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ABSTRACT: A systematic study of radical boron migration in diboronate complexes to form synthetically valuable 1,n-
bisborylalkanes is reported. The boronate complexes are readily generated by reaction of commercial bis(pinacolato)diboron with
alkyl Grignard compounds. C-radical generation at a defined position with respect to the diboron moiety is achieved either via
intermolecular H-abstraction with a CF3-radical or via alkene perfluoroalkyl radical addition. It is shown that radical 1,2- and 1,4-
boron migrations to provide geminal and 1,3-bisborylalkanes are efficient transformations. The 1,5-boron migration in the
homologous series leading to 1,4-bisborylalkanes is also occurring, albeit with lower efficiency. Experimental results are supported by
DFT calculations which also reveal the corresponding 1,3-boron migration in such diboronate complexes to be feasible.

Bisborylalkanes are functionalized and versatile building
blocks in organic synthesis. Such B-compounds can act as

coupling partners in transition-metal-catalyzed cross-coupling
reactions or as radical precursors, and both boryl moieties can,
in principle, be selectively converted to different function-
alities.1 Boronate complexes are reactive intermediates that are
readily generated by the reaction of organoboronic esters with
organometallic reagents. These B-ate complexes are reducing
species that also undergo facile hydrolysis.2 Recently, radical
chemistry on boronate complexes has emerged.3 It was found
that C-radicals of type I derived from boronate complexes are
readily oxidized by single electron transfer (SET) to give
zwitterions of type II in a radical/polar crossover step (Scheme
1A). Intermediates II in turn undergo a Matteson-type 1,2-
alkyl/aryl shift to afford α-functionalized boronic esters III.4

Although such transformations on boronate complexes
generated from alkyl and aryl boronic esters are meanwhile
well investigated, the corresponding radical reactions on
diboronate complexes derived from diborons (see IV) are
underdeveloped. Along these lines, Shi recently reported the
construction of 1,1-bisborylalkanes enabled by radical
addition/1,2-boron migration. As mechanism of the boron
migration, it was proposed that diboronate complexes IV (m =
0) are SET-oxidized to intermediates of type II (R′ = BPin),
which rearrange to geminal bisborylalkanes via an ionic
process.5 Herein, we disclose our results on the systematic
study of radical boron migration in radical anions of type IV
(m = 0−4) to give intermediates V, where the two B-atoms can
interact. SET oxidation finally leads to 1,n-bisborylalkanes VI
(Scheme 1B). Considering the 1,2-boron shift, the radicals
VIII are generated from ate complexes VII via intermolecular
hydrogen atom transfer (HAT)4d (Scheme 1C). Further, we
will provide mechanistic insights into the reported5 1,2-boron
migration. In all other cases, site-selective C-radical generation
(see XI) is achieved via radical addition to B-ate complexes of
type X (Scheme 1D).
The 1,2-boron shift to access geminal bisborylalkanes was

studied first. Notably, 1,1-bisborylalkanes are important

building blocks to access multifunctionalized compounds.6,7

The current methods to prepare these compounds use gem-
dihalides,8 diazo compounds,9 alkynes,10 alkenes, etc.11 as
substrates and mostly require a transition metal to catalyze or
mediate the transformation.12 It is of interest to develop a

Received: March 19, 2020
Published: May 4, 2020

Scheme 1. Synthesis of 1,n-Bisborylalkanes via Radical
Boron Migration
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convenient method to access 1,1-bisborylalkanes from simple
starting materials under transition-metal-free conditions.
In 2019, our group achieved transition-metal-free cross-

coupling of organometallic reagents and organoboronic esters
by intermolecular α-HAT on the corresponding boronate
complexes with the trifluoromethyl radical followed by SET
oxidation and ionic 1,2-alkyl/aryl migration.4d Encouraged by
this study, we decided to apply this strategy to prepare 1,1-
bisborylalkanes via diboronate complexes (see Scheme 1C).
The reaction of bis(pinacolato)diboron (B2Pin2) with
cyclopentylmagnesium bromide (1.2 equiv) targeting gem-
bisborylalkane 2a was selected for optimization (Table 1).

The diboronate complex 1a was generated in 1,2-dimethoxy-
ethane (DME) at 0 °C. The solvent was exchanged by
acetonitrile, and CF3I was chosen as the terminal oxidant, with
the CF3-radical engaging in selective HAT abstraction at the α-
position to the B-atom in B-ate complexes.4a Pleasingly, with
tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3, 1 mol%)
as a smart initiator13 at room temperature, 2a was formed in
59% yield (Table 1, entry 1). Besides 2a, we detected 8%
cyclopentylboronic acid pinacol ester (Cp-BPin) and 14%
B2Pin2. Other metal-based and organic initiators gave similar
results (entries 2−6). The complex derived from cyclopentyl-
magnesium chloride provided a slightly lower yield (52%, entry
7, compare with entry 3), but the yield significantly dropped to
18% with bis(neopentyl glycolato)diboron (B2(neop)2) in
place of B2Pin2 (entry 8). Without redox initiator, the reaction
also proceeded, albeit with lower efficiency (entry 9). Upon
lowering the temperature, formation of cyclopentylboronic

acid pinacol ester was suppressed and the yield of 2a improved
to 68% (entry 10). Initiation by simple UV (365 nm)
irradiation at −20 °C led to a further improvement, providing
2a in 76% yield (entry 11). The boronate complex derived
from cyclopentyllithium gave a poor yield under the optimized
conditions (16%, entry 12).
With optimized conditions in hand, we prepared a series of

1,1-bisborylalkanes from different alkyl Grignard reagents
(Table 2). Both primary (2c−d) and secondary (2a,b,e−o)

alkylmagnesium bromides engaged in the transformation to
afford 1,1-bisborylalkanes in moderate to good yields (28−
80%). Some functionalities such as phenyl, trifluoromethyl,
and alkoxy moieties were tolerated. The reaction was found to
be sensitive to sterics. For example, ate complex 1b derived
from 3-phenyl cyclopentylmagnesium bromide delivered the
1,1-bisboron compound 2b with a decreased yield (44%) as
compared to its less bulky congener 1a (74%). Considering
diboronate complexes derived from primary alkylmagnesium
bromides, the less bulky ethyl derivative (2c) gave a slightly
better yield than the corresponding butyl-ate complex (2d).
For complexes generated from secondary alkylmagnesium
bromides, the least bulky isopropyl system provided the
highest yield (80%, 2e). Due to the higher steric demand of an
ethyl over a methyl group, the yield of 2o was lower than the
yields obtained for 1,1-bisborylalkanes 2e−n. Of note, as
Grignard reagents can be easily accessed from commercial alkyl
bromides, the introduced method offers a cheap and
convenient approach to 1,1-bisborylalkanes.
We noted that there is currently no general method available

for the synthesis of 1,n-bisborylalkanes (n > 1),8a,14 and we
assumed the unprecedented remote radical B-migration to
offer a new approach to access such compounds. Along these
lines, we first addressed the 1,4-boron migration and selected
3a, generated by reacting B2Pin2 with but-3-enylmagnesium
bromide, as model substrate. To our delight, visible light
irradiation (465 nm) of 3a in the presence of C4F9I (1.5 equiv)

Table 1. Reaction Optimization for the 1,1-Diborylation of
Cyclopentylmagnesium Bromide with B2Pin2

a

yield (%)

entry PC 2a Cp-Bpin conv (%)

1 Ir(ppy)3 59 8 86
2 Ir(ppy)2(dtbbpy)PF6 62 7 85
3 Ru(bpy)3(PF6)2 63 9 82
4 Eosin Y 56 8 83
5 Rose Bengal 35 20 82
6 Rhodamine B base 49 5 74
7b Ru(bpy)3(PF6)2 52 7 82
8c Ru(bpy)3(PF6)2 18 28 100
9 − 30 20 65
10d Ru(bpy)3(PF6)2 68 <1 82
11e − 76 (74f) <1 91
12g − 16 17 61

aReactions were conducted on a 0.2 mmol scale in CH3CN (2 mL),
conversion (conv) was determined based on the recovered bisboryl
reagent, and yields were determined by GC analysis with n-
tetradecane as internal standard on the crude reaction mixture.
bCyclopentylmagnesium chloride used instead of cyclopentyl-
magnesium bromide. cBis(neopentyl glycolato)diboron (B2(neop)2)
used instead of bis(pinacolato)diboron (B2Pin2).

dReaction con-
ducted at −20 °C. e365 nm (3 W) at −20 °C. fIsolated yield.
gCyclopentyllithium used instead of cyclopentylmagnesium bromide.

Table 2. Geminal Diborylation of Alkylmagnesium
BromidesScopea

aConducted at 0.2 mmol scale. Isolated yields provided in all cases.
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and Ir(ppy)3 (1 mol%) as an initiator in CH3CN provided the
1,3-bisborylalkane 4a in 79% yield besides the iodine atom
transfer product 4a-I (4%) and recovered B2Pin2 (13%) (Table
3, entry 1). Solvent screening revealed that better yields were

obtained in CH3CN than in other polar solvents like DMSO,
DMF, and DMA (entries 1−4). Ir(ppy)3 could be replaced by
organic dyes such as Eosin Y, Rose Bengal, and Rhodamine B
base without diminishing the yield (76−79%, entries 5−7).
Without redox initiator, the reaction also worked, but with
lower efficiency (44%, entry 8), and with the cheap organic
Rhodamine B base as smart initiator, the yield further
increased to 87% upon lowering the temperature to −20 °C
(entry 9). Notably, simple UV irradiation (365 nm) at −20 °C
in the absence of any initiator provided a similar yield (entry
10). The boronate complex derived from but-3-enyllithium
gave a poor yield under the optimized conditions (5%, entry
11).
A scope study of the trifunctionalization of homoallyl

Grignard reagents was conducted by applying the visible light/
Rhodamine B base initiation protocol (Table 3, entry 9) that
proved to be more general than the UV-initiation protocol.
The perfluoroalkyl radical precursor was varied first, keeping
complex 3a as the acceptor (Table 4). Linear n-perfluoroalkyl
iodides provided the trifunctionalized 1,3-diboranes 4b−e in
excellent yields (82−93%). The less reactive n-perfluoroalkyl
bromide also worked as C-radical precursor, but as compared
to the iodides, the yield dropped slightly (62%, 4f). With
perfluoroisopropyl iodide, a 64% yield of 4g was obtained. 1-
Chloro-2-iodotetrafluoroethane reacted chemoselectively at
the I-bearing C-atom to give 4h (61%). Iodoacetonitrile and

ethyl iodoacetate gave only trace amounts of the targeted
products (not shown). Unfortunately, diastereoselectivity for
the 1,4-boron shift in open-chain systems was very low (see
4i,j). However, for the cyclic rigid diboronate complex 3k, 1,4-
syn-boron-migration selectivity was complete, and also the
initial CF3-radical addition occurred with excellent stereo-
control (trans-addition) to provide product 4k as a single
diastereoisomer (64%).
With 4-pentenylmagnesium bromide as starting material, we

next addressed the 1,5-boron migration and noted that, with
perfluoroalkyl iodides as C-radical precursors, the I-atom
transfer compounds 5-I (not shown) were formed as major
products and targets 5 were obtained in low yields. Therefore,
we had to switch to the less reactive bromides. A moderate
31% yield of 5a was achieved with n-perfluorohexyl bromide
under the conditions optimized for the 1,4-boron shift. The
yield could be slightly improved to 44% (see 5b) by installing a
3,3-dimethyl substitution pattern, benefiting from the
Thorpe−Ingold effect.15

We also attempted the 1,6-boron migration on the
homologous diboronate complex derived from 5-hexenyl-
magnesium bromide with CF3I as the radical precursor.
However, the targeted 1,5 bisborylalkane was not identified,
and the reaction provided the corresponding I-atom transfer
product as the major product. Switching to n-perfluorohexyl
bromide, the 1,6-boron migration product 6 could not be
identified, indicating that this migration cannot compete with
other processes.
Finally, to complete the series, we tackled the 1,3-boron

migration. The required diboronate complex was formed by
the reaction of allylmagnesium bromide with B2Pin2. However,
neither with perfluorobutyl iodide nor with its bromide was
any 1,2-bisborylalkane identified, and B2Pin2 was formed in a
large amount (85%) as major product. Hence, SET oxidation
of allyl-B2Pin2MgX under all tested conditions generating the
stabilized allyl radical was too fast, and therefore this alkene
could not act as a radical acceptor under the applied
conditions. Since we did not find any suitable system to

Table 3. Reaction Optimization for 1,3,4-
Trifunctionalization of Homoallylmagnesium Bromide
1,4-Boron Migrationa

yield (%)

entry PC solvent 4a 4a-I conv (%)

1 Ir(ppy)3 CH3CN 79 4 87
2 Ir(ppy)3 DMSO <1 33 85
3 Ir(ppy)3 DMF 5 11 91
4 Ir(ppy)3 DMA 2 2 93
5 Eosin Y CH3CN 76 3 77
6 Rose Bengal CH3CN 75 4 80
7 Rhodamine B base CH3CN 79 3 80
8 − CH3CN 44 16 94
9b Rhodamine B base CH3CN 87 (83c) 3 90
10d − CH3CN 87 3 95
11e Rhodamine B base CH3CN 5 − 57

aReactions were conducted on a 0.2 mmol scale in the specified
solvent (2 mL), conversion (conv) was determined based on
recovered bisboryl reagent, and yields were determined by crude
GC analysis with n-tetradecane as internal standard. bConducted at
−20 °C. cIsolated yield. d365 nm (3 W) at −20 °C. eBut-3-
enyllithium, in situ generated by lithium/iodine exchange reaction of
t-BuLi and 4-iodo-1-butene, used instead of but-3-enylmagnesium
bromide, and THF instead of DME as solvent.

Table 4. 1,4- and 1,5-Boron Migration Reactionsa

aConducted on a 0.2 mmol scale. bn-C6F13Br was used. cReaction
conducted at room temperature.
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experimentally investigate the 1,3-boron migration, we decided
to approach that problem by using computational chemistry.
DFT calculations16 were performed on a series of pent-(m+1)-
yl-substituted radical anions 7a−d (m = 0−3, Scheme 2) to get
a full picture on the boron migration aptitude in these
diboronate radical anions.

In the study of the reactions, we have found bisborane
radical anion intermediates 8 with the spin localized in a B−B
single electron bond, similar to those found in the 1,2-
carboboration of alkenes with B2Cat2.

17 In the case of the 1,2-
boron migration (m = 0),18 the initial radical 7a exhibits this
structure already, which means that 1,2-boron radical
migration is a spontaneous and barrierless process. In the
case of the distonic (m > 0) radical anions 7b−d, a cyclization
occurs with low free energy barriers (7−12 kcal/mol) to form
the analogous intermediates 8b−d exergonically. These will
readily transferlikely assisted by the MgBr counter-
cation17cone electron to the iodo reagent and regenerate
the trifluoromethyl radical, forming the 1,(m+1)-bisboryl-
alkanes 9a−d. Compared to the 1,4-boron migration, the
barrier for the radical 1,3-boron migration increases (from 7.1
to 11.8 kcal/mol). The 1,5-boron migration (8.1 kcal/mol)
showed a slightly higher barrier than the 1,4-shift. In the case
of radical anion 7b (1,3-boron migration), in the computation
we did not find any indication for facile β-fragmentation
leading to the B2Pin2-radical anion along with 1-pentene. This
supports our suggestion that the observed formation of B2Pin2
in the reaction with allyl-B2Pin2MgX is likely caused by initial
SET oxidation of allyl-B2Pin2MgX rather than β-fragmentation
of the corresponding distonic radical anion of type 7b.
In summary, radical 1,2- and 1,4-boron migration reactions

in diboronate complexes derived from B2Pin2 are useful
preparative processes to access synthetically valuable 1,1- and
1,3-bisborylalkanes. Considering the 1,3-functionalized com-
pounds, high selectivity in the boron migration can be achieved
in cyclic systems. The 1,5-boron migration leading to 1,4-
bisborylalkanes also occurs, albeit with lower efficiency. The
experimental findings on the B-shift were supported by DFT
calculations, which further revealed the currently experimen-
tally inaccessible 1,3-boron migration to be feasible. Since
B2Pin2 is commercially available and the Grignard reagents are
readily prepared from the corresponding alkyl bromides, the
introduced methods offer a straightforward approach to 1,n-
bisborylalkanes.
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