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Osteoporosis is mainly characterized by low bone mineral density (BMD) and is an
increasingly serious public health concern. DNA methylation is a major epigenetic
mechanism that may contribute to the variation in BMD and may mediate the effects of
genetic and environmental factors of osteoporosis. In this study, we performed an
epigenome-wide DNA methylation analysis in peripheral blood monocytes of 118
Caucasian women with extreme BMD values. Further, we developed and implemented
a novel analytical framework that integrates Mendelian randomization with genetic fine
mapping and colocalization to evaluate the causal relationships between DNAmethylation
and BMD phenotype. We identified 2,188 differentially methylated CpGs (DMCs) between
the low and high BMD groups and distinguished 30 DMCs that may mediate the genetic
effects on BMD. The causal relationship was further confirmed by eliminating the
possibility of horizontal pleiotropy, linkage effect and reverse causality. The fine-
mapping analysis determined 25 causal variants that are most likely to affect the
methylation levels at these mediator DMCs. The majority of the causal methylation
quantitative loci and DMCs reside within cell type-specific histone mark peaks,
enhancers, promoters, promoter flanking regions and CTCF binding sites, supporting
the regulatory potentials of these loci. The established causal pathways from genetic
variant to BMD phenotype mediated by DNA methylation provide a gene list to aid in
designing future functional studies and lead to a better understanding of the genetic and
epigenetic mechanisms underlying the variation of BMD.

Keywords: osteoporosis, bone mineral density, causal inference, Mendelian randomization, DNA methylation,
epigenome-wide association
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INTRODUCTION

Osteoporosis is a disease that is clinically characterized by an
increased risk for fracture due to reduced bone mineral density
(BMD) and deterioration of bone quality (Kanis et al., 1994).
Osteoporotic fractures represent a major public health problem.
Approximately 2 million osteoporotic fractures occur per year in
the United States, incurring 17 billion US dollars in direct costs
annually, and the burden is estimated to increase by 50% by 2025
(Brent Richards et al., 2012). BMD has a high heritability (50%-
85%) as shown in twin and family studies (Arden et al., 2009).
Over the past 10 years, numerous genome-wide association
studies (GWAS) have identified over 500 genetic loci
associated with BMD and other osteoporosis (OP)-related
traits (Brent Richards et al., 2012; Estrada et al., 2012; Kemp
et al., 2017; Sabik and Farber, 2017; Al-Barghouthi and Farber,
2019; Morris et al., 2019). Although GWAS have been successful
in identifying genetic loci for BMD, translating the genetic
association findings into knowledge of the underlying
biological mechanisms of bone biology and OP remains
challenging, primarily due to the fact that most associations
are from noncoding variation, the lack of bone-specific-omics
resources, and the difficulties in establishing causality between
variants, genes, and traits.

DNA methylation is an epigenetic regulation mechanism that
plays a key role in many biological processes and disease
susceptibility (Grundberg et al., 2013; Gaunt et al., 2016). DNA
methylation also affects the differentiation and activities of bone
cells (Marini et al., 2016) and contributes to the pathogenesis of
OP (van Meurs et al., 2019). Epigenome-wide association studies
(EWAS) have been applied to investigate the association between
DNAmethylation and BMD. The largest EWAS of BMD in bone
specimens was performed in 84 postmenopausal women and
identified 63 differentially methylated CpGs (DMCs) between
healthy and osteoporotic women at a 10% false discovery rate
after limiting the association analyses to CpG sites in the top 100
genes whose bone transcripts were previously associated with
BMD (Reppe et al., 2017). Due to the difficulties inherent in
acquiring bone samples from human subjects, some recent
EWAS used whole blood DNA as a proxy to assess the
association. The largest EWAS for BMD in whole blood
assessed DNA methylation at over 450,000 CpG sites with
5,515 subjects across five cohorts but failed to identify strong
consistent association signal at any of the tested CpG sites
(Morris et al., 2017). The finding of no significant associations
was further substantiated by another independent EWAS of
BMD comparing the whole blood DNA methylation of 32
primary OP patients with 16 controls (Fernandez-Rebollo
et al., 2018), suggesting that the DNA methylation profile in
whole blood may not accurately reflect the epigenomic status of
bone cells. Moreover, although EWAS have extensively
investigated the associations of DNA methylation and BMD,
they were not able to elucidate the role of DNA methylation
along the etiology pathway of the genetic variants to OP.

Recent studies suggest that DNA methylation modification
could reside along the causal pathway between genetic variation
and disease, either as the mediating factor contributing to the
Frontiers in Genetics | www.frontiersin.org 2
trait (Richardson et al., 2017) or as a consequence of the trait
(Wahl et al., 2017). Identifying the role of epigenetic markers for
disease risk along the causal pathway could be valuable in
understanding the pathogenic mechanisms of OP. Mendelian
randomization (MR) is a statistical method for dealing with this
problem. It uses genetic variants robustly associated with
modifiable exposures as instrumental variables to infer the
causal relationship between the exposure and outcome variable
(Davey Smith and Ebrahim, 2003; Davey Smith and Hemani,
2014). Generally, the observed association between a risk factor
and an outcome trait can be explained in four kinds of causal
pathways: causality, linkage, horizontal pleiotropy and reverse
causality (Figure 1). Using an MR framework, we can investigate
whether DNA methylation resides along the causal pathway to
disease (Relton and Davey Smith, 2012). Such an effect is
sometimes referred to as “mediation,” as DNA methylation is
mediating the effects from genetic variants to phenotype along
the same biological pathway. Like other risk factors, DNA
methylation is also vulnerable to confounding and reverse
causality (Relton and Davey Smith, 2012), but some recently
developed methods can help to mitigate these problems. A
bidirectional MR framework can distinguish causality from
reverse causality (Figures 1D and 2) (Vimaleswaran et al.,
2013), a fine-mapping and colocalization framework can
identify whether the causal variants are in linkage (Figures 1D
and 2), and using multiple correlated instrumental variables
(IVs) can distinguish causality from horizontal pleiotropy
(Figures 1C and 2) (Burgess et al., 2016; Zhu et al., 2016).

In this study, we built a comprehensive MR framework to
evaluate the mediation effect of DNA methylation for genetic
influences on traits and applied our framework to discover the
genetic causal pathways of OP (Figure 2). In our analysis, we first
identified the DMCs and methylation quantitative loci (mQTLs)
in peripheral blood monocytes (PBMs) from 118 Caucasian
women with divergent BMD values and then implemented the
MR framework to infer the causal pathways mediated by DMCs.
PBMs can serve as circulating precursors of osteoclasts, the bone-
resorbing cells (Xing et al., 2005), and produce various cytokines
that have profound effects on osteoclast differentiation,
activation, and apoptosis (Zhou et al., 2015). Due to the close
biological relevance of PBM and bone metabolism, it has been
widely utilized as a working cell model for studying the
pathogenesis of OP (Liu et al., 2005; Nose et al., 2009; Cao
et al., 2014; Deng et al., 2014; Kim et al., 2014) and other skeletal
disorders (Nagy et al., 2008; Kwok et al., 2012). We successfully
identified 30 CpG sites in PBMs that may reside along the causal
pathway from gene to OP and further ascertained 25 genetic loci
that have potential causal effects on the change of DNA
methylation at those CpG sites by fine mapping.
MATERIALS AND METHODS

Human Subjects and Phenotype
A total of 118 Caucasian women between 20 and 40 years of age
were recruited from the subjects participating in our Louisiana
February 2020 | Volume 11 | Article 60
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Osteoporosis Study, a cross-sectional study with ongoing
recruitment to build a large sample pool (~20,000 subjects) and
database for research studies of OP and other musculoskeletal
diseases/traits (He et al., 2016; Du et al., 2017). The 118 subjects
included 64 with relatively high BMD and 54 with relatively low
BMD, corresponding to hip BMD Z scores ≥0.8 and ≤−0.8,
respectively. Hip BMD was determined as the combined BMD
of the femoral neck, trochanter, and intertrochanteric region
measured by Hologic Discovery-A DXA (dual energy X-ray
absorptiometry) machines (model number: 010-0575, Hologic
Inc., Bedford, MA, USA) (Kim et al., 2002). The DXA machine
was calibrated daily, and the coefficient of variation (CV) value of
the DXA measurements at total hip on Hologic Discovery-A was
1.0%. The BMD Z score was defined as the number of standard
Frontiers in Genetics | www.frontiersin.org 3
deviations a subject's BMD differed from the mean BMD of their
age-, gender-, and ethnicity-matched population. The Z-score was
reported directly by the Hologic DXA machine which has
incorporated the National Health and Nutrition Examination
Survey whole body bone data as reference in the system (Kelly
et al., 2009; Fan et al., 2014). For each study subject, weight and
height were measured using standard procedures, and lifestyle
factors (e.g. exercise, alcohol consumption, smoking, etc.) and
medical history were assessed by questionnaires. A set of stringent
exclusion criteria (Deng et al., 2002) were adopted to minimize
potential confounding effects of nongenetic influence (by
physiological and pharmacological conditions) on BMD
variation and alteration in PBM DNA methylation profile. The
detailed characteristics of the study subjects are shown in Table 1.
FIGURE 2 | The analytical framework to evaluate the possible models for observed associations between a trait and genetic variants through DNA methylation. The
causal relationship between DNA methylation and the trait is established by 2-sample Mendelian randomization (2SMR) with Egger regression to evaluate the
horizontal pleiotropy effect. The causal mQTL is identified by fine mapping. The possibility of linkage model is declined by HEIDI test.
FIGURE 1 | Four possible models for an observed association between a trait and genetic variants through DNA methylation. (A) The genetic variant has an effect
on the phenotype, mediated through DNA methylation. (B) The genetic variant that influences DNA methylation and the variant that influences the associated trait are
in LD with each other. (C) The genetic variant influences both DNA methylation and phenotype by two independent biological pathways. (D) The genetic variant has
an effect on the phenotype which then has a downstream effect on DNA methylation at this locus.
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PBM Isolation
Sixty milliliters of peripheral blood were collected from each
subject by a certificated phlebotomist. The fresh blood samples
were immediately processed for PBM isolation. First, peripheral
blood mononuclear cells (PBMCs) were isolated from whole
blood using density gradient centrifugation with Histopaque-
1077 (Sigma-Aldrich, USA). Then, PBMs were isolated from
PBMCs using Monocyte Isolation Kit II (Miltenyi Biotec Gmbh,
Bergisch Glagbach, Germany) according to the manufacturer's
protocol. The kit contains a highly optimized antibody mix and
blocking reagent to deplete T cells, B cells, and natural killer cells
from PBMCs, leaving monocytes untouched and free of surface-
bound antibody and beads with minimum disturbance. The
purity of PBMs isolated using this method was 86% ± 3%.
Genomic DNA was extracted from the freshly isolated PBMs
with the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, Inc.,
Valencia, CA), following the manufacturer's protocol and stored
at −80°C until further use.

Whole-Genome Sequencing Assay
Genomic DNA samples extracted from the whole blood were
sequenced to 30x coverage on Illumina HiSeq X-Ten with 150 bp
paired-end reads. Data quality check was performed on the
Illumina sequencing analysis viewer (SAV). Sequence reads
were trimmed using Cutadapt (version 1.11) (Martin, 2011),
aligned to GRCh37 (hg19) using BWA-MEM (version 0.7.12-
r1039) (Li and Durbin, 2010), duplicates marked with Picard
(version 1.129, http://picard.sourceforge.net), and coordinates
sorted using Samtools (version 1.3) (Li et al., 2009). SNPs were
detected by a dual calling strategy using qSNP (Kassahn et al.,
2013) and GATK HaplotypeCaller (McKenna et al., 2010).
Variants were annotated with Ensembl v75 gene feature
information. Variants were considered “called” and used in the
subsequent analysis if they passed the following filters: a
minimum read depth of eight reads in each dataset; at least
four reads containing the variant where the variant was identified
on both strands and not within the first or last five bases. Variants
that did not pass these filters were considered “low evidence”.

Epigenome-Wide DNA Methylation Assay
and Data Processing
Epigenome-wide DNA methylation profiles were determined by
reduced representation bisulfite sequencing (RRBS) according to
Frontiers in Genetics | www.frontiersin.org 4
previously published protocols (Meissner et al., 2005). Briefly,
100 ng genomic DNA from PBMs were digested overnight with
MspI restriction enzyme (Thermo Scientific, USA) and then
subjected to library construction using the NEXTflex Bisulfite-
Seq Library Prep Kit and NEXTflex Bisulfite-Seq Barcodes (BioO
Scientific, USA) with a modification of bead size selection to
capture MspI fragments of 40–220 bp size. The resulting libraries
were bisulfite converted by the EZ DNA Methylation-Gold kit
(Zymo Research Corp, USA) and amplified by 20 cycles of PCR
using the NEXTflex Bisulfite-Seq U+PCR Master Mix and
NEXTflex Primer Mix (BioO Scientific, USA). The bisulfite
conversion rate of the EZ DNA Methylation-Gold Kit is ≥99%
according to the manufacturer's specifications. Different
adaptors were used for multiplexing samples into one lane.
Library concentrations and quality were measured by Qubit ds
DNA HS Assay kit (Life Technologies, USA) and Agilent
Bioanalyzer (Agilent, USA). Purified and quantified libraries
were pooled at six samples per lane for sequencing and read by
1 × 50 bp on Illumina HiSeq3000. Data quality check was done
on Illumina SAV. De-multiplexing was performed with Illumina
Bcl2fastq2 v2.17 program and standard FASTQ files were
trimmed with Cutadapt v1.3 (Martin, 2011). The trimmed
reads were mapped to the human reference genome (hg19)
and converted to methylation values on the 0–1 scale using
Bismark v0.10.0 (Krueger and Andrews, 2011). Only CpG sites
with ≥3-fold coverage in at least 30 subjects in each BMD group
were included in the subsequent analysis.

Control for Potential Cell Admixture
As is true for most tissues, the PBM contains a mixture of
several subtypes of cells (Wong et al., 2011). This may cause
false positives in association analysis if 1) the methylation
pattern of subcell types differs and 2) the relative abundance of
cell types is correlated with the outcome variable of interest
(Houseman et al., 2012). We adopted a principal component
(PC) analysis approach to alleviating the risk of false positive
discoveries (Sun et al., 2010; Liu et al., 2013; McClay et al., 2015).
The underlying assumption is that subjects with similar cell type
compositions will have more similar multi-locus methylation
patterns and these patterns can be captured by the PCs. By
including the PCs of methylation data as covariates in the
association analysis, the potential effects of cell mixture can be
regressed out (Sun et al., 2010; Liu et al., 2013; McClay et al.,
2015). Similarly, the PC could also help adjust the batch
effect and other unmeasured confounders (Price and Robinson,
2018). To obtain the PCs, the methylation data were first
normalized by the inverse quantile transformation of the
ranked values, which is a robust approach that can reduce the
effect of outliers (Wright et al., 2014). Based on the variance
explained (Figure S1, Table S1), the first PC, explaining 26.95%
of the methylation variance, was included as a covariate in the
following regression analysis.

Epigenome-Wide Association Analysis
Differential methylation analyses were carried out by using R
packagemethylKit (Akalin et al., 2012) with the following logistic
regression model at each CpG site for subject i = 1,…,n
TABLE 1 | Baseline characteristics of subjects from the low and high BMD
group.

Low BMD
group (s.d.)

High BMD
group (s.d.)

p-value

N 54 64
Age 31.8 (4.80) 31.5 (4.97) 0.76
Total Hip BMD Z-score
(standardized)

0.77 (0.06) 1.11 (0.08) 2.2 × 10-16

Body mass index (kg/m2) 21.72 (2.66) 30.03 (8.80) 3.88 × 10-10

Smoke (% yes) 0.33 0.39 0.65
Alcohol drinking (% yes) 0.91 0.85 0.45
s.d., standard deviation.
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log
Pi

1 − Pi
=   b0 + b1*Xi   +oK

j=1aji    �   covariatek,i

where n is the total number of subjects, Pi is the proportion of
methylated cytosines, Xi denotes the BMD group (= 0 for
subjects in the low BMD group and = 1 for subjects in the
high BMD group), b0 denotes the log odds of the control group,
and b1 denotes the log odds ratio between the high and low BMD
groups. Covariates in the model included age, body mass index,
drinking status, smoking status, and 1st PC of methylation. We
include the PC for methylation for batch effect and cell-type
adjustment. The p-values for testing the null hypothesis H0: b1 =

0 were adjusted by Bonferroni correction to account for multiple
testing problems. We performed simulation analyses to calculate
the power of detecting methylation difference using logistic
regression at different settings of mean sequencing coverage
and probability of methylation in the low BMD group (details
see Supplementary File Part 1).

mQTL Analysis
Autosomal analysis was applied to 9,265,832 SNPs with a minor
allele frequency > 0.01, genotype hard call rate > 0.95, and
Hardy–Weinberg p > 1 × 10−6. The first PC of SNPs, which
explains 46% of the variance (Figure S2, Table S2), was included
as a covariate in the association analysis to control for ancestry
and population stratification (Price et al., 2006). To increase the
computation speed, we split the SNP and methylation data by
chromosome and performed association analysis for each SNP-
DMC pair on the same chromosome to identify both cis- and
trans-mQTLs using R package matrixEQTL. The SNP was
defined cis if the distance between SNP and CpG was <1 Mb
and trans otherwise. p-values were corrected by the Bonferroni
approach using the total number of tests of cis and trans effects
(Table S3) separately to account for the multiple testing
problem. SNPs that have a significant (Bonferroni adjusted
p-value ≤ 0.05) association with DMCs were defined as mQTLs.

MR Analysis
The DMCs were further analyzed by MR to estimate the
potential mediation effects of DNA methylation on BMD.
Considering the lack of power for detecting association due to
the limited sample size (N = 118) of our study cohort, we
undertook a two-sample MR (2SMR) approach with estimated
effects between genetic variants and BMD from published studies
(Burgess et al., 2015). We used DMCs as the exposure and its
associated mQTLs as the instrument variables (IVs). The effects
of mQTLs on BMD variation were extracted from the GWAS
summary statistics for femoral neck BMD from the GEnetic
Factors for OSteoporosis Consortium 2015 data release (Zheng
et al., 2015). The mQTL SNPs were further pruned by linkage
disequilibrium (LD) correlation. Only SNPs with low LD (r2 <
0.2) were retained to ensure the independence of IVs. If there was
only one remaining SNP, we used theWald ratio test to assess the
causal effect of DNA methylation. If there were two or more
remaining SNPs, we used inverse-variance weighted (IVW)
regression (Burgess et al., 2013) along with sensitivity analysis
by Egger's regression (Bowden et al., 2015) to assess the causal
Frontiers in Genetics | www.frontiersin.org 5
relationship. We performed the MR analysis iteratively through
all the DMCs. The DMCs that achieved FDR corrected
significance level in the Wald ratio test or IVW regression
were defined as mediator DMCs, i.e. methylation at these CpG
sites with mediation effects for genetic influences on BMD. The
2SMR was implemented by R package MR-Base (Hemani
et al., 2018).

We also performed reverse MR analysis to evaluate the
potential reverse causation (i.e. BMD causes altered DNA
methylation at the CpG site of interest) for the mediator
DMCs detected in the MR analysis. Because of the limited
power to identify SNPs significantly associated with BMD
using our study cohort here, the IVs for this analysis were
identified with relevant GWAS for BMD reported on the
NHGRI-EBI GWAS catalog (MacArthur et al., 2017).

Fine Mapping
In 2SMR, a set of SNPs that are significantly associated with
methylation at a CpG site was required to estimate the causal
effect of the methylation. To distinguish the genetic variants with
a high probability of causality among all genetic variant
associated with a DMC, we performed fine mapping analysis
with PAINTOR software (Kichaev et al., 2014; Kichaev et al.,
2017). The major advantage of the PAINTOR algorithm is that it
incorporates functional annotation information of the genetic
variant with the association and LD information to calculate a
posterior probability for each SNP to be causal across a locus.
Previous simulations have shown that compared to other fine-
mapping approaches, PAINTOR has much higher accuracy to
select the causal SNPs with annotation information available
(Kichaev et al., 2014). LD matrix of the pairwise correlations
between SNPs was calculated with PLINK software using our
own sample of 118 Caucasian women. Functional annotation
included in the analysis were gene elements form GenCode
(eight annotations) and chromatin states of monocytes
computed from the 15-state hidden Markov model built by
NIH Roadmap Epigenomics Project (Roadmap Epigenomics
Consortium et al. , 2015). The annotation fi les were
downloaded from the PAINTOR website (https://github.com/
gkichaev/PAINTOR_V3.0/wiki/2b.-Overlapping-annotations).
We set the maximum number of causal variants in a locus to be
two based on our computational capability. The mQTLs that
have the largest posterior probability as computed by the
PAINTOR algorithm were defined as causal mQTLs.

Test of Pleiotropy Effect
The observation of the mediation effect of DNA methylation in
the 2SMR analysis does not necessarily mean that both DNA
methylation and BMD are affected by the same causal variant
identified by fine mapping (pleiotropy effect). It is possible that
different SNPs that are in high LD causally affect DNA
methylation and BMD, respectively (linkage effect, Figure 1B).
Hence, for mediator DMCs, we tested the heterogeneity in the bxy
values estimated for multiple SNPs in the cis-eQTL region using
the heterogeneity in dependent instruments (HEIDI) method to
distinguish pleiotropy from linkage with multiple SNPs in cis-
region. Under the null hypothesis of the HEIDI test which
February 2020 | Volume 11 | Article 60
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assumes pleiotropy, the estimated effect size of DNAmethylation
on BMD (bxy) calculated for any SNPs in LD with the causal
variant will be identical. Therefore, testing against the null
hypothesis is equivalent to testing whether there is
heterogeneity in the bxy values estimated for the causal variant
and all other SNPs in the cis-mQTL region. In the HEIDI test, we
only included SNPs in moderate LD with the causal cis-mQTL
(0.05 < r2 < 0.9) which was inferred by the population in our
study. We also removed SNPs in the cis-mQTL region with an
mQTL p-value > 1.6 × 10−3 to avoid weak instrumental bias
which was the default setting of the SMR software (Zhu et al.,
2016). p-value threshold was adjusted by Bonferroni correction
using the total number of identified causal mQTLs.

Functional Annotation for DMC, Mediator
DMC, and Causal mQTLs
To test for functional enrichment of the DMCs, we annotate
them to seven regulatory categories, including three general
regulatory categories (genic regions, CpG islands, and binding
sites of CTCF) and fore cell-type specific regulatory categories of
CD14+ monocyte (histone marks, DNaseI signal peak, chromatin
states from the NIH Roadmap Epigenomics Project (Roadmap
Epigenomics Consortium et al., 2015), and monocyte
differentially expressed enhancers from Fantom5 (Lizio et al.,
2017)). We mapped each DMC to the annotation categories and
recorded overlap at each DMC as a binary variable. To determine
whether enrichment occurred more frequently than by chance,
we randomly generated 1,000 sets of CpGs (sample size =
number of DMCs) from all the input CpGs for differential
methylation analysis. For each epigenetic mark, we then
calculated the proportion of overlapping CpGs among the
DMCs (observed) and that of 1,000 simulated sets of CpGs
(expected). We calculated the fold enrichment as observed/
expected proportion values and obtained an empirical p value
from the distribution of expected proportion values.

We investigated the biological meaning of the DMCs by
analyzing the annotations of the nearby genes. We used the
Genomic Regions Enrichment of Annotations Tool (GREAT)
v3.0.0 to evaluate whether the nearby genes of DMCs are
enriched in any gene and human phenotypes ontology terms.
To better understand the functional mechanism of the identified
causal mQTLs, we annotated each of them to the genic region of
specific genes and the regulatory categories as we did for DMC
annotation. We use the VEP tool (McLaren et al., 2016) for gene
annotation and prediction of their functional consequences. In
addition, we used the Core Expression Analysis function in the
Ingenuity Pathway Analysis software (IPA, QIAGEN Redwood
City, www.qiagen.com/ingenuity) to identify overrepresented
canonical pathways, diseases, or disorders and molecular and
cellular functions for the nearest genes of causal mQTLs. The
experimentally observed molecules and relationships in the IPA
Knowledge Base for mammal (humans, mouse, or rat) were used.
p-values of the right-tailed Fisher exact test were calculated by
IPA to assess the enrichment. We also performed gene pathway
enrichment analyses using Metascape (Zhou Y. et al., 2019), in
which the following ontology sources were used: KEGG Pathway,
GO Biological Processes, Reactome Gene Sets, Canonical
Frontiers in Genetics | www.frontiersin.org 6
Pathways and CORUM. All genes in the genome were used as
the enrichment background. Terms with a p-value < 0.01, a
minimum count of 3, and an enrichment factor > 1.5 (the
enrichment factor is the ratio between the observed counts and
the counts expected by chance) were collected and grouped into
clusters based on their membership similarities. The most
statistically significant term within a cluster was chosen to
represent the cluster (Zhou Y. et al., 2019).
RESULTS

Differentially Methylated CpG Sites
A total of 17,462,566 CpG sites were measured in 54 subjects in
the low BMD group and 64 subjects from the high BMD group,
of which 1,267,919 CpG sites that were measured with adequate
sequencing coverage (N ≥ 3) in more than 30 subjects in each
BMD group were used for differential methylation analysis. The
mean sequencing coverage of the tested CpGs was 46.52 (95% CI:
22.95~62.09) fold. We identified 6,149 DMCs significantly
associated with BMD at Pp < 3.94 × × 10-8 (Bonferroni
correction 0.05/1,267,919), including 2,188 DMCs with an
absolute difference in methylation values > 0.05 and 693 DMC
with absolute difference ≥ 0.1 between the low and high BMD
groups (Table S4 and Figure S3). Among the 2,188 DMCs with
an absolute difference in methylation values > 0.05, 1,601 (74%)
DMCs had mean sequencing coverage >10 and 1,161 (53%) had
mean coverage >30 (Figure S4). We estimated that our sample
size has approximately 80% power to detect a 0.05 gross
difference (total difference caused by methylation and other
covariates) at the mean coverage of 30-fold (Figure S5). We
used relatively moderate thresholds for the sequencing coverage
and methylation difference in DMC analyses in order to provide
a large set of candidates for the downstream analyses.

The GREAT analysis shows that the nearby genes of DMCs
with difference >0.05 are enriched in association with a bone-
related human phenotype term, elevated alkaline phosphatase of
bone origin (Figure 3). To evaluate whether our findings are
consistent with previous studies, we checked the overlap of
DMCs with the significant signals in three previous EWAS of
OP (Delgado-Calle et al., 2013; Reppe et al., 2017; Morris et al.,
2017). For each DMC identified by our study, we found the
nearest signals identified in previous EWAS and calculated the
distance between the DMC and the EWAS signals (Tables S5
and S6). Twelve DMCs are located within 1,000 bp from the
previously identified EWAS signals by Delgado-Calle et al.
(Delgado-Calle et al., 2013). The low overlap rate between our
results and that of Delgado-Calle's study is likely due to the very
limited overlap of the tested CpG sites between the two studies,
and the difference in the studied sample cohorts. Specifically,
although we tested 1,267,919 CpGs measured by RRBS, only
33,345 (2.6%) of the tested CpGs were mapped to within 1,000
bp from the CpGs measured by the Illumina 27K array, which
was used in the study by Delgado-Calle et al. In addition, our
study was perform in PBMs from women aged between 20 and
40 years, whereas the study by Delgado-Calle et al. studied
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trabecular bone specimens from women aged 59–85 years, with
26 had osteoarthritis and 27 had OP fractures.

Construction of Causal Paths: mQTLs,
Mediator DMCs and Causal mQTLs
As we were particularly interested in DMCs where the DNA
methylation may mediate the genetic risk for OP, we applied
2SMR analysis on the 6,149 DMCs. First, we identified 115,727
significant cis-DMC-mQTL pairs with Pp < 1.08 × × 10-9

(Bonferroni correction 0.05/46,331,365) and 79,188 significant
trans-DMC-mQTL pairs with Pp < 1.83 × × 10-11 (Bonferroni
correction 0.05/2,736,230,941), including 125,409 unique
mQTLs and 2,618 unique DMCs.

Next, by using mQTLs as the instrumental variables, DNA
methylation at DMCs as potential mediators, and BMD groups
as the outcome, we found 30 significant mediator DMCs in the
2SMR analysis (Table 2), among which 11 mediator DMCs
showed a positive relationship between DNA methylation and
BMD and 19 showed a negative relationship based on the
estimated effect sizes. The minimum absolute differences in
methylation values of the mediator DMCs is 1.6% between the
high versus low BMD groups, while half of mediator DMCs have
methylation difference greater than 5% (Table 2).

To evaluate the potential reverse causation between BMD and
methylation at the 30 DMCs, we also carried out reverse 2SMR
analysis by using SNPs associated with BMD as the instrumental
variables, BMD as the potential mediators, and DNA
methylation at DMCs as the outcome. None of the 30
mediator DMCs showed significant evidence of reverse
causality after multiple testing correction (Table S7). Two
DMCs (Chr16:89167395 and Chr2:31719473) reached the
nominal significance level (0.05) for both the two-stage least
square (2SLS) method with multiple linear regression and 2SLS
with logistic regression (Table S8), which further supports the
existence of mediation effect at these CpG sites.

The 30 mediator DMCs were fine mapped to 25 causal
mQTLs (Table 2). None of the causal mQTLs has a HEIDI
Frontiers in Genetics | www.frontiersin.org 7
test p-value past the threshold 0.001 (0.05/30) after Bonferroni
adjustment, suggesting it is unlikely that the SNPs in LD with
these causal mQTLs affect BMD.

Biological Significance of the Causal
Paths
The mediator DMC–causal mQTL pairs were mapped to 25
unique genes (the nearest genes of causal mQTLs), of which eight
genes have been associated with bone-related phenotype in
previous GWAS studies (Table 3). Three causal mQTLs are in
high LD with BMD-associated SNPs reported in GWAS catalog:
rs2526020 (in LD with rs227584, r2 = 0.8913), rs62054394 (in LD
with rs1864325, r2 = 1), rs62063779 (in LD with rs1864325, r2 =
1). Four causal mQTLs were shared by more than one mediator
DMC (rs76439887, 17:44359021, 17:44572989, and rs59251877),
which may point to the location of some harbor genes. By
overlapping the causal mQTLs and the mediator CpGs with
regulatory categories, we found that 10 out of 25 causal mQTLs
and 25 out of 30 mediator DMCs reside within cell type-specific
histone mark peaks, enhancers, promoters, promoter flanking
regions and CTCF binding sites (Tables S9 and S10), supporting
the regulatory potential of these loci.

Using IPA software, we identified the top canonical pathways
related to the causal mQTLs, shown in Table 4. In our result, we
didn't find the most well-known signaling pathways related to
bone metabolism, like the Wnt and BMPs (bone morphogenetic
proteins) (Shahi et al., 2017). However, it has been established
that OP and cardiovascular disease are functionally interwoven
and share some common risk factors like hyperlipidemia
(Parhami et al., 2000). The identification of ‘Fatty Acid
Biosynthesis Initiation II’ in the top canonical pathways, ‘Lipid
Metabolism’ in the top molecular and cellular functions and
‘Cardiovascular disease’ in the top diseases and disorders
(Table 4) may indicate that lipid metabolism has more
important effects on BMD than previously understood. We
also performed gene pathway enrichment analysis using
Metascape (Zhou Y. et al., 2019). A GO biological process
FIGURE 3 | Functional annotation of DMCs with difference >0.05. The bars represent the top 20 categories in the human phenotype ontology enriched genes near
the DMCs. The length of the bars corresponds to values on the x-axis, which are hypergeometric (uncorrected) p-values.
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TABLE 2 | Results of Mendelian randomization analysis.

p SNP Top SNP bp SNP Overlapped Gene p_HEIDI nSNP_HEIDI Meth_diff p_DMC

917185 22571385 MIR4418 0.341 14 10.600 3.27E-10
1081363 31720272 SRD5A2 0.335 14 -8.963 5.93E-31
211813 975238 DGKQ/SLC26A1 0.543 16 -10.465 4.49E-28
54748 32213210 XXbac-BPG154L12.4 0.517 9 -3.770 9.52E-17
388364 1033045 C7orf50 0.506 20 -2.774 5.29E-17
813509 56356143 RP11-700P18.1 0.853 8 -11.186 8.40E-47
786043 58133174 RP11-513O17.2 0.663 18 5.138 1.30E-31
116497 71634393 PRKACG 0.360 20 -9.207 6.99E-54
857266 96381765 PHF2 0.376 20 1.662 2.41E-18
489684 42862079 RP11-313J2.1 0.298 20 -3.140 1.70E-18
875744 48498440 SENP1 0.433 9 12.018 1.45E-100
446981 75637351 TMED10 0.228 4 -6.827 5.95E-11
925557 81251149 PKD1L2 NA NA -10.155 1.37E-29
188200 89167094 ACSF3 0.557 13 7.130 6.11E-24
439887 1945201 DPH1 NA NA -2.516 2.22E-10
439887 1945201 DPH1 NA NA -3.052 6.39E-20
526020 42216588 C17orf53 0.451 5 19.333 2.65E-21
724577 43463493 MAPT 0.735 5 8.741 2.70E-10
054394 43810608 CRHR1 0.312 17 7.835 2.75E-08
063779 44054671 ARHGAP27 0.177 20 5.094 1.22E-12
4359021 44359021 ARL17B 0.175 19 -2.539 2.87E-22
4359021 44359021 ARL17B 0.192 20 -2.557 4.01E-22
4359021 44359021 ARL17B 0.175 19 -2.316 7.11E-19
4366572 44366572 ARL17B 0.192 20 -2.308 4.20E-18
4572989 44572989 RP11-995C19.2 0.176 19 -2.630 5.94E-21
4572989 44572989 RP11-995C19.2 0.176 19 -2.637 2.50E-20
251877 80056498 FASN 0.004 7 8.662 1.50E-23
251877 80056498 FASN 0.004 8 3.921 5.50E-11
622522 46676599 LINC00334 0.403 20 -2.369 1.53E-09
170325 46502870 FLJ27365 0.880 4 -4.806 2.14E-11

ean methylation level between BMD groups (high BMD group minus low BMD group).
gger regression statistics and no linkage SNP found to be tested for HEIDI test.

Y
u
et

al.
M
ethylation

S
ites

M
ediate

G
enetic

In
fluences

Frontiers
in

G
enetics

|
w
w
w
.frontiersin.org

February
2020

|
Volum

e
11

|
A
rticle

60
8

DMC1 Method nSNP b_MR se_MR p_MR b_Egger se_Egger p_Egger To

1:22571385 IVW 4 0.022 0.004 2.26E-06 0.085 0.051 0.240 rs1
2:31719473 IVW 2 -0.024 0.007 3.36E-02 NA NA NA rs15
4:957285 IVW 2 0.017 0.005 1.86E-02 NA NA NA rs7
6:32222711 IVW 5 -0.030 0.007 3.22E-03 0.162 0.065 0.088 rs
7:1062527 IVW 4 0.016 0.004 2.41E-02 -0.001 0.032 0.981 rs4
7:56435427 IVW 10 0.016 0.003 1.28E-05 -0.019 0.024 0.444 rs3
8:58127658 IVW 9 -0.025 0.003 9.54E-11 0.003 0.041 0.939 rs1
9:71682281 IVW 4 0.016 0.004 2.89E-03 -0.025 0.066 0.744 rs1
9:96362114 IVW 5 0.017 0.004 3.22E-03 0.003 0.137 0.982 rs7
10:42739065 IVW 6 0.016 0.004 3.36E-02 0.099 0.173 0.596 rs2
12:48723325 IVW 4 -0.017 0.005 2.90E-02 -0.049 0.064 0.519 rs1
14:75441795 IVW 3 0.015 0.004 3.28E-02 -0.111 0.730 0.904 rs3
16:81248716 IVW 2 -0.019 0.005 4.20E-02 NA NA NA rs1
16:89167395 IVW 3 0.021 0.006 2.91E-02 0.041 0.049 0.554 rs7
17:1944903 WR 1 -0.056 0.012 2.57E-03 NA NA NA rs7
17:1944905 WR 1 -0.061 0.013 2.57E-03 NA NA NA rs7
17:42246289 IVW 2 -0.042 0.006 1.65E-10 NA NA NA rs2
17:44060776 IVW 44 0.013 0.001 5.94E-37 0.017 0.017 0.322 rs7
17:43894548 IVW 40 0.011 0.001 2.02E-31 0.016 0.006 0.008 rs6
17:43828617 IVW 41 0.015 0.001 5.59E-35 0.015 0.012 0.203 rs6
17:44337590 IVW 38 -0.022 0.002 3.65E-30 -0.038 0.014 0.011 17:4
17:44337597 IVW 42 -0.022 0.002 3.75E-34 -0.052 0.017 0.004 17:4
17:44337613 IVW 38 -0.022 0.002 5.54E-30 -0.040 0.013 0.004 17:4
17:44337604 IVW 42 -0.022 0.002 2.91E-36 -0.005 0.022 0.819 17:4
17:44337617 IVW 40 -0.022 0.002 1.65E-33 -0.020 0.016 0.220 17:4
17:44337622 IVW 42 -0.023 0.002 2.91E-36 -0.013 0.021 0.545 17:4
17:80053590 IVW 6 0.013 0.003 1.30E-03 0.000 0.021 0.984 rs5
17:80086159 IVW 7 0.014 0.003 7.07E-04 0.004 0.017 0.831 rs5
21:46677414 IVW 5 0.013 0.004 4.22E-02 -0.013 0.030 0.688 rs2
22:46504167 IVW 2 -0.026 0.007 1.05E-02 NA NA NA rs1

1Format of DMC, chromosome: position.
nSNP, number of SNPs; b, effect size; se, standard error; p, p-value; bp, base pair position; Meth_diff, difference in m
NA stands for not applicable. NA occurs because the number of associated SNPs (nSNP) is less than three for the E
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term related to lipid metabolism (steroid biosynthetic process)
showed significant enrichment (p-value = 1.45 × × 10-4) in genes
mapped to causal mQTLs which further supported our findings
by IPA (Figure S6 and Table S13). Finally, we provided a
network graph for the genes near the identified causal mQTLs
(Figure 4), which elucidates the interaction between the
identified genes in more detail and may facilitate researchers to
discover new drug targets or disease mechanisms.
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DISCUSSION

In this article, we developed a framework for evaluating the
causal effect of DNA methylation on a complex trait. This
framework combines the MR method with fine mapping and
colocalization so that it can distinguish causal relationship from
reverse causality, linkage and horizontal pleiotropy (Figure 1).
Using this framework, we successfully identified 30 causal
TABLE 3 | Gene annotation of causal mQTLs.

DMC Causal
mQTLs

mQTL bp Causal mQTLs
Overlapped Gene

Gene Type Traits GwasCatalog
Study ID

PMID

1:22571385 rs10917185 22571385 MIR4418 miRNA BMD GCST001482 22504420
BMD (total hip) GCST006143 29883787
Heel BMD GCST006433 30048462
Heel BMD GCST006979 30598549
Heel BMD GCST007066 30595370
Lumbar spine BMD
(integral)

GCST007015 27476799

Lumbar spine BMD
(trabecular)

GCST007014 27476799

Total body BMD GCST005348 29304378
2:31719473 rs151081363 31720272 SRD5A2 Processed transcript
4:957285 rs73211813 975238 DGKQ Protein coding Heel BMD GCST006433 30048462
4:957285 rs73211813 975238 SLC26A1 Protein coding
6:32222711 rs454748 32213210 XXbac-

BPG154L12.4
Antisense

7:1062527 rs4388364 1033045 C7orf50 Protein coding LDL measurement GCST006612 30275531
7:56435427 rs3813509 56356143 RP11-700P18.1 Pseudogene
8:58127658 rs11786043 58133174 RP11-513O17.2 lincRNA
9:71682281 rs10116497 71634393 PRKACG Protein coding Blood pressure/cancer GCST007087/

GCST005275
30595370/
29299148

9:96362114 rs7857266 96381765 PHF2 Protein coding Heel BMD GCST006288 28869591
Heel BMD GCST006433 30048462
Heel BMD GCST006979 30598549

GCST007066 30595370
10:42739065 rs2489684 42862079 RP11-313J2.1 Pseudogene
12:48723325 rs10875744 48498440 SENP1 Protein coding
14:75441795 rs35446981 75637351 TMED10 Protein coding Heel BMD GCST006433 30048462
16:81248716 rs12925557 81251149 PKD1L2 Polymorphic

pseudogene
16:89167395 rs7188200 89167094 ACSF3 Protein coding
17:1944903 rs76439887 1945201 DPH1 Protein coding
17:1944905 rs76439887 1945201 DPH1 Protein coding
17:42246289 rs2526020 42216588 C17orf53 Protein coding BMD GCST000297 19079262

BMD GCST001482 22504420
17:44060776 rs79724577 43463493 ARHGAP27 Protein coding Heel BMD GCST006433 30048462
17:43894548 rs62054394 43810608 CRHR1 Protein coding BMD (spine) GCST000494

BMD (hip) GCST000495
Heel BMD GCST006433
Heel BMD GCST006979
Heel BMD GCST007066

17:43828617 rs62063779 44054671 MAPT Protein coding BMD GCST001482 22504420
Heel BMD GCST006433 30048462

17:44337590 17:44359021 44359021 ARL17B Protein coding
17:44337597 17:44359021 44359021 ARL17B Protein coding
17:44337613 17:44359021 44359021 ARL17B Protein coding
17:44337604 17:44366572 44366572 ARL17B Protein coding
17:44337617 17:44572989 44572989 RP11-995C19.2 Pseudogene
17:44337622 17:44572989 44572989 RP11-995C19.2 Pseudogene
17:80053590 rs59251877 80056498 FASN Protein coding
17:80086159 rs59251877 80056498 FASN Protein coding
21:46677414 rs28622522 46676599 LINC00334 lincRNA
22:46504167 rs12170325 46502870 FLJ27365 Protein coding
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pathways from genetic variant to BMD phenotype mediated by
DNA methylation. Among the 25 corresponding causal genes
that we identified, eight genes (MIR4418, TMED10, C17orf53,
CRHR1, ARHGAP27, MAPT, DGKQ, and PHF2) have been
reported to be associated with BMD in previous GWAS
(Table 3).

The CRHR1 gene was first reported to be significantly
associated with BMD in a large-scale meta-analysis of GWAS
Frontiers in Genetics | www.frontiersin.org 10
in 19,195 adults of Northern European descent (Rivadeneira
et al., 2009), and this association was also replicated in East Asian
populations (Styrkarsdottir et al., 2010). CRHR1 encodes a G-
protein coupled receptor that binds with the neuropeptides of the
corticotropin-releasing hormone family, a major regulator of the
hypothalamic-pituitary-adrenal pathway with important effects
on bone turnover (Ralston and Uitterlinden, 2010). We
identified six causal CpGs located in a CpG island
(chr17:44337401-44337926) near the 5'UTR region of the
CRHR1 gene, of which five are hypo-methylated in the low
BMD group and one is hypermethylated. The hypomethylation
in the promoter region of CRHR1 has the potential role of
increasing CRHR1 expression as was identified in a case-
control study of panic disorder (Schartner et al., 2017). In
addition, depression, anxiety, and stress have been found to be
negatively correlated with BMD (Erez et al., 2012). These
findings suggested a potential epigenetic regulatory mechanism
between hypomethylation of CRHR1 promoter and low BMD
through the regulation of CRHR1 gene expression.

C17orf53 gene was associated with BMD and fracture risk in a
large genome-wide meta-analysis study, including 17 GWAS and
32,961 individuals of European and East Asian ancestry (Estrada
et al., 2012). A recent study investigated the molecular and
cellular functions of a specific BMD-associated SNP (rs227584)
in C17orf53 gene using osteoblastic cells and demonstrated that
the SNP rs227584 may alter substrate‐kinase interaction between
protein C17orf53 and NEK2 and subsequently regulate
osteoblast growth and activity (Zhou X. et al., 2019). Our
findings complement the previous results and provide further
supporting evidence for the significance of C17orf53 gene on
regulating BMD variation and OP risk.

The analytical framework we developed in this study has
several prominent strengths. First, we used multiple IVs in the
FIGURE 4 | Two predicted nondirectional interaction map of causal mQTL annotated gene by IPA. (A) Top mapped disease or functions: cell-to-cell signaling and
interaction, cellular assembly, and organization and cellular function and maintenance. (B) Top mapped disease or functions: endocrine system disorders,
gastrointestinal disease, hereditary disorder. The shaded nodes are gene identified by our analysis. And others are genes/molecules from the Knowledge Base
added to the network to fill or join areas lacking connectivity by IPA. Highly interconnected networks are likely to represent significant biological function. For detailed
legend see IPA Legend page: http://qiagen.force.com/KnowledgeBase/articles/BasicTechnicalQA/Legend.
TABLE 4 | Canonical pathways, diseases, and molecular and cellular functions
significantly enriched in genes mapped to causal mQTLs.

Top Canonical Pathways p-value1 Overlap2

Amyloid processing 6.79E-04 3.9% 2/51
Palmitate biosynthesis 1.52E-03 50.0% 1/2
Fatty acid biosynthesis initiation II 1.52E-03 50.0% 1/2
Gas signaling 2.94E-03 1.9% 2/107
CDK5 signaling 3.00E-03 1.9% 2/108
Diseases and Disorders p-value range3 #Molecules4

Neurological Disease 4.90E-02–5.29E-04 5
Organismal Injury and Abnormalities 4.76E-02–5.29E-04 17
Cancer 4.69E-02–7.60E-04 17
Cardiovascular Disease 3.52E-02–7.60E-04 1
Connective Tissue Disorders 4.76E-02–7.60E-04 5
Molecular and Cellular Functions p-value range3 #Molecules4

Lipid Metabolism 4.40E-02–3.16E-04 6
Small Molecule Biochemistry 4.40E-02–3.16E-04 7
Nucleic Acid Metabolism 1.21E-02–3.78E-04 5
Cell Morphology 4.76E-02–7.60E-04 5
Cell-To-Cell Signaling and Interaction 4.39E-02–7.60E-04 3
1The Fisher's exact test p-value indicating the significance of enrichment of the causal
mQTL genes in the pathway.
2In a given pathway, the overlap is calculated as the number of causal mQTL genes
enriched in the pathway divided by the total number of genes in that pathway.
3The Fisher's exact p-value indicating the range of enrichment in the subcategories of
each disease/function.
4The number of genes that are associated with each disease/function.
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MR analysis, which can offset the low power problem induced by
small sample size (Palmer et al., 2012) and allow for a causal
estimate of greater precision than the estimate from any of the
individual variants (Pierce et al., 2011).

Secondly, using multiple independent IVs made it possible to
perform sensitivity analysis to assess the bias of the MR results
when the IV assumptions are prone to be violated. Horizontal
pleiotropy is one of the major potential violations and occurs
when the variant influences other traits outside of the pathway of
the exposure of interest and has an impact on the target outcome
or when the variant has a direct effect on the target outcome. The
assumption of no horizontal pleiotropy in classic MR methods is
hard to establish unequivocally. Thus, we performed MR analysis
by IVW regression alongside the sensitivity analysis by Egger
regression to allow for the potential existence of horizontal
pleiotropy. IVW will return an unbiased estimate if the
horizontal pleiotropy is balanced, that is, the deviation from
the mean estimate is independent of all other effects. In addition,
Egger regression further relaxes the assumption to the InSIDE
(Instrument Strength Independent of Direct Effect) condition
(Bowden et al., 2015), where the instrument-exposure and
pleiotropic effects are uncorrelated. The method returns an
unbiased causal effect under the InSIDE condition even if the
vertical pleiotropy assumption is violated for all SNPs (Hemani
et al., 2018). We identified mediator DMCs primarily based on
the test statistics of IVW regression because the Egger regression
has very limited power to detect causal effects compared with
IVW regression (Bowden et al., 2015). The Egger regression p-
values of some mediator DMCs are large, suggesting that the
IVW estimate might be biased. However, the causal effects were
also assessed by IVW with fixed effects, IVW with multiplicative
random effect (IVW-MRE), weighted median and maximum
likelihood method. The estimates from other MR methods were
consistent with those from the IVW regression in general
(Table S11). Moreover, both the IVW-MRE and weighted
median estimates are robust to the existence of horizontal
pleiotropy (Bowden et al., 2016; Bowden et al., 2017). Thus, we
are confident about the estimated effects and the statistical
inference of our results. Further research could be done under
our analytical framework substituting IVW regression with the
recently published MR-PRESSOmethod that can test and correct
the bias caused by horizontal pleiotropy (Verbanck et al., 2018).

Thirdly, our approach has increased power to detect genetic
heritability that could be missing in traditional GWAS. The
causal mQTLs annotated to those genes associated with bone-
related phenotypes in our analysis do not show genome-wide
significance in association with BMD (Table S12). They were not
reported to be associated with BMD as we searched in the GWAS
catalog database. This phenomenon can be explained by the
biological interaction of genetic and epigenetic modification. As
the causal mQTLs can only influence the trait via the mediation
effect of methylation, the causal effect of mQTLs on BMD might
be offset and not observed in GWAS without controlling for the
mediation effect of DNA methylation. The 2SMR method alone
can only give us inferences about the mediator CpGs, not the
causal variants. Our analytical framework further incorporates
fine mapping of mQTLs and uncovered heritable genetic variants
Frontiers in Genetics | www.frontiersin.org 11
contributing to BMD that are invisible to conventional GWAS by
leverage methylation data.

It should be noted that some of the identified DMCs should be
treated with caution because of relatively low sequencing coverage,
zero-inflated methylation data, and/or relatively high over-
dispersion levels (Tables S4 and S14). Low sequencing coverage
affects both sensitivity and specificity in DMC identification
depending on the sample size (Ziller et al., 2015). In addition, an
excessive number of zeros in the data might cause extra variance
that is difficult for the logistic regression to handle (Sweeney et al.,
2014). Although a few statistical approaches (e.g. the zero-inflated
binomial model (Hall, 2000)) haven proposed for handling zero-
inflated data, however, these approaches have not yet been
systemically evaluated for the analysis of DNA methylation data.
A comprehensive simulation study is necessary to benchmark the
performance of these approaches in DNA methylation analysis,
which might be a future extension for us to track. Over-dispersion
is another problem likely to happen fitting the methylation data
with logistic regression. It refers to a problem of more variability in
the data than assumed by the distribution and usually occurs when
the observed data does not come from iid (independent and
identically distributed) distribution (Hilbe, 2009). It is realistic to
model the observed RRBS data yi at a CpG site by binomial
distribution with subject-specific parameter Ni and group-specific
parameter p, where Ni represents the sequencing coverage of the
subject i and p represents the probability of methylation. However,
the logistic regression method assumes Ni were the same for all
subjects, thus may produce inflated association signals for
differential methylation analysis (Klein and Hebestreit, 2016). We
estimated the over-dispersion scalar for a DMC as the ratio of the
observed over the expected variance of methylation value
(Tables S4 and S14). The level of over-dispersion induced
inflation of association in differential methylation analysis has not
been systematically investigated and is out of the scope of this
study. MethylKit updated its user's guide very recently and is
expected to bring up a function for over-dispersion correction by
McCullagh and Nelder's approach (McCullagh, 2019). This new
feature could benefit future studies for differential methylation
analysis by logistic regression.

The scope of this analysis is to identify the causal paths that
are most likely to have a real biological effect on BMD. The causal
effect of genetic variants or mediation effect of CpGs should be
validated with functional experiments instead of a purely
statistical approach. We hope that the identified causal mQTL
and mediation CpGs can help to narrow down and prioritize the
gene list for potential follow-up biological studies for further
validating whether they truly have any functional or
pathological significance.

In summary, we demonstrated the value of integration of MR,
fine mapping and colocalization analyses in uncovering the
causal mechanisms across multi-omics. This approach allowed
us to identify CpGs that have mediation influences on genetic
variants as well as the proximal causal SNPs that affect the
methylation levels at those CpGs. Our results provided novel
insights into the genetic and epigenetic mechanisms underlying
OP. The identified causal mQTLs and mediation CpGs warrant
further functional studies in cell and animal models.
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