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Objective: This study aimed to evaluate the predictive performance of integrated 
clinical and CT-based radiomic models for assessing targeted therapy efficacy 
in advanced lung adenocarcinoma patients with EGFR (epidermal growth factor 
receptor) mutations.

Materials and methods: This retrospective study included 106 EGFR-mutated 
advanced lung adenocarcinoma patients treated with targeted therapies at 
the Second Hospital of Jilin University (2020–2023). Patients were classified 
as responders (PR) or non-responders (SD/PD) based on RECIST (Response 
Evaluation Criteria in Solid Tumors) 1.1 criteria, then randomly divided into 
training (n = 74) and validation (n = 32) cohorts at a 7:3 ratio. We segmented 
tumor regions on pre-and post-treatment CT scans using ITK-SNAP, then 
extracted radiomic features and applied mRMR-LASSO (Minimum Redundancy 
Maximum Relevance–Least Absolute Shrinkage and Selection Operator). A 
delta-radiomics model was developed by quantifying feature changes between 
treatment phases. Significant clinical predictors identified by logistic regression 
were integrated with radiomic features to build a combined model. Performance 
was assessed via AUC, sensitivity, specificity, accuracy, positive predictive value 
(PPV), negative predictive value (NPV), DeLong’s test, calibration curves, and 
decision curve analysis.

Results: In the pre-treatment radiomics model, the AUC, accuracy, sensitivity, 
specificity, PPV, and NPV of the training cohorts were 0.751, 0.690, 0.737, 0.639, 
0.683, and 0.697; in validation cohorts, these values were 0.726, 0.656, 0.778, 
0.500, 0.667, and 0.636. In the delta-radiomics model, the AUC, accuracy, 
sensitivity, specificity, PPV, and NPV of the training cohorts were 0.906, 0.865, 
0.868, 0.861, 0.868, and 0.861, vs. 0.825, 0.719, 0.722, 0.714, 0.765, and 0.667 in 
validation. For the clinical model, the AUC, accuracy, sensitivity, specificity, 
PPV, and NPV of the training cohorts were 0.828, 0.729, 0.737, 0.722, 0.737, and 
0.722, compared to 0.766, 0.750, 0.722, 0.786, 0.812, and 0.688 in validation. In 
the combined model, the AUC, accuracy, sensitivity, specificity, PPV, and NPV of 
the training cohorts were 0.977, 0.946, 0.947, 0.944, 0.947, and 0.944, while in 
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the validation cohorts, these values were 0.913, 0.781, 0.778, 0.786, 0.824, and 
0.733.

Conclusion: The combined model integrating delta-radiomics with clinical 
predictors demonstrates superior predictive performance for evaluating 
targeted therapy efficacy in EGFR-mutated advanced lung adenocarcinoma, 
significantly outperforming conventional radiomics models relying exclusively 
on pre-treatment imaging data.
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1 Introduction

Lung cancer is one of the most prevalent cancers worldwide, 
characterized by high incidence and mortality rates. Global estimates 
project projected to result in approximately 1.25 million deaths in 
2024, accounting for nearly 20% of all cancer mortality and 
maintaining its position as the leading cause of cancer death in both 
genders (1–3). The absence of specific early symptoms often leads to 
delayed diagnosis, with many lung cancer patients already presenting 
lymph node involvement or distant metastases at initial detection, 
rendering curative surgical intervention unfeasible (4–14). Smoking 
is the primary risk factor for lung cancer, but exposure to second-hand 
smoke, family history, and carcinogenic chemicals also contribute to 
the risk of developing the disease (5). Lung cancer is categorized into 
two primary types: non-small cell lung cancer (NSCLC) and small cell 
lung cancer, with NSCLC being more prevalent. Non-small cell lung 
cancer (NSCLC) comprises three subtypes: adenocarcinoma, 
squamous cell carcinoma, and giant cell carcinoma, with 
adenocarcinoma being the predominant pathological type, 
representing 40% of all lung cancer cases (7, 8). Surgical intervention 
is frequently employed to address early-stage lung cancer, but 
individuals with advanced-stage lung cancer typically exhibit poor 
responses to surgical treatment, this enabled the researchers to 
investigate alternative treatment modalities, including radiation, 
chemotherapy, and immunotherapy. In recent years, molecular 
targeted therapy has significantly improved in non-small cell lung 
cancer, offering enhanced alternatives for clinical diagnosis and 
treatment, particularly for advanced lung adenocarcinoma and other 
lung cancer variants with adenocarcinoma components, EGFR 
tyrosine kinase inhibitors (EGFR-TKIs) have emerged as the primary 
pharmacological agents for the management of intermediate and 
advanced non-small cell lung cancer, these novel targeted medicines 
not only markedly enhanced clinical results but also prolonged patient 
survival (9, 11, 12).

The RECIST is the main way to judge how well targeted therapies 
work in solid tumors (13, 14). However, it primarily focuses on tumor 
size changes and fails to capture tumor biological behavior or 
microenvironmental alterations. Radiomics technology provides a 
novel approach for disease analysis and clinical prediction through 
extracting high-dimensional quantitative features from imaging 
modalities such as CT and MRI (15, 16). Unlike RECIST, radiomics 
can reveal intricate texture features, both within tumors and at their 
peripheries, that are not readily observable, this is crucial for 
understanding disease dynamics and evaluating the effectiveness of 
treatment (17). Delta-radiomics (a subset of radiomics) analyzes 
temporal feature changes from longitudinal imaging using deep 

learning algorithms to enhance treatment outcome prediction 
accuracy (18, 19). Fan et al. (20) developed a nomogram integrating 
delta-radiomics features with clinical parameters, which accurately 
predicted a complete pathological response in patients with esophageal 
squamous cell carcinoma following neoadjuvant chemoradiotherapy; 
this model showed high accuracy and stability in both training and 
validation cohorts. By analyzing imaging changes in advanced lung 
adenocarcinoma patients before and after targeted therapy, this study 
aims to develop radiomics models to establish scientific evidence for 
optimizing treatment strategies in this population. This study 
innovatively integrates delta-radiomics (dynamic tumor changes) with 
clinical predictors, offering a multi-dimensional predictive framework.

2 Materials and methods

2.1 Patient characteristics

In this retrospective study, we collected data on 106 patients with 
pathologically confirmed advanced lung adenocarcinoma admitted to 
the Second Hospital of Jilin University between January 2020 and June 
2023, all of whom were confirmed to have EGFR mutations. 
Pathological specimens were obtained via CT-guided biopsy or 
bronchoscopy. EGFR mutations were confirmed through next-
generation sequencing (NGS). We obtained CT images from these 
patients at initial admission, prior to targeted therapy, and after 2 to 
3 cycles of treatment. Treatment response was categorized according 
to RECIST 1.1 guidelines, with responders defined as achieving partial 
response (PR, n = 56) and non-responders comprising stable disease 
(SD) or progressive disease (PD, n = 50). Subsequently, patients were 
randomly divided into training (n  = 74) and validation (n  = 32) 
cohorts at a 7:3 ratio using a stratified randomization method to 
ensure balanced distributions of PR and SD/PD groups between 
cohorts. The study protocol was approved by the hospital’s Institutional 
Review Board with waiver of informed consent. The inclusion criteria 
were as follows: (1) Histopathologically confirmed lung 
adenocarcinoma; (2) EGFR mutation confirmed by molecular testing; 
(3) Stage III-IV disease per 8th edition TNM staging treated with 
targeted therapy alone; (4) Availability of complete pre−/post-
treatment CT imaging data; (5) Complete medical records; (6) No 
history of other malignancies. The exclusion criteria were as follows: 
(1) Absence of follow-up CT imaging after 2–3 treatment cycles; (2) 
Poor image quality or inability to accurately assess lesion boundaries; 
(3) Receipt of non-targeted antitumor therapies (e.g., radiotherapy or 
chemotherapy) during treatment; (4) Incomplete clinical data or 
missing key parameters.
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2.2 CT images acquisition

All participants underwent standardized pre-and post-treatment 
thoracic CT examinations using 256-slice multidetector CT systems 
(Philips Brilliance CT and GE Revolution CT). Prior to imaging 
acquisition, standardized respiratory training was conducted to ensure 
consistent breath-holding at full inspiration in the supine position, 
thereby minimizing respiratory motion artifacts. The scan range 
extended from the thoracic apex to the diaphragmatic level, covering 
the entire lung parenchyma. The scanning parameters for the Philips 
Brilliance CT were set as follows: slice thickness and interval of 5 mm, 
tube voltage of 120 kVp, tube current of 250 mAs, pitch ratio of 0.575, 
and matrix size of 512 × 512. The Revolution CT settings comprised 
a slice thickness and interval of 5 mm, a tube voltage of 140 kVp, a 
tube current of Smart mAs, pitch ratio of 1, and matrix size of 
512 × 512. All raw datasets were reconstructed into 1-mm-thin slices 
using multiplanar reconstruction (MPR) algorithms on dedicated 
imaging workstations, with final volumetric data stored in NII format 
for quantitative radiomic analysis. This optimized imaging protocol 
ensures high spatial resolution and reproducibility, providing reliable 
technical support for longitudinal oncological evaluations.

2.3 Patient clinical and imaging data

We retrieved clinical and imaging data from the study’s patients 
from the hospital’s electronic medical record system. The dataset 
included patient demographics such as gender and age, smoking 

history, TNM staging, and maximum tumor diameters prior to and 
following treatment. The TNM staging employed the 8th edition of 
the TNM classification system for lung cancer, as established by the 
International Association for the Study of Lung Cancer (IASLC).

2.4 ROI segmentation

This study employed images acquired from two distinct CT 
scanners. To deal with potential variations in scanning parameters, 
we  preprocessed the images by means of grayscale discretization, 
normalization, and resampling before using FeAture Explorer Pro (FAE, 
version 0.5.8) for feature extraction. Experienced physicians manually 
delineated tumor regions of interest using ITK-SNAP (v.3.8.0)1 software 
(Figure 1). A radiologist with 5 years of experience carried out semi-
automatic delineation, ensuing comprehensive inclusion of the lesion 
while maintaining adjacent structures. To assess the inter-observer 
reproducibility of feature extraction, a radiologist with a decade of 
experience re-evaluated the images of 50 randomly selected patients. 
The reliability of the features was quantified using the intraclass 
correlation coefficient (ICC), with features demonstrating ICC ≥ 0.75 
retained for model construction. Discrepancies identified during the 
evaluation process were resolved through consultation with a senior 
physician. All data were subsequently stored in NII format. Throughout 

1 www.itksnap.org

FIGURE 1

Tumor ROI before targeted therapy (A–C) and after targeted therapy (D–F).
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this process, physicians remained unaware of patient clinical data and 
treatment outcomes to ensure objectivity in their assessments.

2.5 Feature extraction and selection

Prior to feature extraction, we  standardized all CT images. 
We  then employed FeAture Explorer Pro (FAE, version 0.5.8) to 
conduct high-throughput radiomics feature extraction on the CT 
images of patients with lung cancer. We organized the extracted raw 
image features into four primary categories: first-order features, 
shape-based features, gray-level co-occurrence matrix (GLCM), and 
gray-level run length matrix (GLRLM). Subsequently, we quantified 
the radiomics features before and after targeted therapy to calculate 
their net changes (defined as the post-treatment feature values minus 
baseline values). The delta-radiomics features (ΔRFs) were computed 
using the formula: ΔRFs = Feature (TP0) - Feature (TP1), where TP0 
and TP1 represent pre-and post-treatment time points, respectively.

All extracted features were z-score normalized. Subsequently, 
intraclass correlation coefficient (ICC) analysis was performed to 
assess inter-observer consistency, with features demonstrating ICC 
values ≥0.75 retained for subsequent analysis. The minimum 
Redundancy Maximum Relevance (mRMR) algorithm was then 
employed to reduce feature redundancy. Finally, a Least Absolute 
Shrinkage and Selection Operator (LASSO) regression model was 
applied to identify optimal predictors. This rigorous multi-stage 
feature selection pipeline establishes a methodological foundation for 
constructing robust radiomics prediction models.

2.6 Model construction and validation

In this study, we employed the minimum redundancy maximum 
relevance (mRMR) algorithm in conjunction with the least absolute 
shrinkage and selection operator (LASSO) to identify salient features. The 
mRMR algorithm was utilized to select features that exhibit strong 
associations with tumor treatment response while minimizing 
redundancy and inter-feature correlation, thereby reducing the risk of 
overfitting. The LASSO technique further refined the feature set by 
identifying features with non-zero coefficients. The optimal regularization 
parameter (λ) for LASSO was selected via 10-fold cross-validation by 
identifying the value that minimized the binomial deviance from a 
predefined range of λ, features with non-zero coefficients under this 
optimal λ were retained for model construction. The selected features 
were then used to compute the radiomics score (Radscore), which is 
derived from the sum of the products of each feature and its corresponding 
regression coefficient, along with an intercept term. The formula for 
Radscore is: Radscore = Σ(αi * Xi) + β, where αi denotes the regression 
coefficient, Xi represents the feature value, and β is the intercept. This 
methodology yielded a quantitative radiomics score for each patient, 
indicating the expected response to targeted therapy.

To validate the predictive performance of radiomic models 
before and after targeted therapy, we applied logistic regression 
with 10-fold cross-validation repeated 10 times. Initially, 
univariate logistic regression was applied to clinical and imaging 
data to screen for significant variables, which were subsequently 
incorporated into multivariate logistic regression to identify key 
predictive features associated with the response to EGFR 
mutation-targeted therapy in patients with advanced lung 

adenocarcinoma. Based on these variables, we  constructed a 
clinical prediction model. Finally, we  integrated the clinical 
predictive features with radiomics features to develop a combined 
model and established a radiomics nomogram for enhanced 
intuitive prediction.

2.7 Statistical analysis

All statistical analyses were performed using IBM SPSS 25.0 and 
R 4.2.2. We  performed a normality test using the Kolmogorov–
Smirnov test, representing standard measurements of a normal 
distribution as Mean ± SD, and using the independent sample t test 
for inter-group comparisons. Categorical variables are expressed as 
frequency (rate) and compared between groups using Chi-square tests 
or Fisher precision tests. A two-tailed test with a p < 0.05 (typically ≤ 
0.05) was indicative of a statistically significant difference.

3 Results

3.1 Clinical model

Univariate logistic regression analysis of pertinent clinical 
characteristics and CT imaging findings revealed significant predictors 
of targeted therapeutic success, including patient gender, smoking 
history, and the greatest tumor diameter post-treatment (p < 0.05). 
Table  1 details these significant predictors. Multivariate logistic 
regression analysis identified smoking history and post-treatment 
maximum tumor diameter as independent predictors. Table 2 details 
the multivariate results, which were integrated into the clinical model. 
Table 3 shows the clinical model performance: In the training cohort, 
the model achieved an AUC of 0.828 (95% CI: 0.734–0.922) with 
accuracy 0.729, sensitivity 0.737, specificity 0.722, PPV 0.737, and 
NPV 0.722. The validation cohort showed an AUC of 0.766 (95% CI: 
0.584–0.948) with accuracy 0.750, sensitivity 0.722, specificity 0.786, 
PPV 0.812, and NPV 0.688.

3.2 Radiomics models

In this study, we  initially employed the Maximum Relevance 
Minimum Redundancy (mRMR) algorithm to perform preliminary 
feature selection on CT imaging data from 106 patients with EGFR-
mutant advanced lung adenocarcinoma. This step aimed to identify 
radiomic features most closely associated with the efficacy of targeted 
therapy. Subsequently, we  applied the Least Absolute Shrinkage and 
Selection Operator (LASSO) algorithm to these preliminarily selected 
features and utilized a 10-fold cross-validation method to filter out 
statistically significant features (non-zero coefficients). This process 
ultimately identified eight key radiomic features that were used to 
construct a radiomic signature for predicting treatment outcomes. 
Among these eight features, five were derived from pre-treatment CT 
scans, while three were based on difference characteristics between 
pre-and post-treatment images. Detailed results of feature selection along 
with corresponding imaging interpretations are illustrated in Figure 2.

The characteristics retrieved before treatment were designated as 
original_shape_LeastAxisLength, original_shape_MinorAxisLength, 
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original_shape_SurfaceVolumeRatio, wavelet-HLL_firstorder_
Uniformity and wavelet-HHL_glcm_DifferenceVariance. The 
features were utilized to compute the radiomics label scores, and a 
logistic regression approach was applied to develop the pre-treatment 
radiomics model (RS-Pre-treatment). The Radscore formula for  
this model is outlined as follows: Pre-Radscore = − 
0.2735651210–006857017 × original_shape_LeastAxisLength- 
0.020428557 × original_shape_MinorAxisLength+0.395147962 ×  
original_shape_SurfaceVolumeRatio+0.054076360 × waveletHLL_
firstorder_Uniformity+0.927680463 × wavelet-HHL_glcm_
DifferenceVariance.

The delta-radiomics features retrieved from pre and post-
treatment changes included original_shape_sphericity, original_

firstorder_median, and wavelet-LHH_glrlm_HighGrayLevelRun 
Emphasis. The characteristics were employed to compute the 
radiomics label scores, and logistic regression was utilized to develop 
the radiomics model (RS-Delta). The Radscore equation for this 
model is as follows:

Delta-Radscore = −5.049048504 + 4.903682586 × original_
shape_Sphericity–0.001830174 × original_firstorder_Median + 
0.009943380 × wavelet-LHH_glrlm_HighGrayLevelRunEmphasis.

Table 3 shows the performance of the pre-treatment Radscore 
model: In the training cohort, the model achieved an AUC of 0.751 
(95% CI: 0.639–0.864) with accuracy of 0.690, specificity of 0.639 and 
sensitivity of 0.737, positive predictive value (PPV) of 0.683 and 
negative predictive value (NPV) of 0.697. In the validation cohort, the 

TABLE 1 Univariate logistic regression analysis of clinical and CT imaging results.

Characteristics PR(n=50) PD/SD(n=56)

p

Training cohort Validation cohort

Age,(mean±SD) 62.66±7.52 59.14±8.49 0.100 0.153

Sex,n (%) 0.037* 0.419

Male 23(46.00%) 33(58.93%)

Female 27(54.00%) 23(41.07%)

T 0.444 0.590

1 14(28.00%) 12(21.43%)

2 19(38.00%) 25(44.64%)

3 10(20.00%) 11(19.64%)

4 7(14.00%) 8(14.29%)

N 0.248 0.843

0 25(50.00%) 20(35.71%)

1 4(8.00%) 6(10.71%)

2 11(22.00%) 21(37.5%)

3 10(20.00%) 9(16.07%)

M 0.099 0.341

0 22(44.00%) 15(26.79%)

1 28(56.00%) 41(73.21%)

Pre-treatment Max Diameter

Median(Q1, Q3)
38.00(25.00,49.50) 39.50(29.50,52.50) 0.446 0.287

Post-treatment Max Diameter

Median(Q1, Q3)
27.00(20.00,40.00) 30.50(17.50,39.00) <0.001* 0.114

Smoking 0.042* 0.290

No 42(84.00%) 36(64.29%)

Yes 8(16.00%) 20(35.71%)

Mean ± SD means mean± standard deviation, n means quantity; Median (Q1,Q3) represents the median (upper and lower quartiles). *indicates statistical significance (p < 0.05).

TABLE 2 Multivariate logisitic regression analysis of clinical and CT imaging data.

Variable B S.E. Wald df p OR 95% CI

Lower Limit Upper Limit

Sex −0.991 0.582 2.901 1 0.089 0.371 0.119 1.161

Max diameter 

after treatment

−0.094 0.025 13.885 1 <0.001* 0.910 0.866 0.956

Smoking 2.756 0.946 8.480 1 0.004* 15.738 2.462 26.591

*indicates statistical significance (p < 0.05).
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TABLE 3 Performance comparison of different models in training and validation.

Model Cohort Sensitivity Specificity AUC 95%CI PPV NPV Accuracy

Pre-Radscore

Training 

cohort
0.737 0.639

0.751 (0.639,0.864)
0.683 0.697 0.690

Validation 

cohort
0.778 0.500

0.726

(0.539,0.913)
0.667 0.636 0.656

Delta-Radscore

Training 

cohort
0.868 0.861

0.906

(0.826,0.987)
0.868 0.861 0.865

Validation 

cohort
0.722 0.714

0.825
(0.681,0.970) 0.765 0.667 0.719

Clinic model

Training 

cohort
0.737 0.722

0.828

(0.734,0.922)
0.737 0.722 0.729

Validation 

cohort
0.722 0.786

0.766
(0.584,0.948) 0.812 0.688 0.750

Combined 

model

Training 

cohort
0.947 0.944

0.977

(0.938,1.000)
0.947 0.944 0.946

Validation 

cohort
0.778 0.786

0.913
(0.818,1.000) 0.824 0.733 0.781

FIGURE 2

(A–D) Show the results of the 10-fold cross-validation method and LASSO regression analysis, respectively, removing highly redundant features to 
obtain the optimal features.

https://doi.org/10.3389/fmed.2025.1599206
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wu et al. 10.3389/fmed.2025.1599206

Frontiers in Medicine 07 frontiersin.org

model showed an AUC of 0.726 (95% CI: 0.539–0.913) with accuracy 
of 0.656, specificity of 0.500 and sensitivity of 0.778, PPV of 0.667 and 
NPV of 0.636. For the Delta-Radscore model, in the training cohort, it 
achieved an AUC of 0.906 (95% CI: 0.826–0.987) with accuracy of 
0.865, specificity of 0.861 and sensitivity of 0.868, PPV of 0.868 and 
NPV of 0.861. In the validation cohort, the model demonstrated an 
AUC of 0.825 (95% CI: 0.681–0.970) with accuracy of 0.719, specificity 
of 0.714 and sensitivity of 0.722, PPV of 0.765 and NPV of 0.667.

3.3 Combined model

The combined model incorporated three key predictors: post-
treatment maximum tumor diameter, smoking history, and radiomics 
signatures. The combined model demonstrated robust diagnostic 
performance, achieving an AUC of 0.977 (95% CI: 0.938–1.000) in the 
training cohort with accuracy 0.946, sensitivity 0.947, specificity 0.944, 
PPV 0.947, and NPV 0.944. In the validation cohort, the model 

FIGURE 3

ROC curve of four models (clinical, pre-treatment, delta, combined) in the training (A) and validation cohorts (B).
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TABLE 4 DeLong’s test.

Cohort Combined 
model

Clinical 
model

Pre-
Radscore

Training 

cohort

Clinical 

model

0.003*

Pre-

Radscore

<0.001* 0.302

Delta-

Radscore

0.039* 0.232 0.027*

Validation 

cohort

Clinical 

model

0.113

Pre-

Radscore

0.041* 0.768

Delta-

Radscore

0.151 0.654 0.404

*Indicates that the difference is significant.

maintained strong performance at an AUC of 0.913 (95% CI: 0.818–
1.000) along with accuracy 0.781, sensitivity 0.778, specificity 0.786, 
PPV 0.824, and NPV 0.733. Table 3 comprehensively details these 
performance metrics.

Comparative analysis using DeLong’s test revealed statistically 
significant differences in receiver operating characteristic (ROC) 
curves between models (Figure 3). Table 4 summarizes the statistical 
outcomes of all model comparisons. In the training cohort, the 
integrated model exhibited superior predictive performance compared 
to both the clinical model (p < 0.05) and radiomics models based on 
pre-treatment features (pre-Radscore) or delta-radiomics features 
(delta-Radscore). Within the validation cohort, significant differences 
were observed between the integrated model and pre-Radscore model 
(p  < 0.05), as well as between pre-Radscore and Delta-Radscore 
models (p < 0.05). Other model comparisons did not achieve statistical 
significance. In addition, we  observed differences in performance 

between the training and validation cohorts, particularly in models 
such as delta-radiomics, where higher accuracy in the training cohort 
(AUC: 0.906) decreased in validation (AUC: 0.825). This pattern 
suggests potential overfitting, where models may over-adapt to 
training data nuances rather than generalizable patterns.

3.4 Construction and evaluation of 
nomograms

This study developed a nomogram based on the combined model 
(Figure 4). Calibration curves were generated for the clinical model, 
radiomics model (incorporating pre-treatment and delta features), 
and combined model (Figure 5). These calibration plots demonstrated 
satisfactory performance in both cohorts, with all models closely 
aligning with the ideal 45° reference line, indicating strong agreement 
between predicted probabilities and observed outcomes. The Hosmer-
Lemeshow test showed non-significant results (p > 0.05) for both 
pre-treatment and delta-feature-based radiomics models, confirming 
no statistically significant deviations from actual observations. 
Decision curve analysis demonstrated that the combined model 
provided higher net benefits than other models across clinically 
relevant threshold probabilities, offering evidence-based guidance for 
clinical decisions (Figure 6).

4 Discussion and conclusion

Molecular targeted therapy effectively inhibits cancer progression 
by targeting specific molecular pathways, demonstrating clinical 
success in malignancies including breast cancer, leukemia, colorectal 
cancer, lung cancer, and ovarian cancer (21). Its improved safety 
profile compared to conventional chemotherapy has driven 
widespread adoption, particularly for advanced lung adenocarcinoma 

FIGURE 4

Nomogram of the efficacy prediction model. The nomogram combines two separate imaging predictors (max diameter after treatment and smoking 
history) with radiomics features based on the pre-radscore and the delta-radscore.
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(22). In clinical practice, therapeutic efficacy assessment primarily 
relies on RECIST criteria via imaging (13, 23). However, tumor 
volume changes often lag behind microenvironmental heterogeneity. 
Radiomics addresses this limitation by quantifying early 
microstructural alterations through medical image analysis. Delta 
radiomics, a specialized subset, tracks longitudinal tumor 
characteristic changes, providing dynamic response monitoring. 
Nardone et al. (24) conducted a systematic review of the research 
trajectories of Delta radiomics across various domains, including 
preclinical and methodological studies, as well as applications in 
multiple cancer types, such as lung, colorectal, prostate, and 
gastrointestinal cancers. Barabino et  al. (25) showed that delta-
radiomics outperforms RECIST in early immunotherapy response 
assessment for NSCLC. Their analysis identified key CT-derived 
features (including markers of pseudo-progression) as quantitative 

biomarkers to address RECIST limitations in heterogeneous tumor 
behavior. Our results demonstrate that delta radiomics provides 
significant clinical value in oncology, including applications in 
differential diagnosis, prognosis, treatment response prediction, and 
adverse event assessment.

This research examines the predictive effectiveness of targeted 
therapy in patients with advanced lung adenocarcinoma possessing 
EGFR mutations. Aerts et al. (26) analyzed pre-and post-gefitinib 
CT scans in 47 NSCLC patients, identifying 13 radiomic features, 
among which the pretreatment Laws-Energy feature demonstrated 
superior prediction of EGFR mutation status compared to 
traditional size measurements (AUC 0.74–0.91), while feature 
changes across scans reliably indicated treatment response. 
Additionally, our study is the first to investigate imaging feature 
alterations in NSCLC patients with different EGFR mutation 

FIGURE 5

Calibration curve of four models (clinical, pre-treatment, delta, combined) in the training (A–D) and validation cohorts (E–H).
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statuses before and after targeted therapy. We applied the mRMR 
algorithm to identify strongly correlated and non-redundant 
features, followed by LASSO optimization with L1 regularization, 
ultimately extracting eight effective features. Prior to dimensionality 
reduction, wavelet transform captured multi-scale directional 
texture information, generating comprehensive feature sets for 
analysis. Tang (27) demonstrated that the wavelet transform, which 
integrates features from both the wavelet domain and the original 
CT domain, offers considerable benefits in classifying hepatocellular 
carcinoma (HCC) and other liver lesions, thereby improving tumor 
classification performance significantly. Wu et al. (28) demonstrated 
the predictive value of wavelet transform features for tumor 
histology, with most features showing discriminative power. The 
feature “Wavelet_HLH_glcm_correl1” outperformed others in 
univariate analysis, achieving the highest AUC of 0.66. Our findings 
confirm wavelet transform’s utility in extracting radiomic features 
for tumor classification, particularly in CT-based lung cancer 
subtyping. As a widely used texture analysis method, wavelet-
derived features exhibit distinct advantages over conventional 
approaches. The wavelet transform enhances image detail and 
elucidates the internal characteristics of tumors, as well as accurately 
delineating their edges, this information contributes to the 
understanding of tumor development patterns and their potential 
prognostic implications (29, 30).

The findings of this study indicate that the integration of clinical, 
pretreatment, and Delta features achieved an AUC of 0.977 (95% CI: 
0.938–1.000) in the training group and 0.913 (95% CI: 0.818–1.000) 
in the validation group, surpassing the performance of all other 
models evaluated. Furthermore, the accuracy, sensitivity, and 
specificity in both groups were superior to those observed with 
alternative models. Wang et al. (31) investigated early predictions of 
immune treatment responses in patients with metastatic melanoma 
undergoing anti-PD-1 and CTLA-4 therapies by developing several 
radiomics models through analysis of treatment-related and Delta 

features. The combined model demonstrated superior predictive 
accuracy for immunotherapy response compared to single-feature 
models, attributable to its incorporation of clinical parameters, 
pretreatment imaging features, and treatment-induced tumor 
dynamics. By synergistically analyzing interactions among these 
factors (e.g., clinical-imaging correlations), the model provides a 
comprehensive framework for early efficacy assessment, enhancing 
both interpretability and precision.

Lin et al. (32) conducted a retrospective analysis of 191 high-grade 
osteosarcoma patients receiving neoadjuvant chemotherapy, 
developing a CT-based delta-radiomics model using 540 radiomic 
features from pre-and post-treatment CT images. This model 
demonstrated superior AUC values compared to single-timepoint 
radiomics in both training and validation cohorts. Similarly, Li et al. 
(33) established delta-radiomics models to identify early EGFR-TKI 
resistance in lung adenocarcinoma, incorporating baseline, first 
follow-up, and final pre-progression imaging. Their delta-models 
consistently outperformed conventional radiomics across training and 
validation groups. In this study, the delta-radiomics model 
demonstrated higher accuracy, sensitivity, specificity, and AUC than 
the pretreatment model in both training and validation cohorts. 
However, DeLong tests revealed statistically significant differences 
between models only in the training group (p < 0.05), with no 
significance in the validation group (p > 0.05). These results conflict 
with findings from Lin (32) and Li (33) and deviate from expectations. 
We posit two explanations: (1) overfitting to the training data may 
restrict generalizable feature variation capture, or (2) limited 
validation cohort size/heterogeneity obscures true model differences. 
To address these limitations, future studies should: expand dataset 
diversity/size, integrate regularization with optimized feature 
selection, and validate performance through independent 
calibration cohorts.

This study advances understanding of advanced lung 
adenocarcinoma response to targeted therapy, but several 

FIGURE 6

Decision curve of four models (clinical, pre-treatment, delta, combined).
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limitations should be noted. First, as a single-center retrospective 
investigation, its limited sample size and inconsistent follow-up 
durations may affect result generalizability. Potential biases such as 
selection bias (e.g., exclusion of patients with incomplete imaging) 
and unmeasured confounders (e.g., variations in treatment 
adherence or genetic heterogeneity) should also be acknowledged. 
The semi-automatic segmentation method’s potential subjectivity 
may affect generalizability. While focused on targeted therapy 
responders, our findings require validation in broader clinical 
contexts encompassing chemotherapy and immunotherapy. 
Although currently limited to lung adenocarcinoma, future studies 
should encompass diverse lung cancer subtypes and treatment 
modalities to fully evaluate radiomics’ clinical utility. This study 
provides foundational insights, yet expanded multi-center research 
is imperative for validating feature applicability across 
therapeutic approaches.

In conclusion, the combined model, which integrates delta-
radiomics with clinical predictors (e.g., post-treatment tumor size and 
smoking history), significantly improves the prediction of targeted 
therapy efficacy in advanced EGFR-mutated lung adenocarcinoma. 
This approach outperforms traditional radiomics models that rely 
exclusively on pre-treatment imaging, highlighting the value of 
dynamic imaging changes and clinical factors for personalized 
treatment assessment.
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