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Abstract: GDF15 is a downstream gene of S100A4. miR-3189 is embedded in the intron of
GDF15—and coexpressed with it. miR-3189-3p functions to inhibit the proliferation and migration
of glioblastoma cells. We speculated that S100A4 might regulate miR-3189-3p to affect its function
in gastric cancer cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR)
showed that miR-3189-3p expression was significantly downregulated in MGC803 cells after S100A4
knockdown. Overexpression of miR-3189-3p significantly inhibited the proliferation and migration of
the cells. Moreover, miR-3189-3p mimics enhanced the effects of an S100A4 siRNA on the inhibition
of cell proliferation and migration. Dual luciferase reporter assays, qRT-PCR, and Western blotting
verified that CFL2 is a direct target of miR-3189-3p. CFL2 mediates the regulation of miR-3189-3p on
the proliferation and migration of MGC803 cells. Data mining based on Kaplan–Meier plots showed
that high CFL2 expression is associated with poor overall survival and first progression in gastric
cancer. These data suggested that miR-3189-3p mimics enhanced the effects of the S100A4 siRNA on
the inhibition of gastric cancer cell proliferation and migration by targeting CFL2. The findings
suggested that when targeting S100A4 to treat gastric cancer, consideration and correction for
counteracting factors should obtain a satisfactory effect.
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1. Introduction

Gastric cancer (GC) is the fifth most common malignancy worldwide [1]. Although the incidence of
GC has declined, the overall 5-year survival rate for patients with GC remains unsatisfactory, largely
because GC is almost always diagnosed at advanced stages, and the effectiveness of current treatment is
limited. Therefore, determining the molecular mechanisms that affect the properties of GC cells would be
helpful to identify biomarkers for the early detection of gastric cancer and to develop novel therapeutic
targets to treat GC at the molecular level, therefore improving the prognosis of patients with GC.

S100A4 encodes a member of the S100 family of calcium-binding proteins. Accumulating evidence
shows that it plays very important roles in the progression and metastatic potential of various types
of cancers, including GC [2], lung cancer, colorectal cancer, cervical cancer, and breast cancer [3–6].
Our previous studies showed that S100A4 suppression by RNA interference (RNAi) could inhibit the
proliferation and migration of GC cells, and promote their anoikis [7–9]. To investigate the underlying
mechanism by which S100A4 affects the properties of GC cells, we analyzed the differentially expressed
gene profile using a cDNA microarray after S100A4 suppression in GC cell line MGC803, and found
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that GDF15 was significantly downregulated among the 173 differentially expressed genes, and could
mediate the effect of S100A4 on the properties of GC cells [10].

MicroRNAs (miRNAs) are non-coding, short (20–22 nt) RNA molecules that can cause translation
repression and/or mRNA degradation by binding to the 3′-untranslated regions (3′-UTRs) of target
mRNAs. Many studies have demonstrated that miRNAs play crucial roles in the development and
progression of human cancers [11–13]. It had been suggested that miRNAs such as miR-646, miR-381,
miR-154, miR-133b, and miR-93-5p are key regulators of the proliferation, invasion, and migration of
GC cells [14–18]. They can also serve as potential biomarkers and therapeutic targets in GC. miR-3189 is
a novel primate-specific miRNA embedded in the intron of the GDF15 gene. miR-3189-3p could inhibit
cell proliferation and/or migration in colorectal cancer cells [19] and glioblastoma cells [20]. In addition,
miR-3189 showed potential diagnostic value in cholangiocarcinoma and oral cancer [21,22]. However,
microRNA array analysis demonstrated that miR-3189-3p was one of the most highly upregulated
miRNAs in microdissected prostate cancer in comparison with the matched neighboring normal
prostate epithelium [23]. These findings indicated that the functional roles of miR-3189-3p in human
cancers might vary between different types of cancer. Until now, the expression status and function of
miR-3189-3p in GC cells remained unknown. We showed that S100A4 inhibition leads to significantly
decreased expression of GDF15; therefore, we speculated that S100A4 might regulate the expression
of miR-3189-3p, which lies in the intron of GDF15. In addition, miR-3189-3p might affect the role of
S100A4 inhibition on the properties of GC cells.

In this study, we found that miR-3189-3p was downregulated in MGC803 cells after S100A4
knockdown. Functionally, we found that miR-3189-3p mimics could significantly inhibit the
proliferation and migration of MGC803 cells. miR-3189-3p mimics enhanced the effects of S100A4
siRNA in inhibiting the proliferation and migration of MGC803 cells. Moreover, a dual luciferase
reporter assay verified that CFL2 is a direct target of miR-3189-3p. Functional analysis indicated that
CFL2 mediates the regulation of miR-3189-3p in the proliferation and migration of MGC803 cells.
In addition, Kaplan–Meier plot analysis revealed that high CFL2 expression is closely related to
unfavorable overall survival (OS) and first progression (FP) in patients with GC.

2. Results

2.1. S100A4 Knockdown Leads to Decreased Expression of miR-3189-3p in MGC803 Cells

Previous studies by our group showed that GDF15 is an important downstream gene of
S100A4. Other researchers reported that miR-3189 is an intronic miRNA of GDF15. Therefore,
we hypothesized that S100A4 could also regulate miR-3189 expression. The results from quantitative
reverse transcription polymerase chain reaction (qRT-PCR) showed that after S100A4 inhibition
by RNA interference (Figure 1A), GDF15 expression was downregulated (Figure 1B), as reported
by our previous study [10]. Furthermore, pri-miR-3189 and miR-3189-3p were both significantly
downregulated after S100A4 inhibition (Figure 1C,D), which indicated that S100A4 could regulate
miR-3189-3p expression in MGC803 cells.
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Figure 1. S100A4 knockdown leads to decreased expression of miR-3189-3p in MGC803 cells. 
MGC803 cells were transfected with either S100A4-siRNA (small interfering RNA) or NC-siRNA, 
mRNA was extracted for quantitative reverse transcription polymerase chain reaction (qRT-PCR) 
analysis of (A) S100A4, (B) GDF15, (C) pri-miR-3189, and (D) miR-3189-3p at 48 h after transfection. 
Data represent the mean of three independent experiments. GAPDH was used for the internal 
control. * p < 0.05, *** p < 0.001. NC: negative control. 

2.2. miR-3189-3p Inhibits the Proliferation of MGC803 Cells 

The results from the Cell Counting Kit-8 (CCK8) assay showed that at 96 h after transfection of 
miR-3189-3p mimics, the proliferation of MGC803 cells was significantly decreased compared with 
cells transfected with miR-3189-3p negative control (NC) (p < 0.01) (Figure 2A). Meanwhile, 
miR-3189-3p inhibitors led to increased proliferation of MGC803 cells compared to cells treated with 
inhibitor NC at 96 h after transfection (p < 0.05) (Figure 2B). These findings demonstrated that 
miR-3189-3p could inhibit the proliferation of MGC803 cells. 
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Figure 2. The effect of miR-3189-3p on MGC803 cell proliferation. MGC803 cells were transfected 
with miR-3189-3p inhibitor NC, miR-3189-3p inhibitors, miR-3189-3p NC, or miR-3189-3p mimics 
respectively. The Cell Counting Kit-8 (CCK8) assay was used to examine the effect of miR-3189-3p 
(A) mimics or (B) inhibitors on MGC803 cell proliferation. The data represent the mean ± SD from 
three independent experiments. * p < 0.05, ** p < 0.01. 

2.3. miR-3189-3p Retards MGC803 Cells Migration 

We further investigated the effects of miR-3189-3p on the migration of MGC803 cells by 
performing transwell and wound healing assays. The results from the transwell assay demonstrated 
that the number of migrated cells significantly decreased after transfection with miR-3189-3p mimics 
compared with the cells transfected with the negative control (p < 0.001) (Figure 3A). The results 
from the wound healing assays demonstrated that the wounds were significantly wider for the cells 
transfected with miR-3189-3p mimics compared with the cells transfected with the negative control 
(p < 0.05) (Figure 3B). These results indicated that miR-3189-3p could inhibit the migration of 
MGC803 cells. 

Figure 1. S100A4 knockdown leads to decreased expression of miR-3189-3p in MGC803 cells.
MGC803 cells were transfected with either S100A4-siRNA (small interfering RNA) or NC-siRNA,
mRNA was extracted for quantitative reverse transcription polymerase chain reaction (qRT-PCR)
analysis of (A) S100A4, (B) GDF15, (C) pri-miR-3189, and (D) miR-3189-3p at 48 h after transfection.
Data represent the mean of three independent experiments. GAPDH was used for the internal control.
* p < 0.05, *** p < 0.001. NC: negative control.

2.2. miR-3189-3p Inhibits the Proliferation of MGC803 Cells

The results from the Cell Counting Kit-8 (CCK8) assay showed that at 96 h after transfection of
miR-3189-3p mimics, the proliferation of MGC803 cells was significantly decreased compared with cells
transfected with miR-3189-3p negative control (NC) (p < 0.01) (Figure 2A). Meanwhile, miR-3189-3p
inhibitors led to increased proliferation of MGC803 cells compared to cells treated with inhibitor NC
at 96 h after transfection (p < 0.05) (Figure 2B). These findings demonstrated that miR-3189-3p could
inhibit the proliferation of MGC803 cells.
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Figure 2. The effect of miR-3189-3p on MGC803 cell proliferation. MGC803 cells were transfected
with miR-3189-3p inhibitor NC, miR-3189-3p inhibitors, miR-3189-3p NC, or miR-3189-3p mimics
respectively. The Cell Counting Kit-8 (CCK8) assay was used to examine the effect of miR-3189-3p
(A) mimics or (B) inhibitors on MGC803 cell proliferation. The data represent the mean ± SD from
three independent experiments. * p < 0.05, ** p < 0.01.

2.3. miR-3189-3p Retards MGC803 Cells Migration

We further investigated the effects of miR-3189-3p on the migration of MGC803 cells by performing
transwell and wound healing assays. The results from the transwell assay demonstrated that the
number of migrated cells significantly decreased after transfection with miR-3189-3p mimics compared
with the cells transfected with the negative control (p < 0.001) (Figure 3A). The results from the wound
healing assays demonstrated that the wounds were significantly wider for the cells transfected with
miR-3189-3p mimics compared with the cells transfected with the negative control (p < 0.05) (Figure 3B).
These results indicated that miR-3189-3p could inhibit the migration of MGC803 cells.
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Figure 3. The effect of miR-3189-3p on MGC803 cell migration. The detection of MGC803 cell
migration by the (A) transwell or (B) wound healing assays after miR-3189-3p mimics transfection.
(left, magnifcation, ×100). All the results were obtained from three independent experiments. * p < 0.05,
*** p < 0.001.

2.4. miR-3189-3p Mimics Enhanced the Effects of S100A4 siRNA on the Inhibition of Proliferation and
Migration of MGC803 Cells

We observed that S100A4 inhibition by RNAi led to the downregulation of miR-3189-3p.
In addition, we demonstrated that miR-3189-3p mimics could inhibit the proliferation and
migration of MGC803 cells. Our previous research showed that S100A4 inhibition by RNAi
led to decreased proliferation and migration of MGC803 cells. Therefore, we speculated that
miR-3189-3p could counteract the effect of S100A4 and that miR-3189-3p mimics would enhance
the effect of S100A4 siRNA on the inhibition of the proliferation and migration of MGC803 cells.
To validate this hypothesis, we co-transfected S100A4-siRNA with miR-3189-3p mimics or
miR-3189-3p NC into MGC803 cells and detected the proliferation and migration of the cells
using CCK-8, transwell, and wound healing assays, respectively. The results showed that the
proliferation of MGC803/S100A4-siRNA+miR-3189-3p mimics was significantly lower than that
of MGC803/S100A4-siRNA+miR-3189-3p NC cells (Figure 4A). The results from transwell and wound
healing assays showed that the migration of MGC803/S100A4-siRNA+miR-3189-3p mimics cells was
significantly less than that of MGC803/S100A4-siRNA+miR-3189-3p NC cells (Figure 4B,C), suggesting
that miR-3189-3p mimics enhanced the effects of S100A4 siRNA on the inhibition of the proliferation
and migration of MGC803 cells.



Int. J. Mol. Sci. 2018, 19, 236 5 of 16Int. J. Mol. Sci. 2018, 19, 236 5 of 16 

 

 
(A)

(B)

(C)

Figure 4. miR-3189-3p mimics enhanced the effects of S100A4 small interfering RNA (siRNA) on the 
inhibition of the proliferation and migration of MGC803 cells. MGC803 cells were co-transfected with 
S100A4-siRNA and miR-3189-3p mimics or miR-3189-3p NC. The effect on proliferation or 
migration was analyzed by (A) CCK8, (B) transwell, and (C) wound healing assays. (B,C) left, 
magnifcation, ×100. All the results were obtained from three independent experiments. * p < 0.05, *** 
p < 0.001. 

2.5. CFL2 Is a Direct Target Gene of miR-3189-3p in MGC803 Cells 

To study the underlying mechanism for the functional effect of miR-3189-3p, we searched for 
candidate target genes of miR-3189-3p using miRanda (http://www.microrna.org/) and TargetScan 
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for miR-3189-3p which was conserved among many species, for example, human, chimp, and 
rhesus, suggesting that CFL2 is a candidate target gene of miR-3189-3p (Figure 5A). To confirm 
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gene assay. As shown in Figure 5B,C, overexpression of miR-3189-3p significantly suppressed the 
luciferase activity of the wt-CFL2-3′-UTR-reporter, but not that of mut-CFL2-3′-UTR-reporter in 

Figure 4. miR-3189-3p mimics enhanced the effects of S100A4 small interfering RNA (siRNA) on the
inhibition of the proliferation and migration of MGC803 cells. MGC803 cells were co-transfected with
S100A4-siRNA and miR-3189-3p mimics or miR-3189-3p NC. The effect on proliferation or migration
was analyzed by (A) CCK8, (B) transwell, and (C) wound healing assays. (B,C) left, magnifcation,
×100. All the results were obtained from three independent experiments. * p < 0.05, *** p < 0.001.

2.5. CFL2 Is a Direct Target Gene of miR-3189-3p in MGC803 Cells

To study the underlying mechanism for the functional effect of miR-3189-3p, we searched for
candidate target genes of miR-3189-3p using miRanda (http://www.microrna.org/) and TargetScan
(http://www.targetscan.org). We found that the 3′ UTR of CFL2 (cofilin 2) contained a binding site
for miR-3189-3p which was conserved among many species, for example, human, chimp, and rhesus,
suggesting that CFL2 is a candidate target gene of miR-3189-3p (Figure 5A). To confirm whether
miR-3189-3p directly targets the 3′ UTR of CFL2, we carried out a dual-luciferase reporter gene
assay. As shown in Figure 5B,C, overexpression of miR-3189-3p significantly suppressed the luciferase
activity of the wt-CFL2-3′-UTR-reporter, but not that of mut-CFL2-3′-UTR-reporter in HEK293T cells or
MGC803 cells. Furthermore, qRT-PCR and Western blotting showed that overexpression of miR-3189-3p

http://www.microrna.org/
http://www.targetscan.org
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significantly decreased the mRNA (Figure 5D) and protein (Figure 5E) levels of CFL2 in MGC803 cells.
Taken together, the data indicated that CFL2 is a downstream target gene of miR-3189-3p in GC cells.
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reaction (qRT-PCR) and (E) Western blotting were used to detect CFL2 mRNA and protein 
expression in MGC803 cells after transfection with the miR-3189-3p mimics or negative control. Data 
were from three independent experiments and are presented as the mean ± SD. * p < 0.05. 

2.6. CFL2 siRNA Inhibits the Proliferation and Migration of MGC803 Cells 

We investigated the effect of CFL2 on the biological properties of MGC803 cells. The results 
showed that transfection of a CFL2-siRNA significantly reduced CFL2 mRNA (Figure 6A) and 
protein (Figure 6B) levels in MGC803 cells, indicating that the CFL2-siRNA could efficiently inhibit 
CFL2 expression in the cells. Functionally, CCK8, transwell, and wound healing assays showed that 
the cell proliferation (at 72 and 96 h after transfection) and migration ability of MGC803 cells were 

Figure 5. CFL2 is a direct target gene of miR-3189-3p. (A) The putative miR-3189-3p binding sites in
the CFL2 3′ untranslated region (3′-UTR) ,the sequences marked in red colour inside the box indicate
seed sequences of miR-3189-3p which are conserved among different species. The underlined sequence
‘AAACCTT’ marked in red colour refers to the mutated bases in the sequence used to construct
the mut-CFL2-3′-UTR-reporter vector. Luciferase activity in (B) HEK293T and (C) MGC803 cells
after co-transfection of miR-3189-3p mimics or negative control with wt-CFL2-3′-UTR-reporter or
mut-CFL2-3′-UTR-reporter constructs. (D) Quantitative reverse transcription polymerase chain reaction
(qRT-PCR) and (E) Western blotting were used to detect CFL2 mRNA and protein expression in
MGC803 cells after transfection with the miR-3189-3p mimics or negative control. Data were from three
independent experiments and are presented as the mean ± SD. * p < 0.05.

2.6. CFL2 siRNA Inhibits the Proliferation and Migration of MGC803 Cells

We investigated the effect of CFL2 on the biological properties of MGC803 cells. The results
showed that transfection of a CFL2-siRNA significantly reduced CFL2 mRNA (Figure 6A) and protein
(Figure 6B) levels in MGC803 cells, indicating that the CFL2-siRNA could efficiently inhibit CFL2
expression in the cells. Functionally, CCK8, transwell, and wound healing assays showed that the cell
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proliferation (at 72 and 96 h after transfection) and migration ability of MGC803 cells were significantly
decreased after CFL2 inhibition in MGC803 cells (Figure 6C–E). These findings suggested that CFL2
plays an important role in regulating the proliferation and migration of MGC803 cells.
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Figure 6. CFL2 inhibits the proliferation and migration of MGC803 cells. (A) Quantitative reverse
transcription polymerase chain reaction (qRT-PCR) and (B) Western blotting were used to detect CFL2
mRNA and protein expression in MGC803 cells after transfecting with CFL2-siRNA or NC-siRNA.
The effect of CFL2 knockdown on the proliferation and migration of MGC803 cells was examined by
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Data are from three independent experiments. * p < 0.05, ** p < 0.01.
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2.7. CFL2 Mediates the Functional Effects of miR-3189-3p on MGC803 Cells.

To further explore whether CFL2 could mediate the biological function of miR-3189-3p in GC cells,
we co-transfected miR-3189-3p mimics and the CFL2 expression vector GV230-CFL2 into MGC803 cells,
with the co-transfection of miR-3189-3p mimics and the GV230-empty vector as a control. The results
showed that CFL2 overexpression attenuated the inhibitory effects of miR-3189-3p mimics on the
proliferation (Figure 7A) and migration (Figure 7B,C) of MGC803 cells. These data suggested that as
a downstream target, CFL2 could mediate the functional effect of miR-3189-3p in MGC803 GC cells.
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co-transfection of GV230-CFL2 vector or GV230-empty vector with miR-3189-3p mimics on the
proliferation and migration of MGC803 cells were detected by (A) CCK8, (B) transwell, and (C) wound
healing assays, respectively. (B,C) left, magnifcation, ×100. Data are from three independent
experiments. * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.8. CFL2 Is an Unfavorable Prognostic Factor for Gastric Cancer

To further investigate the prognostic value of CFL2, we performed data mining in the
Kaplan–Meier plotter platform and found that high CFL2 mRNA expression is associated with worse
OS (hazard ratio (HR) = 1.41; 95% confidence interval (CI): 1.08–1.84; p = 0.012) (Figure 8A) and worse
FP (HR = 1.39; 95% CI: 1–1.92; p = 0.047) (Figure 8B) for patients with GC, suggesting that CFL2 is
an unfavorable prognostic factor for GC.
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3. Discussion

MicroRNAs (miRNAs) are small non-coding endogenous RNAs. According to their genomic
locations, miRNAs are classified as intergenic miRNAs or intragenic miRNAs. Intergenic miRNAs lie
between protein-coding genes. Intragenic miRNAs are embedded within host genes. Approximately
half of the known vertebrate miRNAs are located in the introns of host genes, and are termed intronic
miRNAs [24]. If they share common promoters with their respective host genes, intronic miRNAs
could be co-regulated with host genes such as miR-107/PANK1 and miR-9-1/CROC-4 [25,26].

It has recently been reported that miR-3189 is located at the intron of the GDF15 gene. GDF15 and
miR-3189-3p are transcriptionally co-regulated by p53 [19]. We have found that S100A4 inhibition by
RNAi led to significantly decreased GDF15 expression [10]; therefore, we speculated that miR-3189-3p
might also be regulated by S100A4. In this study, we found that pri-miR-3189 and miR-3189-3p were
both downregulated in MGC803 GC cells after S100A4 inhibition, suggesting that miR-3189-3p is
a downstream component of S100A4 and is regulated by it. We then investigated the functional
significance of the regulation of S100A4 on miR-3189-3p.

Previously, Jones [19] demonstrated that miR-3189-3p could inhibit the proliferation of colorectal
cancer cells. In astrocytoma and glioblastoma, the expression of miR-3189-3p was downregulated and
miR-3189-3p overexpression significantly inhibited the proliferation and migration of the tumor
cells [20]. However, miR-3189-3p’s function in GC cells has not been reported. Thus, we first
investigated the effect of miR-3189-3p on the properties of GC cells. The results showed that
overexpression of miR-3189-3p significantly decreased the proliferation and migration of MGC803 cells
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compared with the negative control, suggesting that miR-3189-3p could inhibit the proliferation and
migration of GC cells. These findings were consistent with previous reports on colorectal cancer
cells, astrocytoma, and glioblastoma cells [19,20], indicating that miR-3189-3p may also act as a tumor
suppressor in gastric cancer.

RNAi was used to knock down S100A4 to study its effects on the properties of cancer cells.
Specific knockdown of S100A4 resulted in cell responses in human GC and other cancer cells,
such as decreased proliferation, migration, and invasion [7,9,27–29]. At the molecular level, the
response involved a change in the expression of many genes. After S100A4 knockdown in cancer
cells, certain genes that inhibit proliferation and migration (e.g., FAM107B and E-cadherin) were
upregulated [27,30], while those genes that normally promote proliferation and migration (e.g., NF-κB,
p65 and MMP2) were downregulated [7,31]. In addition, ectopic overexpression of S100A4 led to
upregulation of oncogenic microRNA (miR)-155 expression in hepatocellular carcinoma cells, and
an miR-155 inhibitor significantly attenuated the invasion-promoting effects of S100A4 [32]. The above
findings showed that the consequences of the resulting alterations in downstream gene expression
were consistent with the overall effect of S100A4 knockdown on the properties of cancer cells, and that
these downstream genes mediated the effect of S100A4 on the properties of cancer cells. Interestingly,
in the present study, S100A4 knockdown led to reduced expression of miR-3189-3p, which inhibited
the proliferation and migration of MGC803 GC cells. We supposed that the downregulation of
miR-3189-3p might attenuate/counteract the inhibitory effect of S100A4 knockdown on the malignancy
of cancer cells. To validate our hypothesis, we compared the effect of S100A4 siRNA and miR-3189-3p
mimics co-transfection with that of S100A4 siRNA and negative control co-transfection. The results
showed that the proliferation and migration of MGC803/S100A4-siRNA+miR-3189-3p mimic cells
was significantly lower than that of MGC803/S100A4-siRNA+miR-3189-3p NC cells. The results
indicated that the reduced miR-3189-3p expression could attenuate/counteract the inhibitory effects
of S100A4 knockdown on the malignancy of cancer cells, while miR-3189-3p mimics enhanced the
effects. These data provide new clues for targeting S100A4 in cancer treatment, indicating that in order
to obtain an ideal inhibitory effect of S100A4 blockade on the malignancy of cancer cells, we should
pay attention to its downstream counteracting mechanisms and try to correct them. A previous study
reported a similar phenomenon in which KRAS inhibition led to a dramatic upregulation of ribosomal
proteins L26 and L29 (RPL26 and RPL29), while knockdown of RPL26 or RPL29 expression significantly
suppressed cell proliferation of pancreatic cancer, suggesting that upregulation of RPL26 or RPL29
might counteract the effect of KRAS silencing in pancreatic cancer cells [33].

To better understand the molecular mechanism by which miR-3189-3p is responsible for the
anti-tumor effects in GC cells, we further studied the target gene of miR-3189-3p in MGC803 cells.
It has been reported that miR-3189-3p inhibits the proliferation and migration of colon cancer cells
by targeting SF3B2 and p63RhoGEF, respectively [19]. It is well known that miRNAs usually target
many different genes to exert their functions. Therefore, we tried to search for new target genes
of miR-3189-3p in MGC803 cells. By searching miRanda and TargetScan, we identified CFL2 as
a candidate target gene of miR-3189-3p. Through dual-luciferase reporter gene assays, qRT-PCR, and
Western blotting, we confirmed that CFL2 is a target gene of miR-3189-3p in MGC803 cells.

CFL2 encodes cofilin-2 protein, which is a member of the ADF/cofilins family of actin-binding
proteins. By analyzing the structure of CFL2, Yehl et al. [34] found that human CFL2 could bind
to F-actin and played an essential role in accelerating actin treadmilling. Schwickert et al. [35]
confirmed that CFL2 is a target gene of miR-142-3p and is involved in regulating breast cancer
invasiveness. Similarly, Luo et al. [36] demonstrated that CFL2 was overexpressed in aggressive
breast cancer cell lines and acted as a target gene of miR-200c. Knockdown of CFL2 inhibited cell
migration and invasion. Tissue microarray analysis showed that CFL2 expression in breast cancer
tissue was positively correlated with tumor grade. In contrast, in pancreatic cancer, CFL2 showed
lower expression compared with non-cancerous tissues [37]. The overexpression of CFL2 gene in
glioblastoma multiforme contributes to increased therapeutic response [38]. These data suggested
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that the role of CFL2 varies in different kinds of cancers. The role of CFL2 in GC cells has not been
reported. In the present study, we showed that CFL2 inhibition by siRNA significantly inhibited
the proliferation and migration of MGC803 cells. Overexpression of CFL2 reversed the reduced
cell proliferation and migration induced by the transfection of miR-3189-3p mimics, suggesting that
miR-3189-3p suppressed the proliferation and migration of gastric cancer cells by directly inhibiting
CFL2 expression. Additionally, by data mining in the Kaplan–Meier plotter, we found that high CFL2
expression was associated with poor OS (overall survival) and FP (first progression) in patients with
GC, suggesting that CFL2 was an unfavorable prognostic factor for gastric cancer.

In conclusion, we found that S100A4 inhibition significantly decreased the expression of
miR-3189-3p in MGC803 cells. miR-3189-3p mimics inhibited the proliferation and migration of
MGC803 gastric cancer cells, suggesting that miR-3189-3p acts as a tumor suppressor in the cells.
miR-3189-3p mimics enhanced the effect of S100A4 siRNA on the inhibition of cell proliferation and
migration, suggesting that the reduction of miR-3189-3p attenuated the inhibitory effect of S100A4
blockade on the properties of GC cells. CFL2 was identified as a target of miR-3189-3p and was
downregulated by miR-3189-3p. CFL2 mediated the regulation of miR-3189-3p of the proliferation
and migration of GC cells. High CFL2 expression is associated with poor prognosis in patients
with GC. These data established the connection among S100A4, miR-3189-3p, and CFL2 in GC cells,
demonstrating that miR-3189-3p mimics enhanced the effects of S100A4 siRNA on the inhibition of the
proliferation and migration of MGC803 GC cells by targeting CFL2. Overall, our findings suggested
that in order to obtain an ideal effect when using S100A4 as a target to treat gastric cancer, attention
should be paid to the counteract factors.

4. Materials and Methods

4.1. Cell Culture

Human gastric cell line MGC803 was purchased from the Cell Resource Center, Institute of Basic
Medical Sciences (IBMS, Beijing, China), Chinese Academy of Medical Sciences and Peking Union
Medical College (CAMS/PUMC, Beijing, China). The cell line was maintained in Dulbecco’s modified
Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine
serum at 37 ◦C, 5% CO2. Human embryonic kidney cells HEK293T were obtained from the KeyGEN
BioTECH Company of Jiangsu Province and were maintained in Roswell Park Memorial Institute
(RPMI) 1640 medium (GIBCO, Los Angeles, CA, USA) with 10% new-born calf serum (Hyclone, Logan,
UT, USA) at 37 ◦C, 5% CO2.

4.2. Cell Transfection

The duplex siRNA oligonucleotides specific for human S100A4 or CFL2, and oligonucleotides
specific for hsa-miR-3189-3p were synthesized by GenePharma (Shanghai, China), and are listed in
Table 1. MGC803 cells were transfected with a final concentration of 50 nM of the specific siRNA,
or 40 nM of miR-3189-3p oligonucleotides, respectively, using Lipofectamine™ 2000 transfection
reagent (Invitrogen) according to the manufacturer’s instructions.

The expression vector for human CFL2 (GV230-CFL2) was constructed by GeneChem (Shanghai,
China), which provided GV230-empty (negative control). MGC803 cells were transfected with the
GV230-CFL2 (or GV230-empty) using jetPEI®DNA transfection Reagent (Polyplus, Illkirch, France)
following the manufacturer’s protocol. The cells transfected with GV230-CFL2 or GV230-empty were
referred to as MGC803/GV230-CFL2 cells or MGC803/GV230-empty cells, respectively. All cells were
harvested at indicated time points after transfection and used in the subsequent experiments.
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Table 1. The nucleotides used for cell transfection.

Name of Short Nucleotides Sequences

S100A4-siRNA
5′-GCAUCGCCAUGAUGUGUAATT-3′

5′-UUACACAUCAUGGCGAUGCTT-3′

CFL2-siRNA
5′-GCAAGUAAAUGGCUUGGAUTT-3′

5′-AUCCAAGCCAUUUACUUGCTT-3′

hsa-miR-3189-3p mimics 5′-CCCUUGGGUCUGAUGGGGUAG-3′

5′-ACCCCAUCAGACCCAAGGGUU-3′

Negative Control (NC) 5′-UUCUCCGAACGUGUCACGUTT-3′

5′-ACGUGACACGUUCGGAGAATT-3′

hsa-miR-3189-3p inhibitor 5′-CUACCCCAUCAGACCCAAGGG-3′

hsa-miR-3189-3p inhibitor NC 5’-CAGUACUUUUGUGUAGUACAA-3’

S100A4-siRNA, CFL2-siRNA, and hsa-miR-3189-3p mimics use the same NC.

4.3. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Total RNA in cells was extracted using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) at 48 h
after transfection. Reverse transcription reaction was performed using a First-Strand cDNA synthesis
kit (Takara Bio, Tokyo, Japan) with 1 µg of RNA in a final volume of 20 µL. The newly synthesized
cDNA was amplified by quantitative PCR, and the analysis was carried out using SYBR Premix Ex TaqII
(Takara Bio, Tokyo, Japan). Reactions were processed and analyzed on an ABI 7500 qRT-PCR system
(Applied Biosystems, Carlsbad City, CA, USA). Data were analyzed according to the comparative Ct

(2−∆∆Ct) method and normalized to human GAPDH or U6 expression. Primer information is listed
in Table 2.

Table 2. The primers used for qRT-PCR analysis.

Gene Primer Sequence (5′–3′)

S100A4
F: CCCTGGATGTGATGGTGT
R: GTTGTCCCTGTTGCTGTC

GDF15
F: CTCCAGATTCCGAGAGTTGC

R: AGAGATACGCAGGTGCAGGT

pri-miR-3189 F: CAAGCAGCCCCCATATCTAA
R: CCAAGGGGATCCAGGATATT

miR-3189-3p F: ATGCTGCCCTTGGGTCTG
R: CACTTCCTCAGCACTTGTTGGTAT

GAPDH
F: ATCATCAGCAATGCCTCC
R: CATCACGCCACAGTTTCC

U6
F: ATTGGAACGATACAGAGAAGATT

R: GGAACGCTTCACGAATTTG

F, forward; R, reverse.

4.4. Western Blotting Analysis

At 48 h after transfection, whole-cell protein extraction was performed by lysing cells in
radioimmunoprecipitation assay (RIPA) lysis buffer (Santa Cruz, CA, USA). The proteins were
quantified by using a BCA reagent kit (Beyotime, Shanghai, China). Proteins were separated
by sodium-dodecyl sulfate polyacrylamide gel (12%) electrophoresis, and then transferred onto
polyvinylidene fluoride (PVDF) membranes (Millipore, Bedford, MA, USA). The membranes were
blocked with 5% non-fat milk in TBST buffer. The membranes were then immunoblotted with primary
antibodies: rabbit anti-S100A4 antibody (1:500 dilution; Abcam, Shanghai, China); rabbit anti-Cofilin
2 antibody (1:100 dilution; Abcam, Shanghai, China), and mouse anti-β-actin antibody (1:2000 dilution;
Protein-tech). After washing, the membranes were exposed to peroxidase-conjugated secondary
antibody (goat anti-rabbit IgG or goat anti-mouse IgG) (1:2000 dilution; Beijing Zhongshan Golden
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Bridge Biotechnology Co., Ltd., Beijing, China). Immunoreactive bands were detected using the
chemiluminescence solvent (Thermo Scientific, Waltham, MA, USA) and visualized with Micro Chemi
(DNR Bio-Imaging Systems, Jerusalem, Israel). The experiments were repeated three times.

4.5. Dual Luciferase Reporter Assay

The binding site of miR-3189-3p on the 3′-UTR of the CFL2 mRNA was predicted by miRanda
(http://www.microrna.org/) and TargetScan (http://www.targetscan.org). The fragment containing
the wild-type or mutated binding site was cloned downstream of the firefly luciferase coding sequence
in the GV272 vector by GeneChem (Shanghai, China), and were named as wt-CFL2-3′-UTR-reporter
and mut-CFL2-3′-UTR-reporter, respectively. For the luciferase assay, HEK293T or MGC803 cells
were grown in 24-well plates to 70% confluence, and the miR-3189-3p mimics or miR-3189-3p NC
were co-transfected with reporter vectors into HEK293T or MGC803 cells using Lipofectamine™
2000 (Invitrogen, Carlsbad, CA, USA). The luciferase activities were detected using a Dual luciferase
kit (Promega, Madison, WI, USA) at 48 h after transfection, and Renilla luciferase was used as
normalization control. The assays were performed independently in triplicate.

4.6. Cell Proliferation

At 6 h after transfection, the cells were seeded at a density of 1500 cells per well in 96-well
plates and incubated at 37 ◦C for 24, 48, 72, or 96 h. Cell proliferation was measured using the Cell
Counting Kit-8 (CCK8) (Dojindo, Rockville, MD, USA) according to the manufacturer’s instructions.
The absorbance was measured at 450 nm using a microplate reader. Experiments were carried out
independently three times.

4.7. Transwell Assay

Cell migration was analyzed using the transwell assay (Costar, Corning Inc., Corning, NY, USA).
At 48 h after transfection, cells were resuspended in serum-free DMEM and plated in the upper
chamber of 8-µm pore transwell apparatus at a density of 3 × 104 cells per well. The lower chamber
was filled with 650 µL of DMEM supplemented with 10% fetal bovine serum. After incubation for 24 h,
non-migrated cells were removed from the upper surface of the insert membrane using a cotton swab,
whereas the migrated cells on the lower surface were fixed with 4% paraformaldehyde, stained with
hematoxylin and eosin, and then photographed. Five random fields were analyzed for each chamber
to count the number of the cells under microscope. The experiments were repeated three times.

4.8. Wound Healing Assay

At 48 h after transfection of related oligonucleotides or vectors, when MGC803 cells reached
approximately 100% confluence in 6-well plates, a wound was created using a 200 µL pathogen-free
pipette tip in the confluent monolayer in each well. After being washed with phosphate-buffered
saline, the cells were then cultured with serum-free DMEM medium for an additional 24 h. The wound
widths were photographed and measured under a microscope in five random fields at 0 h and 24 h
after wounding. The cell migration rate = (width at 0 h − width at 24 h)/width at 0 h.

4.9. Kaplan–Meier Plotter

The Kaplan–Meier plotter (http://kmplot.com/analysis/) is a comprehensive online platform
that includes data from 1,065 patients with GC with a mean follow-up of 33 months [39]. The samples
were obtained from six independent datasets (GSE14210, GSE15459, GSE22377, GSE29272, GSE51105,
and GSE62254) which were downloaded from the Gene Expression Omnibus (Affymetrix microarrays),
among them GSE62254 had markedly different characteristics than the other datasets and was excluded
from the cross-validation analysis. To assess the prognostic value of CFL2, the patient samples (n = 593)
were divided into two cohorts according to the median expression of the gene (high vs. low expression).

http://www.microrna.org/
http://www.targetscan.org
http://kmplot.com/analysis/
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The OS and FP of patients with GC were analyzed using a Kaplan–Meier plot, the HR with 95% CI,
and the log rank p value were calculated and displayed.

4.10. Statistical Analysis

Statistical analysis was carried out using Student’s t-test and one-way analysis of variance
(ANOVA) using Graphpad 6.0 software and the Statistical Package for the Social Sciences (SPSS Inc.,
Chicago, IL, USA), where p < 0.05 was considered to indicate statistical significance.
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