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Abstract: Herein, we present a new validated potentiometric method for fluoxetine (FLX) drug
monitoring. The method is based on the integration of molecular imprinting polymer (MIP) beads
as sensory elements with modified screen-printed solid contact ion-selective electrodes (ISEs).
A multi-walled carbon nanotube (MWCNT) was used as a nanomaterial for the ion-to-electron
transduction process. The prepared MIP beads depend on the use of acrylamide (AAm) and ethylene
glycol dimethacrylic acid (EGDMA) as a functional monomer and cross-linker, respectively. The sensor
revealed a stable response with a Nernstian slope of 58.9 ± 0.2 mV/decade and a detection limit
of 2.1 × 10−6 mol/L in 10 mmol/L acetate buffer of pH 4.5. The presented miniaturized sensors
revealed good selectivity towards FLX over many organic and inorganic cations, as well as some
additives encountered in the pharmaceutical preparations. Repeatability, reproducibility and stability
have been studied to evaluate the analytical features of the presented sensors. These sensors were
successfully applied for FLX assessment in different pharmaceutical formulations collected from the
Egyptian local market. The obtained results agreed well with the acceptable recovery percentage and
were better than those obtained by other previously reported routine methods.

Keywords: Solid-contact ISEs; multi-walled carbon nanotubes (MWCNTs); fluoxetine; screen-printed
electrodes; method validation

1. Introduction

Fluoxetine (FLX) is one of the five drugs inserted under the selective serotonin re-uptake inhibitors
(SSRIs) category that is used throughout the world as an anti-depressant drug. Depression diagnosis
can be expressed as a mental health illness and disability. According to the world federation for mental
health, depression is occurring as a reason for different problems that affect the behavior of humans.
It can cause economic problems, increase the rate of unemployment and it is a main reason for family
disturbance [1]. It can also cause occupational stress when the worker is facing work demands and is
not matched with its requirements [2]. Fluoxetine hydrochloride was approved by the US Food and
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Drug Administration (FDA) organization since 1987 for depression treatment [3]. It is administered by
the oral route and possesses a unique effect on the obsessive-compulsive disorder [4,5].

There are different methods of FLX determination in pharmaceutical forms and biological
fluids reported in the literature. Among these methods are spectrophotometry [5–8],
capillary electrophoresis [9–11], high-performance liquid chromatography (HPLC) [12,13], gas
chromatography-mass spectrometry technique [14,15], fluorimetry [16], voltammetry [17–20] and
potentiometry [21–23].

Unlike the conventional liquid-contact ISEs, solid-contact ISEs which eliminate the internal
solution, are easily miniaturized and have been recognized as the next generation of ISEs. It is well
known that the electrode substrates for these electrodes are usually made from expensive materials
such as glassy carbon, gold or platinum. This reveals serious limits to their wide use, especially
in less developed countries. For cost-effectiveness, fast, accessible and precise analysis, simple
instrumentation, and incorporated functionality, screen-printed ISEs have been chosen for flexible,
reliable and low-cost platforms for potentiometric analytical devices [24–26]. In addition, this type of
electrode offers a practical viable method without sample pretreatment, prolonged analysis time and
sophisticated experimental establishment.

Molecularly imprinted polymers (MIPs) possess pre-defined specific recognition cavities designed
for the target analyte. They are stable to extremes of pH, organic solvents and temperature, which
provides for more flexibility in the development of analytical and bioanalytical methods [27–29]. MIPs
have a valuable impact on the enhancement of ion-selective electrodes, in which the encapsulated
molecules, attached via their high affinity three-dimensional cavities, act as tailor-made highly specific
receptor sites for the desired molecule [30–36]. In addition, the developed membrane potential in ISEs
does not require the extraction of the template from the molecular imprinting skeleton. There are
also no size restrictions on the template compound because species do not have to diffuse through
the membrane.

Herein, a new, simple and cost-effective method for FLX determination using a ceramic
screen-printed planar electrode is presented. Artificial receptors for FLX based on template imprinted
polymers were synthesized using thermal precipitation polymerization and acrylamide (AAm) as an
appropriate monomer. The properties of the proposed sensor can be studied via different features,
which reflect the high sensitivity, selectivity with low potential drifts, stability and more applicability
of investigated sensors in pharmaceutical preparations.

2. Materials and Methods

2.1. Reagents and Chemicals

For MIPs synthesis and membrane fabrication, all chemicals were obtained from Sigma Aldrich (St.
Louis, Missouri, MO, USA) such as high molecular weight poly (vinyl chloride) (PVC), dioctyl phthalate
(DOP), 2-nitrophenyl octyl ether (o-NPOE), bis (2-Ethylhexyl) sebacate (DOS), sodium tetraphenylborate
(TPB), acrylamide (AAm), benzoyl peroxide (BPO) and ethylene glycol dimethacrylate acid (EGDMA
98%). Tetrahydrofuran (THF) and acetonitrile were obtained from Fluka AG (Buchs, Switzerland).
Tetrahydrofuran (THF) was freshly distilled prior to use. In addition, MWCNTs were purchased
from (EPRI, Cairo, Egypt). Fluoxetine.HCl pure drug was obtained from Pharaonia Pharmaceuticals
(Alexandria, Egypt). Fluoxetine capsules were obtained from pharmacies in Egypt, which were
represented with different commercial names such as Prozac (Lilly, France), Philozac (Amoun, Egypt),
Flutin (Eipico, Egypt) and Depreban (Amirya, Egypt). All these commercial names contained 20 mg
FLX per capsule.

A definite weight of pure FLX·HCl drug was dissolved in 100 mL double distilled water to prepare
a stock solution of 1.0 × 10−2 mol/L. Also, 10 mmol/L acetate buffer solution of pH 4.5 was prepared for
calibration measurements. The working solutions (1.0 × 10−2–1.0 × 10−7 mol/L) were prepared with
accurate dilutions and stored in brown bottles in the refrigerator.
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2.2. Apparatus

An attenuated total reflection (ATR) Fourier transform spectrometer (Thermo-Fisher Scientific iS10,
Austin, TX, USA) and a scanning electron microscope (SEM) (JEOL JSM 6510lV, Osaka, Japan) were
used for characterization of MIP particles. The binding analysis was investigated by using a Shimadzu
UV/VIS spectrophotometer (Shimadzu UV-1601 PC, Osaka, Japan) for absorbance measurements.
A bench pH/mV meter (Jenway™ 3510) was used for all potential measurements as a combination of
drop-casted FLX membrane on the screen-printed and Jenway™Ag/AgCl double junction reference
electrode filled in the outer compartment with 1 M CH3COOLi. For necessary pH measurements,
a Jenway™ 3505 combined glass pH electrode was used. Also, the reference method was applied by
using high-performance liquid chromatography (HPLC) coupled with a UV/VIS detector (Series 200
Pump, Perkin Elmer, Waltham, MA, USA).

2.3. Synthesis of MIPs

Host-tailored three-dimensional polymeric particles (MIPs) were synthesized with precipitation
polymerization. An amount of 3.0 mmol of cross-linked AAm monomer with 3.0 mmol of EGDMA was
mixed with 1.0 mmol of FLX as a template. The polymerization process was initiated by adding 80 mg
of BPO into a cocktail that was dissolved in 15 mL of acetonitrile in (20 mL) a sealed tube. To complete
the polymerization, the N2 stream was diffused into the cocktail solution for 5 min, followed by good
sealing of the tube. Also, the tube was maintained in paraffin wax at 70 ◦C for 20 h. All previous steps
were repeated for non-imprinted polymer (NIP) synthesis without the addition of the FLX template.
The resulting powders were washed after drying with absolute ethanol several times in soxhlet for
48 h. MIP and NIP were left until complete dryness at room temperature before using them. A scheme
of the stepwise fabrication process of the biomimetic receptor is presented in Figure 1.
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Figure 1. Schematic representation of noncovalent imprinting.

2.4. Fabrication of the Sensors and EMF Measurements

The screen-printed electrode (SPE) is fabricated as a planar chip of 0.1 mm thickness and 35 mm
length containing two sensing orifices of 2 mm width. These orifices were made from carbon ink and
printed on an alumina substrate to be the area of the membranes’ drop-castings. Different membranes
were prepared with 68.0 mg of PVC powder, 2.0 mg of additive (TPB) and 12.0 mg of MIP. The previous
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membranes contained 118.0 mg of different plasticizers such as DOP, o-NPOE or DOS and 3.0 mL
of THF was used to dissolute all previous components. The screen-printed chip was modified with
drop-casting of 10 µL of MWCNTs (0.1 g/25 mL THF) on sensing orifices onto which 10 µL of ionophore
containing membranes was drop-casted and was left to dry for 5 min.

Then, these sensors were soaked in 1.0 × 10−2 mol/L FLX solution for 2 h before using. The same
solution was also used for sensors storage. All potential measurements were applied after potential
stabilization ± 2 mV and the results were plotted, to display the resulting EMF values versus logarithm
[FLX] concentration obtained.

2.5. Analytical Applications

FLX was administered via the oral route, which was represented commercially as Prozac, Philozac,
Flutin and Depreban capsules containing 20 mg/capsule. A stock of FLX was prepared by mixing 20
capsules’ contents (20 mg per one capsule), weighing and calculating the mean weight of the active
ingredient in one capsule. An accurately weighed amount of the powder equivalent to 3.4 g of FLX was
dissolved in 100 mL dist-H2O to obtain 10−1 mol/L FLX stock. The previous contents were sonicated
until complete dissolution for 45 min and the resultant solution was filtered. Different concentrations
were prepared from dilution of the supernatant to obtain 10−2 to 10−4 mol/L. The calibration curve was
established between the potential readings versus log [FLX] and compared with the similar curve of
the pure drug under the same conditions.

3. Results and Discussion

3.1. Characterization of the MIP Particles

Figure 2 shows the FT-IR spectra of the FLX drug, unwashed and washed MIP, in addition to
the NIP beads. First, strong peaks of FLX that appeared at 2951 and 2924 cm−1 are attributed to the
asymmetric C–H stretches and the three strong peaks at 2805, 2733 and 2450 cm−1 refer to NH2

+

stretches. All peaks that appeared at 1614, 1598 and 1534 cm−1 exhibited from phenyl ring vibrations
and C=C stretching. C–F stretching is assigned at 1326 cm−1. Strong and sharp peaks at 1161 and
1118 cm−1 attributed to C–N stretches of a secondary amine and –C–O in aryl ether. In the unwashed
MIP spectrum, it can be shown that the clear peaks at 3362 and 1167 cm−1 refer to N–H stretching
and C–N of the secondary amine group that present in FLX, respectively. Medium peaks at 1614 and
1324 cm−1 attributed to phenyl ring vibrations and C–F stretches, which appeared in FLX spectra,
confirm the progress of the imprinting process between FLX and cross-linked AAm monomer. The
strong and sharp peak of cross-linked AAm monomer in MIPs and NIPs that appeared at 1717 cm−1

corresponds to –C=O and all peaks from 1256 to 1128 cm−1 corresponds to –C–O stretching of the
polymeric backbone. In washed MIP and NIP, it is clear that there is a complete disappearance of
assignable peaks at 1614 and 1324 cm−1 that refer to phenyl ring vibrations and C–F stretches in FLX,
respectively. In addition, the appearance of new strong and broad peaks at 3433–3427 cm−1 and
medium peaks at 1658–1650 cm−1 are due to N–H stretching and N–H bending in AAm, respectively.
This confirms the complete removal of FLX molecules from MIP and good preparation of MIP, which
can be used in the sensing part of an applied sensor.

As shown in Figure 3, the morphologies of MIP and NIP surfaces were examined by using a
scanning electron microscope (SEM). Figure 3A shows the high uniformity of spherical beads of
non-imprinted polymer (NIP) with mean diameter of about 1.8 µm. On the other hand, the morphology
of washed MIP is showed in Figure 3B as irregular nano-beads with a mean diameter around 0.7 µm.
Various morphologies of MIP and NIP confirm the investigation of the imprinting process that ensures
efficient MIP as an adequate ionophore in the proposed sensor.
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The affinities and adsorption capacities of MIP and NIP can be studied by the binding experiment
that shows two isotherms in Figure 4A. There are clear differences between MIP and NIP in adsorption
capacities for the drug, which reveal that MIP has higher affinity sites than NIP. These sites refer
to cavities of the leaved drug molecules after washing beside the functional groups on the surface.
The adsorption capacities of polymers increased with increase in FLX concentration. The free FLX
concentrations were determined by spectrophotometric technique at λmax = 226 nm. The binding
capacity of MIP and NIP were calculated according to the following equation:

Q = µmol (FLXbound)/[m (NIP/MIP)] = (Ci − Cf) Vs × 1000/[m (NIP/MIP)] (1)

where Q is the binding capacity of NIP or MIP (µmol/g), Ci, Cf, Vs and m (NIP/MIP) are the initial FLX
concentration (µmol/mL), the final FLX concentration (µmol/mL), the volume of the tested solution
(mL) and the mass of dried polymer (g), respectively.
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Furthermore, a Scatchard analysis model as shown in Figure 4B was evaluated to give
binding capacity and dissociation constant values at binding sites of NIP and MIP according to
following equation:

Q/Cf = (Qmax − Q)/Kd (2)

where Q is the binding capacity, Cf, Qmax and Kd are the free analytical concentration at equilibrium
(µmol/mL), the maximum apparent binding capacity and the dissociation constant at binding
sites, respectively.

The results of Kd and Qmax values are 500.00 µmol/L and 709.50 µmol/g, respectively for MIP
and 250.0 µmol/L and 221.3 µmol/g, respectively for NIP. These values reflect the higher affinities of
binding sites of MIP than NIP, which is attributed to formation of specific and selective cavities of MIP
through the polymerization steps and after washing the polymer beside the presence of functional
binding groups in MIP and NIP. Also, one regression line of two polymers is shown in the Scatchard
analysis model that refers to the uniformity and homogeneity of the binding sites of NIP and MIP.

The presence of the template during the polymerization can be measured with the imprinting
factor (IF) as follows:

IF = [Qmax (MIP)]/[Qmax (NIP)] (3)

where Qmax (MIP) and Qmax (NIP) are maximum binding capacities of the imprinted and the
non-imprinted polymers, respectively. The imprinting factor (IF) is calculated to be 3.2.

3.2. Sensor Analytical Features

FLX is represented as one of the physiologically active amines category that is introduced from
pharmaceutical products, which contains an amine functional group [37]. The sensitivity and selectivity
of analytes in ISEs can be controlled by introducing the carrier capable of selectively binding of the
drug in the membrane by changing the nature of the ion exchanger (additive) or by changing the
nature of the plasticizer. The presence of the plasticizer that contains polar or polarizable groups acts
as a solvent—mediator of PVC and ionophore, and prevents its exudation from the polymeric matrix
to the solution. Therefore, the three different membranes can be prepared to contain MIP as ionophore
or carrier with TPB− as an additive and PVC plasticized in DOP, o-NPOE or DOS, separately.

For studying the electrochemical behavior and analytical features of an FLX-MIP sensor, three
previous membranes were prepared as cocktails in THF and were spotted individually by 10 µL on the
on-sensing orifices of the screen-printed electrode, which was modified with 10 µL of MWCNT as a
solid contact substance.

The influences of the polarity and chemical nature of each plasticizer on the potentiometric
response of the proposed sensor were investigated. In order for the plasticizer to be adequate for using
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in the polymeric liquid membranes in ISEs it must have high molecular weight high lipophilicity, low
vapor pressure and high capacity of dissolving the substrate and other components that are found in
the polymeric membrane. Additionally, the most important parameters that may affect its behavior are
dielectric constant (εo) and its viscosity [37]. By comparing the results as can be seen in Table 1, the
best cationic slopes response, which is near-Nernestian, is for the electrodes of MIP-FLX membranes;
their responses are 57.1 ± 0.3 and 58.9 ± 0.2 mV/decade with detection limits 4.9 × 10−6 and 2.1 × 10−6

mol/L, plasticized with DOP (εo = 5.1) and o-NPOE (εo = 24), respectively. But the best detection
limit can be investigated with the membrane plasticized with DOS (εo = 4.6) is 1.4 × 10−6 mol/L with
near-Nernestian slope (56.0 ± 0.6 mV/decade) (Figure 5).
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Although the dielectric constant (εo) of o-NPOE is the highest value, its nature can’t affect results
purely based on the electrode performance comparing with the nature of the drug that has primary
amine active sides and adding the tetraphenyl borate (TPB) as ion-exchanger or additive in the
membrane. Therefore, the results confirm that the dielectric constant of the plasticizers, used as
solvent-mediators, does not effect in a significant manner the potentiometric detection limit of the
membrane in the case of an FLX drug [38].

Remarkably, the effect of the presence of MIP, NIP and TPB individually in the membranes also can
be investigated. Table 1 shows that the sub-Nernestian slope of the sensor of NIP (29.8 ± 1.3 mV/decade)
and its detection limit (1.2 × 10−5 mol/L) confirm the influence of the imprinting factor of MIP that has
higher affinity and sensitivity for FLX molecules with near-Nernestian slope (48.8± 0.5 mV/decade) and
lower detection limit (8.5× 10−6 mol/L). In the case of the presence of TPB without MIP in the membrane
shows the near-Nernestian slope (50.9 ± 0.3 mV/decade) and low detection limit (7.1 × 10−6 mol/L)
due to its ion-exchange nature. However, it is clear that the presence of both MIP and TPB in the
membrane enhances the potentiometric features of the proposed sensor and increases its sensitivity
with near-Nernestian slope (57.1 ± 0.3 mV/decade) for detection limit (4.9 × 10−6 mol/L). Figure 6
represents a proposed mechanism for the potential development across the membrane.
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Table 1. The potentiometric response of the fluoxetine (FLX) membranes sensor.

No MIP, mg NIP, mg TPB, mg
Plasticizer, mg

PVC, mg * Slope, (mV/Decade) Detection Limit, (mol/L) r2
DOP o-NPOE DOS

1 12.00 - 2.00 118.00 - - 68.00 57.1 ± 0.3 4.9 × 10−6 0.999
2 12.00 - 2.00 - 118.00 - 68.00 58.9 ± 0.2 2.1 × 10−6 0.999
3 12.00 - 2.00 - - 118.00 68.00 56.0 ± 0.6 1.4 × 10−6 0.999
4 12.00 - - 118.00 - - 68.00 48.8 ± 0.5 8.5 ×10−6 0.999
5 - 12.00 - 118.00 - - 68.00 29.8 ± 1.3 1.2 ×10−5 0.999
6 - - 2.00 118.00 - - 68.00 50.9 ± 0.3 7.1 × 10−6 0.999

* Average of 6 determinations.
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As previously shown in Figure 5, the dynamic response of the proposed sensors was examined
over the concentration range 1.0 × 10−7–1.0 × 10−2 mol/L of FLX solution. The results exhibited by
response values taken every 3 s over 2 min for each half mL of each concentration show a fast and
stable potentiometric response (<10 s). This refers to the high performance of the proposed sensor in
the FLX determination. Note the water layer formation test and the comparison between the presence
of the MWCNT layer and its absence are shown in Figure 7. MWCNT lipophilicity was tested by
immersing the applied sensor, in its two cases of the presence and absence of MWCNT, in the buffer of
pH 4.5 for 30 min; then the solution was alternated to be 9.1 × 10−5 mol/L of FLX for 30 min and finally
was replaced with a buffer for 30 min. As shown in Figure 7, the presence of MWCNT offered the
potential stability of the applied sensor over the measuring time and decreased the observed potential
drift that exhibited from its absence. This remarkable result confirms the lipophilicity of MWCNT and
its role in the decrease of water layer formation that could be the reason for the potential drift and the
enhancement of the potential stability of the applied sensor.
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3.3. Method Validation

The U.S. Food and Drug Administration (FDA) has announced recommendations to support
applicants in providing analytical methods, verification data, and samples. These recommendations
help to validate the analytical procedures and controls documentation [39]. To ensure the reliability,
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reproducibility and consistency of the analytical data sets of the proposed sensor of FLX-MIP with its
new features, three batches (5 replicates each) of a standard solution of FLX were used to exhibit the
linear range, detection limit, precision (standard deviation) and accuracy (trueness), through response
stability, method robustness and selectivity.

3.3.1. Detection Limit and Method Linearity

The reliability of the detection limit data was determined by the cross point method according
to IUPAC Recommendations [40]. The practical lower limit of detection (LOD) was taken as the
concentration of FLX at the point of intersection of the extrapolated linear midrange and final low
concentration level segments of the calibration plot as shown in Figure 5a. The exhibited data of LOD
are recorded as 4.9 × 10−6 (1.7 µg/mL), 2.1 × 10−6 (0.7 µg/mL) and 1.4 × 10−6 mol/L (0.5 µg/mL) of
sensors 1, 2 and 3, respectively. The linear range of each calibration graph was 1.0 × 10−2–6.3 × 10−6,
1.0 × 10−2–5.5 × 10−6 and 1.0 × 10−2–4.7 × 10−6 mol/L of sensors 1, 2 and 3, respectively.

3.3.2. Method for Accuracy and Precision

Accuracy can also be reported as trueness or percent error (closeness of the agreement between
the result of a measurement and a true value) that is calculated from Equation (4). The reproducibility
of a set of measurements is concluded as precision or standard deviation (RSD), which can be shown
in Equation (5).

% error = (Actual value − expected value)/expected value × 100 (4)

S =
√

[
∑

(xi − x’)2/(n − 1)] (5)

Alternatively, the standard deviation can be expressed as the percent relative standard deviation,
RSD%:

RSD% = S/X’ × 100 (6)

where x, xi and n are the mean result, one of the n deferent results and number of
measurements, respectively.

The precision of this method was examined by using six replicate measurements of 5 µg/mL of
FLX solution. The exhibited results of relative standard deviation were 1.7%, 1.6% and 0.6% of sensors
1, 2 and 3, respectively.

3.3.3. Method Ruggedness (Robustness)

The pH dependence of the proposed sensor was examined over the pH range of 2–8. The potential
readings were recorded for two solutions of FLX (10−3 and 10−4 mol/L) at various pHs by using HCl
and/or NaOH solutions for adjustments. Figure 8 shows the behavior of the proposed sensor in the
different pH values; it shows the wide stability over the pH range from 2 to 5.2, which was used as a
working range. However, in the range higher than pH 5.2 a significant decrease in pH was detected.
This decrease can be exhibited from the increasing pH and increasing OH− species in the tested solution
that caused the FLX base precipitation. A solution of acetate buffer (10 mmol/L) at pH 4.5 was chosen
to be a working pH for all potentiometric measurements in this study.

3.3.4. Sensors’ Selectivity

The potentiometric selectivity of the proposed sensor was investigated by using the modified
separate solution method (MSSM) [26]. In addition, the effect of different plasticizers on the selectivity
coefficient (log K pot

FLX, J) was tested by using different membranes containing DOP, o-NPOE or DOS
as solvent-mediators in the proposed sensor. There were various interfering cationic species such as
inorganic species (Na+, K+, Mg2+, Ca2+ and Ba2+), amino acids (alanine and arginine), sugars (glucose
and lactose), and organic molecules such as caffeine, with the co-administered drug FLX (Sildenafil)
were tested. Some of the previous interferences can be found in the dosage forms of FLX or in the
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biological fluids. As shown in Table 2, the results reflect no significant interference of these species
with FLX determination. However, the best values of log K pot

FLX, J are in the case of using DOS as a
plasticizer in the proposed sensor.
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Table 2. The selectivity coefficients (log K pot
FLX, J) of the proposed sensor.

Interfering Ion
−log K pot

FLX, J

DOP o-NPOE DOS

Na+ 5.0 5.0 5.7
K+ 4.7 5.0 5.3

Mg2+ 5.0 4.9 5.4
Ca2+ 5.0 4.9 5.6
Ba2+ 4.7 4.9 5.6

Alanine 4.9 4.7 5.6
Arginine 7.1 6.1 7.1
Glucose 5.0 5.0 5.7
Lactose 4.7 5.0 5.7
Caffeine 5.0 5.0 5.7

Sildenafil 3.2 2.8 3.5

3.4. Potential Stability

The short-term potential stability of the all-solid-state was evaluated by applying the
constant-current chronopotentiometry (CP) technique. This technique has been developed by Bobacka’s
group [39]. All the measurements were applied in a solution of 10−3 mol/L of FLX in acetate buffer
(10 mmol/L) of pH 4.5 at room temperature 25 ◦C ± 1 ◦C by using a one-compartment three-electrode
cell using (NOVA 2.0 software; Metrohm Auto lap B.V. Utrecht, The Netherlands) attached with a Pt
auxiliary electrode and a reference electrode (Ag/AgCl/KCl (3 mol/L). The applied current is ± 1 nA for
the 60 s. As shown in Figure 9A, the comparison between the potential stability of the applied sensor in
the presence and the absence of MWCNT as a solid contact material and transducer was investigated.
The bulk resistance (Rb) that exhibited from the membrane components that equal 0.35 MΩ was
affected by the presence of MWCNT to be 0.19 MΩ. Exhibited capacitance (CL) values incredibly
increased from 3.7 µF to 160.0 µF in the presence of MWCNT as a good transducer. The potential drift
(∆E/∆t) in cases of absence and presence of MWCNT was recorded as 270.0 and 6.3 µV/s, respectively.
The previous results reflect the high performance of the proposed sensor in the presence of MWCNT,
which increases the conductance and decreases the resistance and the potential drift over the time of
the measurements.
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3.5. Electrochemical Impedance Spectrometry (EIS)

The electrochemical impedance (EIS) measurements were tested by using the same device that
was used in CP measurements. The range of frequencies were applied between 100 kHz to 0.1 Hz
using a sinusoidal excitation signal with an excitation amplitude of 0.01 V of open-circuit potential [41].
Figure 9B show the Nyquist plots on the equivalent circuit models. The two plots of the proposed
sensor in the presence and absence of MWCNT reflect resistance of the membrane value equal to 0.06
and 0.16 MΩ, respectively. The double layer capacitances (Cdl) were estimated from the low-frequency
branch (semicircle), which were valued as 86.9 and 42.4 µF in the case of the presence and absence
of MWCNT, respectively. These values exhibited due to the nano-structured features of MWCNTs,
which generate a large double-layer capacitance and increase the potential stability. The geometric
capacitances (Cg) were estimated at high frequencies part that valued as 1.5 and 0.6 nF for presence and
absence of MWCNT, respectively. The whole results exhibited from CP and EIS reflect the enhancement
of the performance of the applied sensor in the presence of MWCNT, which helps to increase the
capacitance and decrease the potential drift duration of the measurements.

3.6. Analytical Applications

The exhibited data from FLX determination in different dosage forms by using the proposed
sensor are shown in Table 3. Recoveries’ results were ranged between 98.6%–101.1%. The results were
compared with the reference method of HPLC from British Pharmacopeia (B.P.) [42]. The t-student
and F-tests were calculated for two methods and showed no significant difference between the two
methods, which confirms that the proposed method is an applicable and efficient method of FLX
determination in their different matrices.
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Table 3. FLX determination in pharmaceutical preparations using the proposed membrane sensor and reference method.

Pharmaceutical Product and Source Nominal Content Taken, mg tablet−1
Found, mg tablet−1

t-Student Test

F-Test

Proposed Method Mean a (%)
± SD

Reference Method
[42]

Mean a (%)
± SD

Prozac (Lilly, France) 20 20.2 101.0 ± 0.3 20.1 100.8 ± 0.6 0.4 4.4

Philozac (Amoun, Egypt) 20 19.8 99.2 ± 0.6 19.9 99.1 ± 1.7 0.2 8.7
Flutin

(Eipico, Egypt) 20 20.3 101.1 ± 0.6 19.8 99.4 ± 0.9 2.3 2.6

Depreban (Amirya, Egypt) 20 19.7 98.6 ± 0.4 19.4 97.2 ± 0.8 1.7 2.9

a Mean of three replicate measurements ± standard deviation (SD). b t-Student and F-test at 95% confidence level values are 4.30, 19.00 respectively.
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4. Conclusions

A facile and validated potentiometric method for fluoxetine (FLX) monitoring based on
solid-contact ISEs was presented. MIP for FLX was prepared, dispersed in plasticized PVC membrane
and drop-casted on the orifice of the screen-printed electrode. A multi-walled carbon nanotube
(MWCNT) was used as nanomaterial for the ion-to-electron transduction process. The presented
sensor revealed a stable response with a Nernstian slope of 58.9 ± 0.2 mV/decade and a detection
limit of 2.1 × 10−6 mol/L in 10 mmol/L acetate buffer of pH 4.5. The effect of plasticizers on the
potentiometric response and selectivity behavior was studied. The presented miniaturized ISEs
revealed enhanced repeatability, reproducibility and stability. Validation of the assay method with the
proposed ISE sensors, by measuring the lower detection limit, range, accuracy, precision, repeatability
and between-day-variability, reveals good performance characteristics confirming applicability for
continuous determination of FLX in pharmaceutical formulations.

Author Contributions: The listed authors contributed to this work as described in the following: H.M.H., E.M.A.B.
and A.H.K., gave the concepts of the work, interoperated the results, the experimental part and prepared the
manuscript; H.M.H., S.S.M.H., A.H.K. and A.E.-G.E.A. cooperated in the preparation of the manuscript and A.H.K.
and A.E.-G.E.A. performed the revision before submission. A.E.-G.E.A. revealed the financial support for the
work. All authors read and approved the final manuscript.

Funding: Through Researchers Supporting Project (Project No. RSP-2019/66).

Acknowledgments: Authors are grateful to King Saud University for funding the work through Researchers
Supporting Project (Project No. RSP-2019/66).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. WHO. Depression: A Global Crisis. World Mental Health Day. Available online: http://www.emro.who.int/
media/news/mental-health-day2012.html (accessed on 16 June 2012).

2. Desouky, D.; Allam, H. Occupational stress, anxiety and depression among Egyptian teachers. J. Epidemiol.
Glob. Health 2017, 7, 191–198. [CrossRef] [PubMed]

3. Wong, D.T.; Perry, K.W.; Bymaster, F.P. The discovery of fluoxetine hydrochloride (Prozac). Nat. Rev. Drug
Discov. 2005, 4, 764–774. [CrossRef] [PubMed]

4. Pigott, T.A.; Seay, S.M. A review of the efficacy of selective serotonin reuptake inhibitors in
obsessive-compulsive disorder. J. Clin. Psychiatry 1999, 60, 101–106. [CrossRef] [PubMed]

5. Darwish, I.A.; Amer, S.M.; Abdine, H.H.; Al-Rayes, L.I. New spectrophotometric and fluorimetric methods
for determination of fluoxetine in pharmaceutical formulations. Int. J. Environ. Anal. Chem. 2009, 2009, 1–9.
[CrossRef]

6. Bigdelifam, D.; Mirzaei, M.; Hashemi, M.; Amoli-Diva, M.; Rahmani, O.; Zohrabi, P.; Taherimaslak, Z.;
Turkjokar, M. Sensitive spectrophotometric determination of fluoxetine from urine samples using charge
transfer complex formation after solid phase extraction by magnetic multiwalled carbon nanotubes.
Anal. Methods 2014, 6, 8633–8639. [CrossRef]

7. Nezhadali, A.; Motlagh, M.O.; Sadeghzadeh, S. Spectrophotometric determination of fluoxetine by
molecularly imprinted polypyrrole and optimization by experimental design, artificial neural network and
genetic algorithm. Spectrochim. Acta Part A Acta A Mol. Biomol. Spectrosc. 2018, 190, 181–187. [CrossRef]

8. Parmar, V.K.; Patel, J.N.; Jani, G.K.; Prajapati, L.M.; Gagoria, J. FIRST derivative spectrophotometric
determination of fluoxetine hydrochloride and olanzapine in tablets. Int. J. Pharm. Sci. Rev. Res. 2011, 2,
2996.

9. Murtada, K.; de Andrés, F.; Ríos, A.; Zougagh, M. Determination of antidepressants in human urine extracted
by magnetic multiwalled carbon nanotube poly (styrene-co-divinylbenzene) composites and separation by
capillary electrophoresis. Electrophoresis 2018, 39, 1808–1815. [CrossRef]

10. Catai, A.P.F.; Carrilho, E.; Lanças, F.M.; Queiroz, M.E.C. Fast separation of selective serotonin reuptake
inhibitors antidepressants in plasma sample by nonaqueous capillary electrophoresis. J. Chromatogr. A 2009,
1216, 5779–5782. [CrossRef]

http://www.emro.who.int/media/news/mental-health-day2012.html
http://www.emro.who.int/media/news/mental-health-day2012.html
http://dx.doi.org/10.1016/j.jegh.2017.06.002
http://www.ncbi.nlm.nih.gov/pubmed/28756829
http://dx.doi.org/10.1038/nrd1821
http://www.ncbi.nlm.nih.gov/pubmed/16121130
http://dx.doi.org/10.4088/JCP.v60n0206
http://www.ncbi.nlm.nih.gov/pubmed/10084636
http://dx.doi.org/10.1155/2009/257306
http://dx.doi.org/10.1039/C4AY01266F
http://dx.doi.org/10.1016/j.saa.2017.09.021
http://dx.doi.org/10.1002/elps.201700496
http://dx.doi.org/10.1016/j.chroma.2009.05.050


Nanomaterials 2020, 10, 572 15 of 16

11. Himmelsbach, M.; Buchberger, W.; Klampfl, C.W. Determination of antidepressants in surface and waste
water samples by capillary electrophoresis with electrospray ionization mass spectrometric detection after
preconcentration using off-line solid-phase extraction. Electrophoresis 2006, 27, 1220–1226. [CrossRef]

12. Ghorbani, M.; Esmaelnia, M.; Aghamohammadhasan, M.; Akhlaghi, H.; Seyedin, O.; Azari, Z.A.
Preconcentration and Determination Of Fluoxetine and Norfluoxetine in Biological and Water Samples with
β-cyclodextrin Multi-walled Carbon Nanotubes as a Suitable Hollow Fiber Solid phase Microextraction
Sorbent and High Performance Liquid Chromatography. J. Anal. Chem. 2019, 74, 540–549. [CrossRef]

13. Wróblewski, K.; Petruczynik, A.; Waksmundzka-Hajnos, M. Separation and determination of selected
psychotropic drugs in human serum by SPE/HPLC/DAD on C18 and Polar-RP columns. J. Liq. Chromatogr.
Relat. Technol. 2017, 40, 75–82. [CrossRef]

14. Song, L.; Zheng, Z.; Liang, C.; Chen, X.; Zhang, R.; Hong, Z.; Chai, Y. Rapid solid-phase extraction coupled
with GC–MS method for the determination of venlafaxine in rat plasma: Application to the drug–drug
pharmacokinetic interaction study of venlafaxine combined with fluoxetine. J. Sep. Sci. 2017, 40, 3462–3468.
[CrossRef] [PubMed]
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