 72.6 4.56 3.6 19.19

(C) Anodized in EG
(99%) + 0.6 wt. % NH4F

α-phase 63.79 2.34 — 33.96

β-phase 52.7 1.24 28.98 17.13

The oxide layer prepared on Ti6Al4V ELI transpedicular screws are hereinafter designated as:
“Ti6Al4V” for bare transpedicular screw, “Compact Ti6Al4V” for transpedicular screw anodized in
1 M H3PO4 resulting in compact oxide formation and “Nanotubular Ti6Al4V” for transpedicular
screw anodized in ethylene glycol (99%) with 0.6 wt.% NH4F addition resulting in nanotubular
layer formation.

3.2. Optical Assessment of Oxide Layer Degradation after Implantation

Previous attempts to elaborate the mechanical degradation of TNT during implantation were
carried out using flat foil [9,14–17], on Ti, Ti6Al4V, and Ti6Al7Nb screws [19–23] using a nanoindenter
test [37], wear test [6,36], or practical implantation of the screws to the bone. The implantation was
carried out by inserting a screw into a bone and removing it, which caused double abrasion of the
nanotube layer, and prevented TNT characterization inside the bone immediately after implantation.
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Therefore, the implantation using the Magerl technique was carried out in the pig’s Th8 vertebra and
removed not by unscrewing but by drilling through the bone.

The FE-SEM images of a Ti6Al4V ELI transpedicular screw modified by varying types of
oxide layers after the implantation process are shown in Figure 2. As it can be seen, the Ti6Al4V
(Figure 2A) and compact Ti6Al4V (Figure 2B) have been abraded and smoothed out after implantation.
The evolution of length of a compact layer was impossible due to its non-homogeneity and low height.
After implantation, round scratches were observed on the tip of the compact Ti6Al4V screw.
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Figure 2. SEM images showing the threaded shrank and tip of Ti6Al4V ELI transpedicular screws: 
(A) non-modified, (B) anodized in 1 M H3PO4 and (C) anodized in ethylene glycol (99%) + 0.6% wt.
NH4F after implantation into pig’s Th8 vertebra by the Magerl technique.
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Figure 2. SEM images showing the threaded shrank and tip of Ti6Al4V ELI transpedicular screws:
(A) non-modified, (B) anodized in 1 M H3PO4 and (C) anodized in ethylene glycol (99%) + 0.6% wt.
NH4F after implantation into pig’s Th8 vertebra by the Magerl technique.

Degradation of morphology of the nanotubular Ti6Al4V (Figure 2C) was not observed after
implantation. FE-SEM images show arrays of opened from the top, closed at the bottom, and vertically
oriented nanotubes. The microscopic analysis of Ti6Al4V ELI surface does not show any signs of
delamination or macroscopic damage of nanotubular Ti6Al4V. Despite that, the length of nanotubular
layer was insignificantly decreased from 1500 ± 100 nm to 1300 ± 100 nm and the “hills” created at the
top of the surface caused by its high length have been smoothed. This phenomenon was not observed
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in previous attempts [19,38] due to lower thickness of the nanotubular layer. This is favorable due to
the osseointegration process because the surface roughness of nanotubular Ti6Al4V ELI are able to
slightly increase after implantation [1].

3.3. Electrochemical Examination of Ti6Al4V ELI Transpedicular Screw after Implantation

Metals from orthopaedic implants are released into the surrounding tissue by various mechanisms,
including corrosion, wear, and mechanically accelerated electrochemical processes such as stress
corrosion, corrosion fatigue, and fretting corrosion [39,40]. The electrochemical tests like open circuit
potential measurements and electrochemical impedance spectroscopy help to reveal the microrupture,
which is not seen on FE-SEM images. Two significant factors concerning corrosion potential and
corrosion resistance are measured by OCP and EIS methods.

3.3.1. Open Circuit Potential Measurements

The evaluation of open circuit potential of Ti6Al4V ELI transpedicular screw and covered by
compact and nanotubular layer Ti6Al4V ELI transpedicular screw was carried out in 1200 s both
in the 0.9% NaCl chloride environment, as well as in 0.01 M PBS solution, which can be used to
simulate the body environment due to its high chloride concentration [41]. Typical OCP curves for
the analyzed surface on Ti6Al4V ELI screw were presented in Figure 3 and its statistical analysis was
presented in Table 3. OCP curves presented in Figure 3A revealed that corrosion potential for compact
and nanotubular oxide layer were stabilized in contrast to bare Ti6Al4V ELI. This behavior strongly
indicates possible formation of a passive film on bare Ti6Al4V with time.
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Figure 3. Open circuit potential plots of non-modified (Ti6Al4V), anodized in 1 M H3PO4 (Ti6Al4V
compact) and anodized in ethylene glycol (99%) + 0.6 wt. % NH4F (Ti6Al4V nanotubular) before and
after implantation into pig’s Th8 vertebra by the Magerl technique measured in 0.9% NaCl (A) and
0.01 M PBS (B) during 1200 s.

Bare Ti6Al4V ELI transpedicular screw exhibits a pronounced increasing from −0.40 V/Ag/AgCl
towards more positive values until it does not reach a constant value of OCP −0.337 V/Ag/AgCl in
1200 s in 0.9% NaCl. This phenomenon can be explained, as reported by Atmani et al. [7], by the
formation of a protective passive oxide film on the surface of the Ti6Al4V alloy. The as-anodized
corresponding OCP plot behaves nearly the same as the substrate.

The anodizing process significantly changes the corrosion potential of Ti6Al4V ELI from −0.337 V
(bare) to −0.193 V for compact Ti6Al4V and to −0.129 V for nanotubular Ti6Al4V measured in 0.9%
NaCl. This initial increase seems to be related to the formation and thickening of the oxide film on
the metallic surface, improving its corrosion protection ability [15]. It should be mentioned that a
more positive corrosion potential results in higher corrosion resistance of the coating, confirming the
possibility to reduce a toxic effect from a metal substrate by better corrosion protection of anodic
layers [42]. On both forms, the oxide layer indicates higher corrosion potential compared to bare
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Ti6Al4V ELI, which confirms its better protection properties against corrosion fatigue, fretting corrosion,
and stress corrosion. The most stable potential indicated the compact Ti6Al4V before implantation,
confirming the homogeneity of this layer. Oscillations seen in the course of OCP measurements of
nanotubular Ti6Al4V before implantation are the results of wettability of TNT [8,9] in such a long
structure. Despite this, stability in the corrosion potentials of a nanotubular Ti6Al4V ELI screw from
400 s of measurement indicates that this layer became thermodynamically stable with time.

On both the compact and nanotubular layers, the corrosion potential decreased after implantation,
what confirms a small microrupture of these layers. The decrease of OCP for compact Ti6Al4V was
50 mV and for nanotubular Ti6Al4V was 25 mV after implantation, compared to its original values.
It confirms better mechanical stability of the nanotubular layer, and lower degradation of this layer
during the implantation process [36]. For compact Ti6Al4V, the stabilizing time of OCP was longer
than nanotubular, i.e., 900 s, and the amplitude of corrosion potential was much greater, showing
greater damage of this layer.

The above-mentioned correlations were also observed in OCP curves measured in PBS solution,
presented in Figure 3B. The higher values of OCP recorded for each type of sample are the result of a
higher pH of PBS solution (7.4 compared to 5.4 for 0.9% NaCl) and the presence of phosphate ions.
Metals typically develop a passivation layer in moderately alkaline solutions (PBS), which lower the
corrosion rate as compared to acidic (NaCl) solutions, which explains the more stable curves recorded
for each sample. Cl-concentration strongly affects the corrosion rate inside the tested solutions, whereas
higher concentration was found in 0.9% NaCl solution. The presence of phosphate ions in electrolytes
increases the inhibition effect and corrosion resistance of analyzed transpedicular screws.

Table 3. Open circuit potential measurements with statistical analysis (n = 5).

OCP in NaCl [V] RSD [%] OCP in PBS [V] RSD [%]

Ti6Al4V −0.337 4.25 −0.319 3.29
Compact Ti6Al4V before implantation −0.193 4.74 −0.116 4.55
Compact Ti6Al4V after implantation −0.242 3.47 −0.068 5.83

Nanotubular Ti6Al4V before implantation −0.129 7.82 0.021 6.37
Nanotubular Ti6Al4V after implantation −0.154 5.11 0.037 5.23

Ti6Al4V—bare Ti6Al4V ELI transpedicular screws; OCP—Open Circuit Potential; RSD—Relative Standard Deviation;
n—Number of samples

3.3.2. Electrochemical Impedance Spectroscopy Measurement

EIS tests were carried out to further study the electrochemical characteristics of transpedicular
screw and its degradation during implantation. The EIS plots and simulated curves for the bare,
compact, and nanotubular Ti6Al4V ELI screws are shown in Nyquist representation in Figure 4 and
in Bode representation in Figure 5. The summary of impedimetric parameters of bare, compact, and
nanotubular Ti6Al4V are shown in Table 4.

The Nyquist curves shown in Figure 4 present an incomplete semicircle in the entire frequency
range, a typical impedance response of thin oxide layers. The capacitance loop diameter (Figure 4) of
the bare Ti6Al4V is substantially greater than anodized Ti6Al4V transpedicular screws. Furthermore,
the compact Ti6Al4V exhibits more capacitive behavior than the nanotubular Ti6Al4V layer.
The further depressed capacitive semicircles are associated with the charge transfer process in
the electrode/electrolyte interface.
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Figure 4. Nyquist diagrams for the Ti6Al4V ELI transpedicular screw: non-modified (Ti6Al4V),
anodized in 1 M H3PO4 (Ti6Al4V compact) and anodized in ethylene glycol (99%) + 0.6 wt.% NH4F
(Ti6Al4V nanotubular) before and after implantation into pig’s Th8 vertebra by the Magerl technique
measured in 0.9% NaCl in frequency range 0.1–105 Hz.

The decrease of the semi-circular diameter of recorded for compact and nanotubular Ti6Al4V
screws after implantation confirms increased electrolytic resistance and deterioration of corrosion
resistance. The implantation process caused the significant change in active and passive resistance of the
compact layer, the real impedance (ReZ) decreased more than twice from 85,318.6 to 194,309.6 Ω/cm2,
while the imaginary impedance (ImZ) decreased from 225,726.6 to 183,136.7 Ω/cm2. The increase of
active resistance confirms the microrupture in compact oxide layer after implantation.

Both ReZ and ImZ decreased after implantation of nanotubular Ti6Al4V; however, these changes
are smaller when compared to a compact one. It should be noted that compact and nanotubular
layers significantly increase the semicircle radius (even after the implantation process), indicating an
enhanced stability of passive film for corrosion resistance [21].
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Figure 5. Bode plots for non-modified (Ti6Al4V), anodized in 1 M H3PO4 (Ti6Al4V compact) and
anodized in ethylene glycol (99%) + 0.6 wt.% NH4F (Ti6Al4V nanotubular) before and after implantation
into pig’s Th8 vertebra by the Magerl technique measured in 0.9% NaCl (A,B) and in 0.01 M PBS (C,D)
in a frequency range of 0.1–105 Hz.

Bode representation of impedance spectra of bare, compact, and nanotubular Ti6Al4V measured
in 0.9% NaCl, shown in Figure 5a,b, confirms the increase of impedance of compact and nanotubular
layer compared to bare Ti6Al4V. The implantation process caused a slight decrease of impedance which
does not exceed 10% for compact and 20% for the oxide layer.

The changes in morphology and heterogeneity of compact and nanotubular layer are clearly seen
in phase angle (Zphase) changes (Figure 5A). The nanotubular Ti6Al4V before and after implantation
has a very similar course, and the Zphase values do not change significantly, from −69.81 to −67.79◦.
The one time constant confirms the presence and heterogeneity of nanotubular oxide layer. Compact
oxide Ti6Al4V dramatically changes after the implantation process, the one-time constant change from
100 to 1000 Hz, and the Zphase decreased from −69.29 to −43.30◦.

Bode representation of impedance spectra of bare, compact, and nanotubular Ti6Al4V measured
in 0.01 M PBS, shown in Figure 5C,D, indicate the same correlation as described above. Implantation
causes a decrease in phase angle value and impedance modulus, both for compact and nanotubular
Ti6Al4V. Higher phase angle values recorded for nanotubular Ti6Al4V are the result of a higher affinity
to phosphate absorbing by titanium dioxide nanotubes [28,42,43]. Therefore, as can be seen in Table 4,
the larger capacitive semicircle diameters and the increased phase angle all imply that a more protective
passive layer was obtained on the nanotubular Ti6Al4V.

Table 4. Impedimetric parameter of Ti6Al4V measured in 0.9% NaCl with statistical analysis (n = 5).

|Z|
[Ω/cm2] RSD [%] -Zphase

[o] RSD [%] ReZ
[Ω/cm2] RSD [%] -ImZ

[Ω/cm2] RSD [%]

Ti6Al4V 11358 5.45 73.39 1.65 3078 2.04 10594 4.65

Before implantation

Compact
Ti6Al4V 244399 7.68 69.29 1.80 85319 4.61 225727 7.72

Nanotubular
Ti6Al4V 44261 6.43 69.81 2.05 16072 9.76 43697 6.39

After implantation

Compact
Ti6Al4V 264887 8.53 43.30 2.98 194309 5.18 183137 7.36

Nanotubular
Ti6Al4V 37563 7.71 67.79 1.93 12994 9.13 31831 8.58

Ti6Al4V—bare Ti6Al4V ELI transpedicular screws
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The specific polarization resistance was calculated following the fitting of the impedance
experimental results considering a solid electrode (bare Ti6Al4V, anodized Ti6Al4V) in contact with
0.9% NaCl electrolyte solution. The results of impedance investigations were fitted to the equivalent
circuits (Figure 6), which represent a single-layer model—bare and compact Ti6Al4V ELI—and a
bi-layer model—nanotubular Ti6Al4V and the interior of the nanotubes. Identical equivalent circuits
have already been used in literature for compact and nanotubular oxide layer [8,44]. The Rs element
represents the uncompensated solution resistance relaxing at high frequencies. Due to the surface
heterogeneities of the treated samples, as shown in Figures 1 and 2, a constant phase element Q is used
to fit the data instead of a pure capacitor C [44]. Parallel combination R1Q1 represents the resistance
and constant phase element with the capacitance C1 of the porous TiO2. The next parallel combination
R2Q2 determining TiO2 nanotubes layer leads to a depressed semicircle in the corresponding Nyquist
impedance plot (Figure 4) [30].
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nanotubular (C) samples of a Ti6Al4V transpedicular screw.

The parameters determined by fitting of the experimental EIS data are summarized in
Table 5. The equivalent circuits allow a good agreement between the experimental data and the
simulated impedance plots for comparative estimation of specific components of the studied surfaces.
The resistance, Rs, decreased in the following order: bare Ti6Al4V ELI, compact Ti6Al4V ELI, and
nanotubular Ti6Al4V ELI before implantation, confirming the differences in electrical conductivity of
the analyzed samples, and its improving by anodization treatment.

According to the data presented in Table 5, a nanotubular Ti6Al4V layer consists of a thin inner
compact and a barrier titanium oxide layer followed by an outer nanotubular layer. This result
confirms the data obtained in previous studies [44]. With regard to the present tubular structure, the
corrosion resistance of the nanotubular Ti6Al4V is lower than that of the other specimens (Table 3).
The value of N corresponds to the linear slope modulus of Bode plot (Figure 5B). It is well known
that, when N is near 1, the surface is uniform and smooth. On the other hand, lower values (in our
case N = 0.92 in the compact Ti6Al4V specimen, and n = 0.86 in the nanotubular Ti6Al4V specimen)
show deviation from ideal capacitive behavior (which has been attributed to the inhomogeneity of
the surface) and deterioration of corrosion resistance [44]. Due to this result, the highest polarization
resistance (extrapolation of Z modulus at low frequency) is obtained for a nanotubular interface
formed on the Ti6Al4V transpedicular screw (Figure 5B). Furthermore, this result confirms the FE-SEM
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micrograph and shows that formation of titania nanotubes on the Ti6Al4V transpedicular screw causes
the increase of corrosion resistance.

Table 5. Value of circuit equivalent elements (abbreviation according to models in Figure 6) for
non-modified (Ti6Al4V), anodized in 1 M H3PO4 (Ti6Al4V compact) and anodized in ethylene glycol
(99%) + 0.6 wt. % NH4F (Ti6Al4V nanotubular) before and after implantation into pig’s Th8 vertebra
by the Magerl technique.

Element Ti6Al4V

Compact
Ti6Al4V
before

Implantation

Compact
Ti6Al4V

after
Implantation

Nanotubular
Ti6Al4V
before

Implantation

Nanotubular
Ti6Al4V

after
Implantation

Rs [Ω] 9.36 7.29 7.30 1.59 2.05

R1 [Ω] 1.00 × 106 1.00 × 106 9.00 × 105 1.97 × 105 1.20 × 104

Q1 C1 [F] 1.30 × 10−4 6.10 × 10−6 8.47 × 10−6 2.84 × 10−5 3.89 × 10−5

N1 0.79 0.92 0.55 0.86 0.87

τ1 = R1·C1 [s] 130 6.1 7.62 5.59 0.47

R2 [Ω] 2.64 × 105 0.69 × 105

Q2 C2 [F] 1.08 × 10−5 2.19 × 10−5

N2 0.98 0.99

τ1 = R2·C2 [s] 2.85 1.51
χ2 0.016 0.0301 0.0320 0.0046 0.009

4. Conclusions

The Ti6Al4V ELI transpedicular screws were anodized resulting in a compact oxide layer (height:
100 ± 10 nm) and nanotubular oxide layer (outer diameter of nanotubes in the α-phase was 35 ± 5 nm,
while, in the β-phase, it was 50 ± 5 nm, total thickness of length 1500 ± 100 nm) formation. The anodic
layers were homogenously formed on tip and on the threaded shank of the screw, which was confirmed
by scanning electron microscopy pictures. According to the literature, obtained morphology was
favorable to enhanced osteointegration and antibacterial action.

The implantation process of a transpedicular screw included single screwing through the pig’s
Th8 vertebra, making it possible to characterize the analyzed layer immediately after implanting.
The FE-SEM analysis showed the round scratches on the tip of compact Ti6Al4V screw after
implantation. The nanotubular layer was smoothed after implantation, and free of “hills” characteristic
to high-length nanotubes.

More accurate analysis of degradation of anodic layers was performed by electrochemical
characteristics in sodium chloride and phosphate buffered solutions. The anodic layer was characterized
by higher open circuit potential values and more capacitive behavior compared to bare Ti6Al4V ELI,
proving its better corrosion resistance and protection. Implantation caused the corrosion potential
decreased after implantation, confirming a small microrupture of the anodic layer. The decrease of
OCP for compact Ti6Al4V was 50 mV and, for nanotubular Ti6Al4V, was 25 mV after implantation,
compared to its original values. It confirms better mechanical stability of a nanotubular layer, and lower
degradation of this layer during the implantation process. For compact Ti6Al4V, the stabilizing time of
OCP was longer than nanotubular, i.e., 900 s, and the amplitude of corrosion potential was much greater,
showing greater damage of this layer. These results were confirmed by a fitted equivalent circuit.

In conclusion, the obtained results indicate degradation of the anodic layer, both compact and
nanotubular after the implantation process. Much greater degradation and microruptures were
observed in a compact oxide layer, making the nanotubular oxide layer clinically relevant. These results
are in contrast to previous studies, strongly showing the significance of toxicological studies of
layer splinters.
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