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Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS)
is a rare disorder with an unknown etiology. We present a British family with
presumed autosomal dominant CANVAS with incomplete penetrance and variable
expressivity. Exome sequencing identified a rare missense variant in the ELF2 gene at
chr4:g.140058846 C > T, c.10G > A, p.A4T which segregated in all affected patients.
By using transduced BE (2)-M17 cells, we found that the mutated ELF2 (mt-ELF2) gene
increased ATXN2 and reduced ELOVL5 gene expression, the causal genes of type 2 and
type 38 spinocerebellar ataxias. Both, western blot and confocal microscopy confirmed
an increase of ataxin-2 in BE(2)-M17 cells transduced with lentivirus expressing mt-ELF2
(CEE-mt-ELF2), which was not observed in cells transduced with lentivirus expressing
wt-ELF2 (CEE-wt-ELF2). Moreover, we observed a significant decrease in the number
and size of lipid droplets in the CEE-mt-ELF2-transduced BE (2)-M17 cells, but not in
the CEE-wt-ELF2-transduced BE (2)-M17. Furthermore, changes in the expression of
ELOVL5 could be related with the reduction of lipid droplets in BE (2)-M17 cells. This
work supports that ELF2 gene regulates the expression of ATXN2 and ELOVL5 genes,
and defines new molecular links in the pathophysiology of cerebellar ataxias.

Keywords: cerebellar ataxia, vestibular hypofunction, neuropathy, whole-exome sequencing, ETS domain

INTRODUCTION

The triad of cerebellar ataxia, bilateral vestibulopathy, and peripheral neuropathy occurs between
9 and 32% of patients with bilateral vestibular failure (Bronstein et al., 1991; Zingler et al., 2007).
It is a rare disorder termed Cerebellar ataxia with neuropathy and bilateral vestibular areflexia
syndrome (CANVAS; [MIM: 614575]). A review reported 51 patients seen over a 10-year period
(Szmulewicz et al., 2015), in agreement with our own estimates of seeing 6–8 new cases per year.

Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome is a late-onset,
slowly progressive multi-system ataxia likely secondary to a neurodegenerative ganglionopathy.
The combination of cerebellar ataxia and vestibular impairment produces a characteristic
oculomotor sign of impaired (“broken up”) visually enhanced vestibulo-ocular reflex (VVOR)
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(Migliaccio et al., 2004). Phenotypic heterogeneity in CANVAS
patients is recognized (Szmulewicz et al., 2014b). Although most
cases are sporadic, the finding of six affected siblings’ pairs
(Szmulewicz et al., 2014a) suggests a familial recessive disorder
or a dominant inheritance with incomplete penetrance; however,
the genes involved have not been elucidated.

Case Presentation
We describe a non-consanguineous family with three CANVAS
patients from England (Figure 1A). Genetic testing excluded
Friedreich ataxia and SCA 1, 2, 3, 6, 7, and 38 as potential
diagnoses. All patients provided written informed consent
for their participation for publication and the study protocol
was approved by the institutional review board. Family
members in the fourth generation were examined and remained
asymptomatic; however, symptom onset is typically delayed and
usually over 60 years of age.

Patient III:3 (proband), was a 78 year old gentleman with
20 years of progressive loss of sensation distally in upper and
lower limbs and a gradual deterioration in his balance. He
developed oscillopsia in 2005 and in 2014 he noticed mild
slurred speech and incoordination followed by development
of a prominent dry cough, difficulty with micturition and
erectile dysfunction. Examination revealed dysarthria, ataxic
gait, and a positive Romberg test. Eye movement examination
revealed downbeat nystagmus on lateral gaze. Smooth pursuit
was broken horizontally and vertically. Saccades were moderately
hypometric. The doll’s head-eye maneuver was abnormally
jerky, with numerous “catch-up” saccades [abnormal VVOR;
(Figure 2)]. Horizontal and vertical head impulse tests (HITs)
were positive bilaterally. The rest of the cranial nerve examination
was normal. Limb examination revealed normal tone and
power throughout with no spasticity or extrapyramidal features.
Reflexes were symmetrically present in the upper limbs,
however, in the lower limbs, ankle jerks were absent and
plantar were mute. There was a distal loss to light touch and
pinprick sensation in all limbs, vibration sense was absent
to the sternum with proprioceptive loss to ankles bilaterally.
There was moderate bilateral upper and lower limb dysmetria.
Romberg’s test was positive. Normal blood tests included negative
anti-neuronal, anti-GAD, coeliac antibodies, anti-treponemal,
paraneoplastic antibodies normal B1, B12, glucose, thyroid
function, Mg, and vitamin E. Bithermal caloric and rotational
electronystagmography confirmed bilateral absence of vestibular
function. Nerve conduction study (NCS) revealed an axonal
sensory neuronopathy. Sural nerve and muscle biopsy were
normal. Autonomic function tests were normal. MRI brain
showed cerebellar atrophy particularly involving the vermis
(Figure 1B). The patient was diagnosed with CANVAS. His
father (II:7) died of presumed stroke in his 60’s and his mother
remained well until she died at the age of 96. Although the clinical
record did not report any known neurological condition, II:8 was
considered to be an obligated carrier. On further exploring the
family history, it was discovered that III:6 and III:7 (maternal
cousins of proband) had similar symptoms hence were also
assessed. Of note, their father (II:11) had a balance disorder of
unknown etiology therefore may have been affected.

Patient III:6, was a 78 year old lady with a 10 years history of
slowly progressive imbalance, distal numbness, and dysesthesia.
Over the last year she described dysphagia and occasional cough.
Eye movement examination revealed an abnormal VVOR with
HIT showing catch up saccades to the left. Pursuit movements
were moderately broken up but in keeping with age. There
was distal loss to pinprick in upper and lower limbs. Ankle
reflexes were absent. She had an ataxic gait and Romberg’s
was mildly positive. Bithermal caloric testing and rotational test
(velocity steps and sinusoidal oscillation), showed significant
bilateral reduction of vestibular function. Video-HIT showed
consistent abnormal catch up saccades bilaterally. EMG/NCS
confirmed a sensory neuronopathy. Autonomic function tests
were normal. MRI brain revealed an incidental frontal cavernoma
and mild global atrophy. This was in keeping with a diagnosis of
incomplete (‘forme fruste’) CANVAS phenotype.

Patient III:7, was a 74 years old lady with a 2 years history of
imbalance, especially in the dark, followed by distal neuropathic
symptoms and severe coughing ‘fits.’ She denied any facial
numbness or paresthesiae, speech or swallowing disturbance.
Examination revealed a weak downbeat nystagmus in lateral
gaze. Pursuit was broken in all directions and saccades were
mildly hypometric. She had an abnormal VVOR and bilateral
positive HIT. Reflexes were diminished throughout and ankle
jerks were absent. There was distal sensory loss to light touch and
pinprick in upper and lower limbs, proprioceptive impairment
to wrists and ankles. Finger-nose testing was mildly impaired in
upper limbs. She had a broad based ataxic gait and Romberg’s
was positive. Investigations including cerebellar screening, blood
tests, and genetic tests were normal. Autonomic function tests
were normal. Bilateral vestibular hypofunction was confirmed on
caloric and rotational test. EMG/NCS confirmed axonal sensory
neuronopathy with absent sensory nerve action potentials.
MRI brain showed fissural prominence within the superior
cerebellar vermis. A cervical spine MRI showed a slender lower
cervical/upper thoracic cord with flattening of the posterior
surface and faint signal change dorsally, compatible with dorsal
root ganglionopathy. These features represent a typical CANVAS
phenotype.

The fourth subject (III: 2) was a 73 years old lady without any
neurological symptoms and a normal neurological examination.

Whole-Exome Sequencing
We sequenced the exomes of four individuals in the family
(III:3, III:6, III:7, and III:2) (Figure 1A). Exons capture, library
preparation and sequencing were performed as we previously
described, in a SOLiD 5500xl platform using the reference
sequence GRChr37/hg19 (Martin-Sierra et al., 2016). Only
variants were considered. Single nucleotide variants (SNVs)
with coverage >30X and minor allele frequency (MAF) <0.001
were retrieved using a combined filtering strategy (Requena
et al., 2017). Variants found in the non-affected sibling (III:2)
(Figure 1C), were discarded and 3622 variants were retained
for further analyses. ANNOVAR software was used to annotate
and filter SNVs. Finally, 30 heterozygous SNVs remained
after filtering by exome data from the Exome Aggregation
Consortium, 1000 Genomes databases and in-house controls.
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FIGURE 1 | Genetic diagnosis of familial Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). (A) Pedigree of an autosomal
dominant CANVAS family with three affected cases with the age of onset. (B) Sagittal MRI showing cerebellar atrophy in patient III:3. (C) Chromatogram of reverse
chain of the variant chr4:g.140058846 G > A from an affected individual (III.3) is compared to the sequence from a familial control (III.2).

Twenty-seven SNVs had been previously annotated and three
of them were novel variants. We also used LOD scores derived
from WES-common SNVs to reduce the list of candidate
variants, as previously described (Gazal et al., 2016), and 10
candidate variants remained (Supplementary Tables S1, S2). The
selected candidate variant, a missense heterozygous variant in the
coding regions of ELF2 [NM_201999.2], that segregated with the
phenotype was validated by Sanger sequencing. The candidate
variant has been submitted to ClinVar database1.

We searched for rare variants in the ELF2 gene in exome
sequencing datasets from two additional British CANVAS
families, and we also performed Sanger sequencing of the ELF2
gene in these two families and a third one from Spain. So, a
total of eight additional unrelated individuals with CANVAS were
sequenced, however, none of them carried the variant or other
rare variants in the coding regions of ELF2.

The rare variant leads to a change in the exon 2 of the
transcript sequence (p.A4T). The predicted effect on protein
function is probably damaging, since the beginning of the
coding sequence is highly conserved across species and matches
with the protein N-terminal elf transcription factor domain,
encoded from 4th residue to 108th residue (Supplementary
Figures S1, S2). At protein level, the elf-2 amino acids sequence
has a 67 and 57% of positive homology matches with elf-1 and
ets-1, respectively. The known ETS-binding domain has 87%

1http://www.ncbi.nlm.nih.gov/clinvar/

homology among the three transcription factors (TFs), and the
amino acid (p.A4) is conserved in the sequence of ETS-1, ELF-1,
and ELF-2 (Supplementary Figure S3). A PAVIVE motif on
N-terminal elf transcription factor domain, a relevant recognition
motif in elf family, is conserved between elf-1 and elf-2 amino
acids sequences.

BE(2)-M17 Cell Culture
Human neuroblastoma BE(2)-M17 cell line (ATCC R©

CRL-2267TM) was cultured and RT-PCR was used to confirm
that the ELF2, ATXN2, and ELOV5L genes are constitutively
expressed in BE(2)-M17 neuroblastoma cell line (Supplementary
Figures S4A,C).

Lentiviral Vector Constructs Production
and Neuroblastoma Transduction
The cDNA encoding for human ELF2 gene and the ELF2 gene
with the variant described was cloned in the bicistronic lentiviral
vector (LV) pHRSINcppt_CMVeGFP_ELF1α-TetR (also named
CEET, available in our laboratory) using standard molecular
biology techniques [PacI/MreI (Sse232I)] to obtain the lentiviral
plasmids CEE-wt-ELF2 and CEE-mt-ELF2, respectively. Both LV
expressed eGFP in addition to the wt-ELF2 or the mt-ELF2. LVs
production was performed as previously described (Frecha et al.,
2008). All the LVs used were titrated based on the percentage of
eGFP expressing cells as previously described (Benabdellah et al.,
2014).
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FIGURE 2 | Head and eye horizontal movements in the CANVAS proband. The patient fixates a visual target on the wall while the examiner manually oscillates his
head from behind in a quasi-sinusoidal fashion [visually assisted vestibulo-ocular reflex or visually enhanced vestibulo-ocular reflex (VVOR)]. The compensatory eye
movement elicited is severely broken-up or cog-wheeled due to the presence of multiple eye saccades (best seen as ‘spikes’ in the eye velocity trace). Upward
deflections correspond to rightward head or eye movements.

The transduction efficiency was 95%. The number of LV
integrated per cell was estimated by qRT-PCR as previously
described (Cobo et al., 2013). Transduction was measured at
3, 7, 10, and 25 days). No significant differences were found
between both transduced cell lines. Moreover, the transduction
remained stable over time after day 3 (Supplementary
Figure S4B).

Cell Viability and Proliferation Assays
Cell viability and proliferation assays were performed in
BE(2)-M17 cells to investigate the effect of the ELF2 variant.
For both cell viability and proliferation assays, there was no
difference between the cells. (Supplementary Figure S5). These
results suggest that overexpression of wt-ELF2 or mt-ELF2 gene
did not have any influence on the proliferation or survival of
BE(2)-M17 cells and overexpression of ATXN2 did not modify
the morphology.

Functional Assays: qRT-PCR, Western
Blot, Immunocytochemistry, and
Confocal Microscopy
We also investigated the effect of mutant ELF2 on ATNX2 and
ELOVL5 expression levels, since these genes are a direct target of
ELF2, according to Curated Transcription Factor Targets Dataset
(TRANSFAC), and both have been associated with SCA2 and

SCA38 (Scoles et al., 2012; Di Gregorio et al., 2014; Hoxha et al.,
2017).

We confirmed that ELF2, ATXN2, and ELOVL5 genes were
constitutively expressed in BE(2)-M17 cells by RT-PCR. We
then evaluated ELF2, ATXN2, and ELOVL5 gene expression in
CEE-wt-ELF2- and CEE-mt-ELF2-transduced BE(2)-M17 cells
by qPCR and Western blot and found a significant increase
in both ELF2 (p = 0.03) and ATNX2 (p = 0.002) expression
at mRNA levels in the cells transduced with the CEE-mt-
ELF2, but not in cells transduced with the CEE-wt-ELF2
(Figure 3A). In contrast, ELOVL5 was significantly decreased
(p = 0.003) in cells transduced with the CEE-mt-ELF2, but
not in cells transduced with the CEE-wt-ELF2 (Figure 3E).
The ATXN2 increase was confirmed at protein levels in
the CEE-mt-ELF2-transduced BE(2)-M17 cells, when they
were compared to the wild type cell line (p = 0.019,
Figures 3A,B).

Confocal microscopy imaging illustrated an overexpressed
cytoplasmic distribution of ataxin-2 in CEE-mt-ELF2-transduced
BE(2)M17 cells. We quantified the fluorescence intensity levels
(Figure 3D). CEE-mt-ELF2 cell line was the most intensely
labeled, followed by those cells that were not transduced
and finally wt-ELF2 cells. Significant differences were found
among non-transduced cells compared to mt-ELF2 (p = 0.03)
and between wt-ELF2 as compared to mt-ELF2 (p = 0.003,
Figure 3C). In addition, the immunocytochemistry showed
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FIGURE 3 | ATXN2 expression in BE(2)M17, wt-ELF2 and mt-ELF2 transduced cells. (A) ATXN2 qPCR and ataxin-2 Western blot show statistical differences
between wt-ELF2 and mt-ELF2 transduced cells, both in qPCR and Western blot. (B) Representative western blot of BE(2)M17 exhibiting an increased content of
ATXN2 in mt-ELF2 transduced cells. ATXN2 (#611378, 1:1000), Elf2 (#HPA006057-100UL, 1:1000), GAPDH (#AB2302, 1:3000 and secondary antibodies
#HAF007, 1:6000, #HAF008, 1:3000, #A9046-1ML, 1:10000. (C) CTCF emitted by BE(2)M17 cells labeled with anti-ataxin-2 antibody in non-transduced, wt-ELF2
transduced and mt-ELF2 cells. (D) Representative immunocytochemistry image of ataxin-2 in non-transduced BE(2)M17, wt-ELF2, and mt-ELF2 transduced cells
showing an increased staining in mt-ELF2 cell-line. ∗p < 0.02, ∗∗p < 0.002. Primary antibodies anti-ataxin-2 (1:250) and anti-ELF2 (1:500) and visualized with
Alexa-555-conjugated goat anti-mouse #A-21422, 1:500 and Alexa-633-conjugated goat anti-rabbit #A-21071, 1:500, respectively. (E) ELOVL5 qPCR show
statistical differences between wt-ELF2 and mt-ELF2 transduced cells. ∗p < 0.003.
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FIGURE 4 | Changes in Lipid droplets in transduced BE(2)M17 cell-lines. (A) Number of lipid droplets particles per cell in each cell-line (∗p = 0.02).
(B) Representative immunocytochemistry image of Lipid droplets stained with Nile Red in non-transduced BE(2)M17, wt-ELF2 and mt-ELF2 transduced cells
showing a decrease number and size of the droplets in mt-ELF2 cell-line. For lipid droplets experiments, cells were stained with Nile red to measure the number and
size of lipid droplets. After Nile red staining, cells were fixed and staining with anti-ELF2 (1:500) and visualized with Alexa-633-conjugated goat anti-rabbit (1:500).
(C) Mean of particles size in every cell-line. BE(2)M17 non-transduced cells vs. wt-ELF2 cells (∗p = 0.03); wt-ELF2 vs. mt-ELF2 transduced cells (∗∗p = 1.54 × 10−8);
BE(2)M17 vs. mt-ELF2 (∗∗∗p = 1.55× 10−48).

that the transduction and mutation did not change elf2
location.

On comparing non-transduced BE(2)M17 cells with
CEE-mt-ELF2 BE(2)M17-transduced cells, significant
differences in the number of lipid droplets were observed
with reduced lipid droplets present in the mutant cell line
(p = 0.02, Figures 4A,B). In addition, we observed that
lipid droplets were smaller in CEE-mt-ELF2 transduced
BE(2)M17 cells (0.68± 0.05) when compared with CEE-wt-ELF2
BE(2)M17 transduced cells (1.53 ± 0.14, p = 1.54 × 10−8) and
non-transduced BE(2)M17 cells (1.83 ± 0.03, p = 1.55 × 10−48,
Figure 4C).

BACKGROUND

The ETS gene family is a group of TFs divided in 12
subfamilies. The ETS subfamily includes ETS1 and ETS2; the
ELF subfamily includes ELF1, ELF2, and ELF4 (MEF) genes

and the ELG subfamily consist of GABPα. All ETS TFs are
defined by a highly conserved DNA binding domain, the ETS
domain with a core GGA(A/T) DNA sequence (Sharrocks, 2001).
Previous electrophoretic mobility shift assays (EMSAs) have
demonstrated that ETS1, ELF2, and GABPα interact with the
ETS domain within the 5′-UTR in the ATXN2 gene in HEK293
and SH-SY5Y nuclear lysates. HEK293 cells overexpressing
ETS1 showed an increase in the expression of ATXN2 gene
(Scoles et al., 2012). These findings suggested that the ETS
domain in ATXN2 may be regulated by other TFs of the
ETS gene family such as ELF-2. In the present study, we
identified a novel missense variant in the ELF2 gene (E74-like
factor 2; NERF), which segregates the complete phenotype
and we present functional data showing the effect of mutated
ELF2 (mt-ELF2) gene on ATXN2 and ELOVL5 two genes
previously associated with spinocerebellar ataxia 2 and 38 (SCA2
and SCA38). No similar phenotype has been linked to ELF2
mutations at the time of submission (see section “Concluding
Remarks”).
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DISCUSSION

Cerebellar ataxia with neuropathy and bilateral vestibular
areflexia syndrome is a rare syndrome, with less than 500 cases
described worldwide (Szmulewicz et al., 2015), and familial
cases have been described rarely (Szmulewicz et al., 2014a).
We report a family with three CANVAS patients segregating a
novel variant in ELF2 gene. Several lines of evidence support
a pathogenic role for the ELF2 variant in this family. Firstly,
multiple bioinformatics tools ranked this variant at the top of
the candidate list; secondly, this novel variant was not found in
the gnomAD and, perhaps more conclusively, the mt-ELF2 in a
neuroblastoma cell line was able to modify the gene expression
of two genes associated with ataxia in two ways. Firstly, by
upregulating the expression and translation of ATXN2 (the gene
involved in SCA2) and secondly, by decreasing the expression
and translation of ELOVL5, (associated with SCA 38). Sequencing
data were re-evaluated in our familial dataset in both genes, but
no abnormal CAG repeat expansion in ATXN2 or pathogenic
variants in ELOVL5 gene such as c.214C>G or c.689G>Tl were
found in the patients.

ELF2 is a TF associated with RUNX1 and both interact in
the regulation of gene expression (Wang et al., 1993). We have
observed that ELF2 acts as a repressor of ATXN2 gene expression
in neuroblastoma cells and that mt-ELF2 will not be likely to
regulate its expression. Although our mutation is not within the
ETS-binding domain, it is not possible to exclude the interaction
of ELF2 and other TFs, such as RUNX1.

ELOVL5 is a target gene for ELF2 according to the TRANSFAC
(Wingender et al., 2000; Wingender, 2008) and this gene is
considered the causal gene of SCA 38 (Di Gregorio et al.,
2014). Our results also confirm that mt-ELF2 also modifies
the expression of ELOVL5. This gene is involved in the long-
chain fatty acids elongation cycle, and it is highly expressed
in Purkinje cells. Furthermore, the ELOVL5−/− mice develop
ataxia and motor impairment during the balance beam test
(Hoxha et al., 2017). Several neurological diseases, particularly
hereditary spastic paraplegias (Dick et al., 2010; Tesson et al.,
2012; Boukhris et al., 2013; Martin et al., 2013) display alterations
of lipid metabolism. Increases in lipid droplets play a crucial role
in the nervous system and have been associated with in vitro
models of neurodegenerative disorders such as Huntington’s
and Parkinson’s diseases (Martinez-Vicente et al., 2010; Thiam
et al., 2013; Welte, 2015), emphasizing the importance of lipid
homeostasis in brain membranes.

Although the expression of ELF2 gene in the human
cerebellum is low according to the Allen Brain Atlas2 (Hawrylycz
et al., 2012), and the same variant was not observed in
other CANVAS patients, this may be attributed to the genetic
heterogeneity commonly found in hereditary ataxias.

Furthermore, we have found strong evidence that the position
chr4:g.140058846 C > T in the ELF2 gene is highly conserved in
an evolutionary sense, therefore the variant is likely pathogenic
and possibly interferes with protein function. Functional assays
indicate a regulatory role of the ELF2 variant in vitro for two

2http://www.brain-map.org/

SCA genes, since we have shown that the expression of mt-ELF2,
but not wt-ELF2, increases ATXN2 gene expression and ataxin-2
translation and decreases ELOVL5 gene expression in BE(2)-M17
cells.

CONCLUDING REMARKS

We describe a rare variant in ELF2 gene in this family with
CANVAS syndrome and demonstrate its functional effects in
ATXN2 and ELOV5 genes in BE(2)-M17 transduced cells. The
interaction between ELF2, ATXN2, and ELOVL5 genes found
suggests that the regulation of expression in these genes could
potentially be a shared mechanism in hereditary ataxias.
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