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Abstract

Objective

To explore the value of machine learning methods for predicting multiple sclerosis disease

course.

Methods

1693 CLIMB study patients were classified as increased EDSS�1.5 (worsening) or not (non-

worsening) at up to five years after baseline visit. Support vector machines (SVM) were used

to build the classifier, and compared to logistic regression (LR) using demographic, clinical

and MRI data obtained at years one and two to predict EDSS at five years follow-up.

Results

Baseline data alone provided little predictive value. Clinical observation for one year improved

overall SVM sensitivity to 62% and specificity to 65% in predicting worsening cases. The

addition of one year MRI data improved sensitivity to 71% and specificity to 68%. Use of non-

uniform misclassification costs in the SVM model, weighting towards increased sensitivity,

improved predictions (up to 86%). Sensitivity, specificity, and overall accuracy improved mini-

mally with additional follow-up data. Predictions improved within specific groups defined by

baseline EDSS. LR performed more poorly than SVM in most cases. Race, family history of

MS, and brain parenchymal fraction, ranked highly as predictors of the non-worsening group.

Brain T2 lesion volume ranked highly as predictive of the worsening group.

Interpretation

SVM incorporating short-term clinical and brain MRI data, class imbalance corrective mea-

sures, and classification costs may be a promising means to predict MS disease course,

and for selection of patients suitable for more aggressive treatment regimens.
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Introduction

A critical component in the management of patients with multiple sclerosis (MS) is correctly

predicting which patients will experience worsening disease over the short term. This is partic-

ularly relevant given the expanding array of disease-modifying medications, and the impor-

tance of identifying the patients who may benefit from more potent or aggressive treatment or

closer monitoring. Although a number of clinical and demographic features have been associ-

ated with long-term disease course in MS,[1–7] prediction of disease course from demo-

graphic and/or baseline clinical data is challenging, and no validated prediction model for

disease worsening is currently available. In this paper we explore both logistic regression and

machine-learning techniques in predicting disease course and their relative performance using

baseline data or longitudinal data. A key question that we address is the length of monitoring

period required for the best model performance.

Logistic regression is a statistical method for finding the best fitting linear relationship

between the log odds of a binary variable (“worsening” versus “non-worsening” in our case)

and a group of independent explanatory variables (patients’ longitudinal records in our case).

Support Vector Machine (SVM) is a widely used machine-learning classification method

where the algorithm maximizes the margin that separates the two classes of data.

Even though traditional logistic regression and SVM can be applied to develop prediction

models, MS datasets including ours have additional features that require attention. First,

because the prevalence of patients with worsening disease is smaller than those with a milder

course, we have a skewed distribution, often called class imbalance.[8] Second, incorrectly clas-

sifying subjects who will experience worsening disease incurs a higher cost because the conse-

quences of leaving a patient with worsening disease inadequately treated are potentially worse

than the side effects that may be involved in aggressively treating a patient with relatively mild

disease. Third, the amount of longitufdinal follow-up required for good clinical prediction is

uncertain. In this paper, we assess extensions to traditional prediction models to account for

the complexities of MS datasets in order to obtain improved performance.

Materials and methods

Study overview

The Comprehensive Longitudinal Investigation of MS at the Brigham and Women’s Hospital,

Partners MS Center (CLIMB) has been enrolling patients since 2000. Patients meeting the fol-

lowing inclusion criteria were included in this study: 1) subjects with a visit at year 5 2) 2) at

least three clinical visits on the study in order to contribute 3) smoking history; (Table 1). The

basic schema of this study is described in prior publications.[9, 10]

Clinical data collection: CLIMB patients have a complete neurological exam every six

months that includes measurement of the Expanded Disability Status Scores (EDSS).

Table 1. Baseline demographic and clinical characteristics of study sample.

N 1693

Number of females (%) 1248 (73.7%)

Age [years, mean (SD)] 43.88 (11.46)

Number self-reported white (%) 1562 (92.3%)

EDSS (�1.5 / 2–4 /�4) 919 / 539 / 235

EDSS-Expanded Disability Status Scale

https://doi.org/10.1371/journal.pone.0174866.t001
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MRI segmentation: All baseline and follow-up brain scans from our institution were pro-

cessed by a semi-automated template driven segmentation tool, as previously described.[11]

Here, we include annual measurements of whole brain T2 hyperintense lesion volume (T2LV)

and normalized whole brain volume, expressed as the brain parenchymal fraction [BPF =

(gray matter+white matter+T2LV)/intracranial volume].

Subject selection

We selected subgroups of patients by applying various filters such as length of observation

(baseline, one year and two years) and with/without MRI information. The flowchart in Fig 1

outlines details of each filter and the number of patients included in each subgroup. Note that

when applying our methods to one and two year data, we further filtered to remove patients

with many missing visits (patients miss visits for a variety of reasons which include travel, for-

gotten appointments, insurance issues). The CLIMB study is approved by the Partners Institu-

tional Review Board. Subjects provided written consent for participation in the CLIMB study.

Statistical analysis/Machine learning approach

Overview of machine learning. We investigated two different learning algorithms: Logis-

tic regression and Support Vector Machines (SVM), and the impact of linear versus non-linear

kernels for SVMs on performance [12–14]. In addition to examining the length of time from

which to make a prediction, we investigated several modifications to these two basic

approaches designed to handle the complexities of the data: non-uniform misclassification

costs, class imbalance and missing data. We describe each in turn.

Classification models for EDSS outcomes. Our main outcome in these experiments is

“worsening” or “non-worsening” EDSS at five years of follow-up from entry into the study.

We define “worsening” as an increase of 1.5 or more from baseline EDSS to EDSS at the five

year mark, and “non-worsening” as all other cases, based on the fact that EDSS increase of 1.0

or 1.5 a clinically significant and generally sustained increase in EDSS, and is used as a primary

or secondary endpoint in clinical trials of MS therapies.

We estimate the predictive accuracy of models for “worsening” versus “non-worsening”

MS at 5 years of follow-up using: 1) data available from the initial visits, 2) information avail-

able up to the 12-month clinical visit, and 3) information available up to the 24-month visit.

For each longitudinal dataset, in addition to including the cross-sectional clinical information

from each visit, we created new features that described the change in clinical information

between visits.

Baseline groups. Because patients with a different baseline EDSS score may have different

disease trajectories, we created categories of patients by initial EDSS score: G1-initial EDSS<2;

G2-initial EDSS> = 2 and<4; G3-EDSS> = 4.

Predictors of disease course. Potential predictors included in the models are listed in

Table 2. These include demographic characteristics, clinical characteristics, MRI features, and

characteristics of the first symptom(s) of MS. Several of these features have been identified in

previous papers as predictive of long-term outcomes in patients with MS.[2, 6, 15] Because of

the inclusion of longitudinal data, we further investigate whether the changes in some mea-

sures lead to improved predictive accuracy.

Handling missing data. In order to handle missing data, we model each patient’s record

as a time series with each clinical visit as one data point. Missing numeric values in the time

series are interpolated/extrapolated linearly using the nearest data points. Missing categorical

values are filled using the mode of existing values in the patient’s time series. Each time series

has a potential total of eleven time points given that patients have an initial visit plus follow-up
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Fig 1. Flowchart of patient selection. Fig 1 presents the distribution of patients after imputing the missing values. The labels on the arrows

indicate the number of years of follow-up required in the training dataset and which filters were applied. The first box indicates the total number of

patients assessed. Note that P (and %P) refers to the number (and percentage) of patients who meet “progression” criteria within the different

subgroups.

https://doi.org/10.1371/journal.pone.0174866.g001
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every six months visits for up to five years. We required each time series to have at least three

data points (out of eleven). Records with fewer than three data points in the time series are

removed from the experiment (Fig 1).

Class imbalance. In this dataset, there are more patients in the “non-worsening” EDSS

class than the “worsening” EDSS class. Thus we perform a combination of bagging and under-

sampling[8] of the majority class during training. Specifically, we form ten classifiers, each

trained on all minority class (“worsening” EDSS) instances and a random sample of equal

number of the majority class (“non-worsening” EDSS) instances. When predicting the class of

a previously unseen instance, we take a majority vote of the ten classifiers.

“Cost” of misclassification. Our last consideration is the relative costs of false positives

(predicting progressive when a patient has non-progressive EDSS) and false negatives (predict-

ing non-progressive when a patient has progressive EDSS). To address this misclassification

cost disparity, we ran the SVM method first with equal misclassification costs and then with a

cost ratio of c:1, where c ranges from 1.5 to 3 with an increment of 0.5 (thus misclassifying pro-

gressive as non-progressive EDSS was c times as costly as the reverse). When forming a classi-

fier, the SVM optimizes a function of cost rather than accuracy.[16]

Reporting of data. The sensitivity, specificity, and overall accuracy of the model are

reported for each approach and model. Sensitivity is defined in this study as the proportion of

subjects who worsen that are correctly classified as worsening. Specificity is defined as the pro-

portion of subjects who did not worsen that are correctly classified. Overall accuracy is defined

as the proportion of all subjects who are correctly classified. Each outcome measure was calcu-

lated based on a ten-fold cross-validation for each of the experiments. Ten-fold cross-valida-

tion breaks the data into ten parts. The model is built using 90% of the data and then tested in

Table 2. Predictors of disease classification.

Demographic • Visit age

• Disease duration at baseline visit

• Gender

• Race

• Ethnicity

• Family history of MS

• Smoking ever

Clinical • EDSS

• Ambulation Index

• Disease step

• Disease category

• Disease activity

• Pyramidal_functional status score

• Cerebellar_functional status score

• Brainstem_functional status score

• Sensory_functional status score

• Bowel_bladder_functional status score

• Visual functional status score

• Mental functional status score

MRI • BPF

• T2 lesion volume

Additional predictors • Change of each clinical and MRI value over its corresponding initial value

EDSS-Expanded Disability Status Scale, FS-functional status, BPF-brain parenchymal fraction

https://doi.org/10.1371/journal.pone.0174866.t002
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the remaining 10%, and this procedure is repeated for each of the ten parts of the data. Since

each observation is left out of the model building one time, the sensitivity, specificity and accu-

racy associated with each observation is calculated based on this aspect of the cross-validation.

Software: All analyses were completed using the machine learning software package Weka

3.4.

Results

Prediction based on baseline data only

We first assessed whether clinical information including EDSS scores, FS scores, and demo-

graphic features could accurately predict whether at patient would be progressive or non-pro-

gressive at 5 years. Using a sample of 1352 patients, 525 of whom were progressive at 5 years,

we attained an overall accuracy rate for logistic regression of 62% and for linear SVM of 64%

(SVM with a non-linear kernel fared no better (Table 3)). The issue with these baseline meth-

ods is that they are heavily weighted toward always saying a patient is non-progressive (accura-

cies of 84% ad 91% for LR and SVM respectively). Since there are more non-progressive

patients than progressive patients, these levels of accuracy would not be considered useful in

clinical practice. When baseline MRI information of T2 lesion volume and BPF was included,

the overall accuracy improved to 68% and 70% for LR and SVM respectively. However, the

predictive accuracy of the progressive group still remains lower than for the non-progressive

group for all models. Finally, we observe that among LR and the three variants of SVM, there

is little to no difference in performance.

Prediction based on longitudinal clinical data

Given the poor accuracy using baseline data alone, we tested whether the inclusion of informa-

tion available up to 1 year of follow-up (Tables 3 and 4) and up to 2 years of follow up (Tables

5 and 6) would improve our ability to predict a patient’s disease course at the 5 year mark. We

observe that the overall accuracy improved slightly for all models with the inclusion of longitu-

dinal data, but more importantly the accuracy of the progressive group improved (i.e., the

model is no longer so heavily biased toward the majority class in the data). The difference

between 1 year and 2 years of data was larger when the MRI data was omitted. Thus we con-

clude that the best option is to use 1 year of longitudinal data coupled with the MRI data.

Table 7 compares accuracy rates for group 2 only (initial 2� EDSS <4) with 12 months versus

24 months of clinical and MRI data. For this subgroup, we conclude that longer follow up

improved the accuracy of predicting non-progressive EDSS cases.

Prediction when mitigating for class imbalance

We next examined the difference in performance for all models when bagging + undersam-

pling was used to improve performance for the minority class in the data (the progressive

class). We show the results in Tables 3–6 for both 1 year and 2-year data for LR and Linear

SVM. We observe that for a given longitudinal dataset, applying bagging improves perfor-

mance for the progressive class for both methods (e.g., for LR and 12 months of data the accu-

racy for the progressive class was 67% for the bagging model and 55% for the model built

without bagging). Indeed, not applying bagging to handle the class imbalance, results in

slightly higher overall accuracy, but significantly lowers the accuracy for the progressive class

which is the more costly of the two in terms of misclassification errors. This occurs because

logistic regression and SVM minimize overall error and thus are skewed by the much larger

number of non-progressive patients in the data.
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Misclassification costs

In addition, we studied varied misclassification costs in each of the subgroups within the SVM

analysis. Results are included in Tables 3–6. The overall predictive accuracy with uniform mis-

classification costs with SVM was 69%. Note that we applied bagging in building all models.

With this equal misclassification cost, the accuracy of predicting progressive and non-progres-

sive cases was largely similar with SVM. When the cost of false negatives was increased relative

to the cost of false positives (cost = 1.5), the accuracy of correctly identifying progressive EDSS

cases increased to 81% and 79% for the 1-year and 2 year data respectively with a decrease in

the accuracy of the non-progressive class to 59% for both data sets. Further increases in the

Table 3. Predictive accuracy for different groups using 12 month visit without MRI based on ten-fold cross-validation.

Method Sensitivity Specificity Overall Accuracy

G0 G1 G2 G3 G0 G1 G2 G3 G0 G1 G2 G3

logistic +bagging 0.62 0.56 0.55 0.54 0.64 0.64 0.67 0.64 0.63 0.61 0.63 0.61

logistic 0.35 0.41 0.38 0.54 0.86 0.83 0.79 0.64 0.68 0.67 0.65 0.61

SVM+bagging 0.62 0.53 0.66 0.53 0.65 0.74 0.66 0.65 0.64 0.66 0.66 0.62

SVM+bagging+ cost(1.5) 0.78 0.76 0.78 0.61 0.42 0.43 0.54 0.61 0.55 0.55 0.62 0.61

SVM+bagging+ cost(2.0) 0.86 0.81 0.82 0.59 0.27 0.32 0.46 0.54 0.48 0.51 0.58 0.55

SVM+bagging+ cost(2.5) 0.96 0.87 0.80 0.64 0.05 0.21 0.43 0.56 0.38 0.46 0.55 0.58

SVM+bagging+ cost(3.0) 1.00 0.95 0.79 0.64 0.00 0.04 0.40 0.53 0.36 0.39 0.53 0.57

G0—entire data set; 1331 patients with 476 worsening cases

G1—patients with initial EDSS < 2; 767 patients with 292 worsening cases

G2—patients with initial EDSS > = 2 and < 4; 429 patients with 147 worsening cases

G3—patients with initial EDSS > = 4; 135 patients with 37 worsening cases

Abbreviations: EDSS-Expanded Disability Status Scale, SVM-Support vector machines

Sensitivity is defined in this study as the proportion of subjects who worsen that are correctly classified. Specificity is defined as the proportion of subjects

who did not worsen that are correctly classified. Overall accuracy is defined as the proportion of all subjects who are correctly classified.

https://doi.org/10.1371/journal.pone.0174866.t003

Table 4. Predictive accuracy for different groups using 12 month visit with MRI based on ten-fold cross-validation.

Method Sensitivity Specificity Overall Accuracy

G0 G1 G2 G3 G0 G1 G2 G3 G0 G1 G2 G3

Logistic+bagging 0.67 0.64 0.52 0.50 0.68 0.67 0.64 0.59 0.68 0.66 0.60 0.57

logistic 0.55 0.58 0.37 0.48 0.78 0.73 0.66 0.63 0.69 0.66 0.57 0.60

SVM+bagging 0.71 0.72 0.75 0.48 0.68 0.67 0.66 0.59 0.69 0.69 0.69 0.56

SVM+bagging+ cost(1.5) 0.81 0.82 0.80 0.52 0.59 0.58 0.57 0.55 0.67 0.68 0.65 0.54

SVM+bagging+ cost(2.0) 0.85 0.85 0.81 0.48 0.53 0.54 0.50 0.54 0.65 0.67 0.60 0.53

SVM+bagging+ cost(2.5) 0.86 0.87 0.77 0.48 0.49 0.49 0.47 0.54 0.63 0.65 0.57 0.52

SVM+bagging+ cost(3.0) 0.86 0.87 0.79 0.52 0.47 0.46 0.45 0.60 0.62 0.63 0.56 0.58

G0—entire data set; 574 patients with 216 worsening cases

G1—patients with initial EDSS < 2; 368 patients with 153 worsening cases

G2—patients with initial EDSS > = 2 and < 4; 161 patients with 53 worsening cases

G3—patients with initial EDSS > = 4; 45 patients with 10 worsening cases

Abbreviations: EDSS-Expanded Disability Status Scale, SVM-Support vector machines

Sensitivity is defined in this study as the proportion of subjects who worsen that are correctly classified. Specificity is defined as the proportion of subjects

who did not worsen that are correctly classified. Overall accuracy is defined as the proportion of all subjects who are correctly classified.

https://doi.org/10.1371/journal.pone.0174866.t004
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relative cost of false positives led to small increases in the accuracy of the progressive class at

the expense of lower accuracy in the non-progressive class and lower overall accuracy.

Features predictive of 5 year outcome from SVM models

We evaluated the predictive power of each feature, and as an example, we show predictive fea-

tures for G1 at cost = 1.5 for progressive and non-progressive cases using one year informa-

tion, with and without MRI data (S1 and S2 Tables). Because we applied a linear SVM, we can

rank the predictors by the magnitude of their weight, giving us a rough estimate of their ability

to predict progression. Because our experiments are based on a 10-fold cross-validation, for

each predictor we show the average rank for each group. Note that we show these values for

Table 5. Predictive accuracy for different groups using 24 month visit without MRI based on ten-fold cross-validation.

Method Sensitivity Specificity Overall Accuracy

G0 G1 G2 G3 G0 G1 G2 G3 G0 G1 G2 G3

Logistic+bagging 0.62 0.60 0.60 0.60 0.70 0.69 0.69 0.71 0.67 0.66 0.66 0.67

logistic 0.47 0.47 0.51 0.57 0.86 0.81 0.81 0.74 0.73 0.69 0.72 0.70

SVM+bagging 0.61 0.58 0.64 0.54 0.79 0.77 0.77 0.62 0.73 0.71 0.73 0.60

SVM+bagging+ cost(1.5) 0.77 0.74 0.75 0.65 0.53 0.56 0.66 0.59 0.61 0.62 0.69 0.61

SVM+bagging+ cost(2.0) 0.81 0.77 0.76 0.63 0.45 0.43 0.60 0.60 0.57 0.55 0.65 0.60

SVM+bagging+ cost(2.5) 0.84 0.81 0.77 0.67 0.37 0.38 0.57 0.54 0.52 0.53 0.63 0.57

SVM+bagging+ cost(3.0) 0.87 0.82 0.75 0.68 0.3 0.33 0.58 0.59 0.49 0.51 0.63 0.61

G0—entire data set; 1236 patients with 409 worsening cases

G1—patients with initial EDSS < 2; 714 patients with 255 worsening cases

G2—patients with initial EDSS > = 2 and < 4; 397 patients with 122 worsening cases

G3—patients with initial EDSS > = 4; 125 patients with 32 worsening cases

Abbreviations: EDSS-Expanded Disability Status Scale, SVM-Support vector machines

Sensitivity is defined in this study as the proportion of subjects who worsen that are correctly classified. Specificity is defined as the proportion of subjects

who did not worsen that are correctly classified. Overall accuracy is defined as the proportion of all subjects who are correctly classified.

https://doi.org/10.1371/journal.pone.0174866.t005

Table 6. Predictive accuracy for different groups using 24 month visit data with MRI based on ten-fold cross-validation.

Method Sensitivity Specificity Overall Accuracy

G0 G1 G2 G3 G0 G1 G2 G3 G0 G1 G2 G3

Logistic+bagging 0.67 0.59 0.51 0.46 0.70 0.66 0.61 0.64 0.69 0.63 0.58 0.60

logistic 0.59 0.57 0.51 0.58 0.78 0.70 0.73 0.61 0.71 0.65 0.66 0.61

SVM+bagging 0.65 0.65 0.74 0.30 0.74 0.74 0.76 0.46 0.71 0.70 0.75 0.43

SVM+bagging+ cost(1.5) 0.79 0.81 0.77 0.38 0.59 0.56 0.69 0.48 0.67 0.66 0.72 0.46

SVM+bagging+ cost(2.0) 0.81 0.82 0.82 0.40 0.56 0.54 0.62 0.45 0.65 0.65 0.68 0.44

SVM+bagging+ cost(2.5) 0.82 0.84 0.81 0.40 0.54 0.52 0.61 0.40 0.64 0.65 0.68 0.40

SVM+bagging+ cost(3.0) 0.82 0.84 0.80 0.28 0.51 0.48 0.61 0.41 0.63 0.63 0.67 0.38

G0—entire data set; 574 patients with 212 worsening cases

G1—patients with initial EDSS < 2; 370 patients with 151 worsening cases

G2—patients with initial EDSS > = 2 and < 4; 159 patients with 51 worsening cases

G3—patients with initial EDSS > = 4; 45 patients with 10 worsening cases

Abbreviations: EDSS-Expanded Disability Status Scale, SVM-Support vector machines

Sensitivity is defined in this study as the proportion of subjects who worsen that are correctly classified. Specificity is defined as the proportion of subjects

who did not worsen that are correctly classified. Overall accuracy is defined as the proportion of all subjects who are correctly classified.

https://doi.org/10.1371/journal.pone.0174866.t006
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each class separately because in the process of classifying a patient, each feature will either con-

tribute positively (for progressive class) or negatively (for non-progressive class). Ranking

these contributions separately allows us to gain insights into the features that are most perti-

nent to each class. Examining the clinical features alone, the top 20 predictors of both progres-

sive and non-progressive cases included EDSS score, disease activity score, sensory, cerebellar,

visual, mental, bowel/bladder and brainstem FS scores. However race, ethnicity and family his-

tory of MS, appeared as predictors of non-progressive cases but not of progressive cases. When

MRI information was included, BPF was in the top 20 of the predictors of non-progressive

cases, but not of progressive cases. In contrast, T2 lesion volume appeared within the top 50

predictors of progressive cases, but did not appear within the non-progressive cases. Similar

trends in predictive features were seen with 24-month data, including the observation that

BPF appeared in the top 50 predictors of non-progressive cases exclusively, while T2 lesion

volume appeared exclusively as a predictor of progressive cases (S1 and S2 Tables).

Discussion

In this study, machine-learning techniques including SVM with bagging/undersampling and

cost misclassification were used to assess the ability of clinical and MRI features to predict

EDSS status at up to five years and compared to logistic regression. Using baseline clinical data

only and treating false positives and false negatives equally, the models had accuracies that

were better than random guessing but were heavily skewed toward predicting all patients were

non-progressive. The skew improved slightly when baseline MRI data were included. Further

follow-up observation at 1 year improved overall accuracy with improvements in predicting

non-progressive cases as did bagging coupled with undersampling to address the class imbal-

ance in the training data. When non-uniform misclassification costs were included in the

SVM model, there was a still larger improvement in predicting progressive cases, however

with expense of decreased accuracy in predicting non-progressive cases.

Predictors of disease course using both 1 year and 2-year data included clinical features.

Demographic features of race, ethnicity and family history of MS ranked more highly as pre-

dictors of non-progressive MS. Inclusion of MRI predictors revealed that BPF ranked highly as

a predictor of non-progressive MS but not of progressive cases, while T2 lesion volume pre-

dicted progressive cases.

Although several studies in predicting disease course in MS have been undertaken using

logistic regression,[17] Markov modeling,[18–20] and more recently a Bayesian modeling

approach,[21] there has been limited exploration of machine-learning techniques in MS. One

study has explored a neural network computational classifier in 51 MS patients to predict dis-

ease course.[22] Whether an accuracy of>70% is considered a reasonable benchmark for

Table 7. Comparison of predictive accuracy for Group 2 (G2) using 12 month and 24 month clinical

and MRI data based on ten-fold cross-validation.

cost Accuracy of predicting

worsening EDSS class

(Sensitivity)

Accuracy of predicting

non-worsening EDSS class

(Specificity)

Overall Accuracy

1Y 2Y 1Y 2Y 1Y 2Y

1 0.75 0.74 0.66 0.76 0.69 0.75

1.5 0.80 0.77 0.57 0.69 0.65 0.72

2 0.81 0.82 0.50 0.62 0.60 0.68

2.5 0.77 0.81 0.47 0.61 0.57 0.68

3 0.79 0.80 0.45 0.61 0.56 0.67

https://doi.org/10.1371/journal.pone.0174866.t007
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machine-learning, depends on the context and condition to which the method is being

applied. In our case it may be argued that it is more critical to detect progressive cases accu-

rately without a large number of false positives, in order to place these patients on more aggres-

sive treatments. And therefore, using SVM with a cost of 1.5, predictive accuracy of 81% on

progressive with 59% on non-progressive may be clinically acceptable to most. However, this

balance needs to be determined by individual physicians and patients.

To our knowledge, ours is the first study to apply LR and SVM models to a large cohort

over 1600 subjects, using multiple clinical and MRI predictors. In addition the incorporation

unequal weighting of classification errors provide a novel approach to improving prediction in

the group of interest, which in this case is correctly predicting the progressive group. The use

of misclassification costs in SVM models introduces a new paradigm into modeling disease

outcomes, which may more closely mimic daily decision-making. Extensions of this approach

may be tailored to individual physician styles of practice, or patient types, including degree of

risk-taking and tolerance of side effects.

Clinical observation for at least one year was required to obtain a >80% accuracy in pre-

dicting progressive cases, suggesting that early changes are crucial to subsequent disease

course. Amongst the clinical predictors of disease course, race, ethnicity and family history of

MS were highly ranked in predicting the non-progressive group, raising the possibility that

inclusion of additional genetic and environmental features may further improve accuracy in

this group.

BPF ranked highly as a predictor of non-progressive status, consistent with previous find-

ings.[23–25] In contrast the T2 lesion volume ranked highly amongst predictors of progressive

patients, indicating that accrual of lesions, and possibly relapses plays an important role in

short-term and possibly long-term disability accrual as has been shown in other studies.[26–

28]. These findings support the concept that BPF and T2 lesions provide complementary infor-

mation about different disease processes in MS.

There were several limitations to our study. Firstly, in order to establish the models, we

focused largely on clinical data points and quantitative MRI features. Further work plans to

incorporate additional biomarker data. Second, there are limitations to our outcome measure

of progressive or non-progressive cases based on change in EDSS values over 5 years. The

EDSS scale has been criticized as a somewhat insensitive scale, particularly to visual and cogni-

tive decline. Further studies incorporating these measures should be explored. Treatment

fields were not included as predictors in this study, because our goal was to first establish the

effect of early clinical and MRI markers in association with disease course. Further studies will

explore the effects of treatments. Lastly, for machine learning methods, the size of training

samples is essential for the quality of the classifier. One of our patient subgroups G3 (EDSS�4)

was too small to obtain accurate predictions. Larger, collaborative studies may be required to

accurately predict disease course in subgroups with limited subject numbers.

Our results require validation in additional datasets. Future work may focus on incorporat-

ing additional features including additional neuroimaging measures, blood and genetic bio-

markers. Development of joint physician-patient visualization and decision-making tools, as

have been discussed in other works,[29–32] may be further enabled using predictive algo-

rithms discussed here. Machine learning techniques, and in particular SVM may be powerful

tools for the personalization of MS therapeutic approaches.
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