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Introduction

Prenatal testing is an integral component of obstetric prac-
tice, and is commonly performed in professional medical or-
ganizations. The primary aim of prenatal testing is the diag-
nosis of fetal aneuploidies, such as trisomy 21 (T21, Down 
syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 
(Patau syndrome), as well as aneuploidies related to the X 
and Y chromosomes [1]. Although the majority of fetuses 
with aneuploidy result in termination during the develop-
ment of the fetus, T21 has the highest survival rate, which 
affects 1 in 800 births [2]. Therefore, the prenatal detection 
of T21 is considered the most common and important as-
pect of prenatal genetic testing. 

Prenatal testing of T21 falls into ‘screening’ and ‘diagno-
sis’ category. Current prenatal screening tests have greatly 
improved by using a combination of maternal serum mark-
ers and fetal sonographic markers such as nuchal translu-
cency [3-6]. The best performing screening tests are able 
to identify more than 90% of T21 cases, with a 5% rate of 
false positives. However, positive screening results require 
confirmation with diagnostic testing, such as amniocentesis 
or chorionic villus sampling (CVS). The accuracy of these di-

agnostic methods is estimated to be 98% to 99% [7]. How-
ever, both sampling procedures are invasive, and are associ-
ated with significant risks to the fetus and mother, including 
the potential loss of a healthy fetus [7,8]. For this reason in-
vasive prenatal diagnosis tests are currently preformed only 
in high-risk pregnancies or in pregnancies with increased 
maternal age and/or family history of having a child with an 
inherited disease. Therefore, developing a reliable method 
for non-invasive prenatal diagnosis (NIPD) for fetal T21 is of 
critical importance in prenatal care. 
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To perform NIPD, a source of fetal genetic material that 
could be sampled without harm to the fetus would be 
needed. Since the 1970s, researchers have isolated intact 
fetal cells in maternal circulation [9]. However, fetal cells in 
maternal blood are rare in quantity and tend to remain in 
the mother’s body for years [10]. Hence, this method is un-
suitable for NIPD [11]. In 1997, Lo et al. [12] discovered the 
existence of cell-free fetal DNA (cff-DNA) in maternal cir-
culation. Compared to fetal cells, cff-DNA is relatively more 
abundant in maternal blood and thus has been regarded 
as a promising new material for NIPD. It constitutes ap-
proximately 10% of the total DNA in maternal plasma and 
is rapidly cleared from maternal blood, within two hours of 
delivery [13,14]. Moreover, it has recently been found that 
the entire fetal genome, in the form of cff-DNA, is present 
in maternal blood [15]. Therefore, cff-DNA has become the 
focus of research for the development of NIPD. 

Currently, the clinical potential of cff-DNA has been dem-
onstrated. In particular, the determination of fetal sex and 
fetal Rhesus D status using cff-DNA is already applied as rou-
tine tests in Denmark, Sweden, and the Netherlands [16-18]. 
However, the application of cff-DNA for the NIPD of fetal 
T21 has been considered to be technically challenging. One 
aspect of the challenge relates to the presence of the large 
amount of maternal DNA which interferes with the analysis 
of the fetal DNA in maternal plasma [13]. Another challenge 
is related to the characteristics of the cff-DNA that pose 
a difficulty in determining the chromosome dosage of the 
fetus. Recently, various methods have been applied to over-
come these challenges in the NIPD of fetal T21 using cff-
DNA and promising results have been reported. In this re-
view, we discuss the most recent technologies for the NIPD 
of fetal T21 using cff-DNA, and their use in clinical practice.

NIPD of Fetal T21 Using Single-molecule 
Counting Methods of Chromosome 
Sequences

The need for reliable methods for NIPD of T21 has created 
a strong interest in the field of rapid and accurate single-
molecule counting methods (e.g., digital polymerase chain 
reaction [PCR] and massively parallel DNA sequencing 
[MPS]), which could be used in routine clinical diagnosis in 
the form of automated platforms [19]. The single molecule 

counting techniques can detect fetal aneuploidy without 
the analysis of fetal-specific DNA in maternal plasma [20]. 
These methods are based on the detection of the extra copy 
of chromosome 21 to distinguish normal cases from T21 
cases. For example, in cases where a woman is carrying a 
fetus with T21, the number of copies of chromosome 21 in 
the maternal blood is expected to be slightly higher in com-
parison with other autosomes. Currently, rapidly developing 
MPS technologies, which provide a vast amount of data 
across the entire genome, appear to be suitable for count-
ing genome representation and determining the over-rep-
resented chromosomes 21 in the affected fetus. Moreover, 
these techniques can simultaneously detect all trisomies in a 
single step. 

Digital PCR

Digital PCR is a single molecule counting technique that al-
lows the quantification of DNA by counting one molecule 
at a time. It has superior analytical precision compared with 
conventional PCR methods. Thus, it can precisely quantify 
small increments within the total (maternal+fetal) amount 
of DNA molecules derived from chromosome 21 for T21, 
when compared with euploid pregnancies. Lo et al. [21] 
reported on the application of digital PCR for the NIPD of 
T21. They used an approach called relative chromosome 
dosage where the amount of plasma DNA molecules from 
chromosome 21 was compared with that of a reference 
chromosome, that is, a chromosome expected to have a nor-
mal dosage in the fetus [21]. The relative chromosome dos-
age of chromosome 21 to the reference chromosome was 
elevated in maternal plasma of women with T21 fetus and 
the degree of increments was dependent on the fetal DNA 
concentration. However, in the application of digital PCR for 
the NIPD of fetal T21, the analytical platform of digital PCR 
needs to be quantitatively more precise to reliably deter-
mine the small expected increment. Quantitative precision 
can be improved by increasing the number of PCR analyses 
performed. A previous study has shown that the accurate 
detection of fetal T21 in a maternal plasma sample contain-
ing 25% fetal DNA requires approximately 8,000 digital 
PCRs [21]. Therefore, the clinical setting for the NIPD of fetal 
T21 using digital PCR may require the use of automated 
platforms.
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Next-generation DNA Sequencing

New next-generation DNA sequencing (NGS) technologies 
permit the simultaneous sequencing of extremely large quan-
tities of DNA molecules. NGS produces millions or billions of 
short sequence reads per instrument run. NGS of cff-DNA 
from maternal blood has enormous potential, not only for in-
creasing our understanding of the causes of prenatal genetic 
disorders in the fetus but also for designing non-invasive clini-
cal diagnostic tests [15]. The possibility of using NGS to detect 
non-invasive fetal trisomy from maternal blood has been 
demonstrated [22-24], and this finding has been confirmed in 
other recent studies (Table 1) [25-30]. An alternative approach 
to sequencing whole genomes for the non-invasive detection 
of fetal abnormalities is to enrich only interest regions prior 
to sequencing [29-31]. Moreover, NGS technologies show 
remarkable potential for detecting the most common aneu-
ploidies, including T21, T18, and T13. Currently, these discov-
eries have been translated into clinical tests, resulting in major 
benefits for NIPD. 

Generally, the NIPD of fetal T21 using NGS is done through 
the following process. First, a short region at one end of 
each DNA molecule of maternal plasma is sequenced using 
synthesis technology and mapped against the reference hu-
man genome to determine the chromosomal origin of each 
sequence. Next, the density of the sequenced tags from the 
chromosome 21 of interest from a T21 fetus is compared with 
cases of trisomy and euploid pregnancies. Consequently, NGS 
can clearly identify samples from women carrying aneuploid 

fetuses by comparing them with samples taken from women 
with known euploid fetuses. Previous studies demonstrated 
that NGS was highly accurate in the direct detection of fetal 
T21 from maternal plasma (Table 1) [22-30]. The accuracy of 
NGS for the NIPD of T21 has already been validated by large-
scale clinical studies. However, sequence information of NGS 
is obtained for the various chromosomes proportional to their 
sizes. 

Therefore, chromosome 21, being the smallest autosome, 
would only be represented by a relatively small percentage 
of the sequence reads. As a result, the throughput of NGS 
for NIPD of fetal T21 is too low. To overcome the limitations 
of NGS, several targeted sequencing approaches were de-
veloped based on the a priori selection of DNA regions for 
analysis. Compared to sequencing and counting all reads from 
chromosomes, limiting the number of DNA regions greatly 
reduces the effort required to assess the dosage of a chromo-
some. Moreover, the careful selection of the DNA regions to 
quantify can potentially reduce the confounding variation in 
the number of reads per locus by taking into account only the 
loci with similar properties (e.g., GC content or the number 
of repeats of a particular sequence in the genome) [29,30]. 
Sparks et al. [30] described a method for detecting chromo-
some aneuploidy using NGS combined with an amplification-
based enrichment assay. The assay is comprised of three 
oligos per analyzed locus. Of the 298 samples, including 39 
trisomy 21 samples and seven trisomy 18 samples, all aneu-
ploidy samples were correctly distinguished from the controls, 
and as such the authors concluded the assay to have 100% 

Table 1. Diagnostic accuracy for fetal trisomy 21 of next generation sequencing using cell-free DNA

Method Total/trisomy 21 
(n)

Gestational age 
(wk)

Sensitivity 
(%)

Specificity 
(%) Reference

Massively parallel sequencing  18/9 10-35 (18) 100 (63-100) 100 (63-100) Fan et al. [22]

   28/14 11-20 (15) 100 (73-100) 100 (73-100) Chiu et al. [23]

   47/13 10-28 (15) 100 (72-100) 100 (87-100) Sehnert et al. [24]

 146/86 12-14 (13) 100 (95-100) 97.9 (93.6-99.4) Chiu et al. [25]

 449/39   8-36 (16) 100 (89-100) 99.7 (98.5-99.9) Ehrich et al. [26]

 532/89 10-23 (15)    100 (94.8-100) 100 (98.9-100) Bianchi et al. [27]

1,696/212   9-21 (15)  98.6 (95.9-99.7) 99.8 (99.3-99.9) Palomaki et al. [28]

Targeted massively parallel 
  sequencing  298/39 13-35 (20) 100 (88.8-100) 100 (98.2-100) Sparks et al. [30]

 167/36 11-36 (18) 100 (88.0-100) 100 (96.4-100) Sparks et al. [29]

Gestational age is range in the trisomy 21 cases and the number in parentheses indicates mean. In sensitivity and specificity, parentheses 
indicate the 95% confidence interval.
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sensitivity and specificity. The level of sequencing, covering 
only 420,000 reads per sample, was nevertheless sufficient 
to detect trisomy 21 and trisomy 18 reliably (z statistics ex-
ceeded 3.6 in all samples). This level corresponds to a <5% 
of the level required by non-targeted approaches. Moreover, 
this method enables multiplexing (96 samples were processed 
simultaneously), thus greatly reducing the cost of the analy-
sis. The recent single nucleotide polymorphism (SNP)-based 
targeted NGS method was developed for the NIPD of fetal 
aneuploidies [29,30] and seems to be highly efficient. The key 
feature of this method is that it takes the mixture of maternal 
and fetal DNA obtained from blood plasma into account, sep-
arately from the DNA from one or both parents. Along with 
T21, T18, T13, and sex chromosome aneuploidies (e.g., X0, 
XXY, XXX, XYY) can also be detected, which is an important 
advantage of this method in light of the high occurrence of 
these abnormalities. A clinical trial of the prenatal non-invasive 
aneuploidy testing using SNPs, supported by the National 
Institutes of Health, is currently underway [32]. As it is SNP-
based, the method may need to be tested on patients from 
different populations. Nevertheless, as targeted DNA sequenc-
ing can be performed on a sequencing machine with a lower 
price per run and lower throughput (e.g., PGM, Ion Torrent [Life 
Technologies, San Francisco, CA, USA], or MiSeq [Illumina Inc., 
San Diego, CA, USA]), these methods are preferred, especially 
for average-sized clinics.

Epigenetic Approaches for the NIPD of 
Fetal T21

The major challenge for the development of NIPD using cff-
DNA is that cff-DNA only constitutes around 10% of the total 
DNA in the maternal circulation [13]. To differentiate the fetal-
derived sequences from that of the mother, the most intuitive 
targets for the detection of fetal DNA were based on absolute 
discriminative genetic markers, such as Y-chromosome-specific 
loci or paternally-inherited polymorphic loci that are either 
absent or different in the maternal genome [33-35]. However, 
these types of fetal markers were associated with certain limi-
tations in practice. Firstly, diagnostic tests developed based on 
Y-specific targets could only be applied to pregnancies involv-
ing male fetuses. Secondly, the detection of a paternally inher-
ited polymorphism requires prior knowledge of the polymor-
phic status of the parents, and could only apply to a subset 

of individuals who possessed that particular polymorphism. 
Therefore, it would be desirable to develop a type of marker 
that allows for a confident differentiation of the fetus from 
the mother, and yet is independent of the gender or polymor-
phic status of the fetuses. Recently, epigenetic modifications 
as fetal-specific signatures to detect cff-DNA from circulating 
maternal DNA have been investigated. 

Fetal-specific Epigenetic Makers for NIPD

Epigenetic modifications refer to inheritable molecular pro-
cesses that affect gene expression without changing the DNA 
sequence or content, and the most widely studied epigenetic 
process is DNA methylation. The possibility of DNA methyla-
tion as a non-invasive biomarker was first demonstrated in 
the plasma of patients with cancer [36-38]. Soon after such 
discoveries, various attempts have been made to identify 
fetal-specific epigenetic markers based on differential meth-
ylation patterns between the fetus and the mother [39-41]. 
Fetal-specific methylation pattern is divided to parent origin-
specific methylation pattern and placenta specific methylation 
pattern.

First, parent origin-specific methylation pattern is based on 
genomic imprinting in humans [42,43]. Fetal epigenetic mark-
ers are developed with an imprinted region, in which the DNA 
methylation patterns are inherited in a parent origin-specific 
manner [44]. For example, if a pregnant woman has inherited 
the methylated copy of an imprinted region from her father, 
an imprinted region in her fetus would become unmethylated 
because she passed. The methylation status of this region is 
distinguishable between the fetus and the mother in an allele-
specific manner. In 2002, the imprinted region between the 
IGF2 and H19 genes was investigated to detect fetal-specific 
methylation from maternal plasma [39] and was confirmed 
by genotyping a biallelic polymorphism within the differen-
tially methylated regions [39]. However, this method would 
be relatively complicated to use as a routine fetal marker, 
because this marker was based on an imprinted locus. Next, 
placenta specific methylation pattern is based on the human 
placenta with a specific DNA methylation pattern that is dif-
ferent with somatic tissues [45-47]. The majority of cff-DNA in 
the maternal plasma was derived from the placenta, while the 
maternal cell free DNA in the maternal plasma was predomi-
nantly derived from the maternal hematopoietic cells [48-50]. 
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Therefore, genomic regions that are differentially methylated 
between the placenta and the maternal blood cells have 
been considered as fetal-specific epigenetic makers in ma-
ternal plasma. In 2005, a region on the maspin (SERPINB5) 
gene promoter was firstly found to be hypomethylated in the 
placenta, while hypermethylated in the maternal blood cells 
[40], and the hypomethylated sequences of the SERPINB5 
gene were detectable in maternal plasma throughout the 
course of pregnancy, and its level dropped significantly after 
delivery. Therefore, this was reported as the first universal 
fetal marker that can be used in all pregnancies, regardless 
of fetal gender and genotype. After this discovery, various at-
tempts were made to identify a number of genomic regions 
that are differentially methylated between the placental tis-
sue and the maternal peripheral blood cells according to the 
principle of NIPD. This feature allows for the development of 
a single, simple test to determine the presence of cff-DNA in 
the maternal plasma with greater simplicity and coverage. The 
approaches used for the detection of these markers are vari-
able, depending on whether the placental-derived sequences 
are hypermethylated or hypomethylated compared with the 
maternal blood cells.

Detection Method of Fetal Epigenetic 
Markers

To detect fetal epigenetic markers in maternal plasma, the 
first step is to differentiate methylated and unmethylated se-
quences. Various methods, such as a bisulfite modification of 
the template DNA, differential cleavage by restriction enzymes 
and antibody-mediated enrichment of methylated fragments 
by methylated DNA immunoprecipitation (MeDIP), are ap-
plied. The next step is to quantify a fetal-specific methylation 
pattern. In general, PCR-based methods, such as quantitative 
methylation-specific PCR and quantitative real-time PCR, are 
used. 

Briefly, the process of bisulfite conversion changes un-
methylated cytosine residues into uracil, leaving methylated 
cytosine unchanged [51]. The bisulfite-converted DNA is dif-
ferentially amplified by PCR-based methods, depending on 
the methylation status of the regions where the primers bind 
[52]. However, bisulfite DNA conversion results in the deg-
radation of >90% of the template DNA [53]. Therefore, this 
technique is undesirable for the detection of cff-DNA, which 

is present at a lower abundance in maternal plasma, particu-
larly during early gestation. Methylation sensitive restriction 
enzymes, such as BstU I or Hpa II, can also be distinguished to 
differentiate between methylation patterns in DNA sequences. 
These restriction enzymes sensitively digest ummethylated 
cytosine bases in their recognition sequence, such as CGCG 
or CCGG. To quantify cff-DNA in maternal blood using meth-
ylation-sensitive restriction enzymes, cell-free maternal DNA 
should be unmethylated. This unmethylated maternal DNA 
is removed in cell-free total plasma DNA by the treatment 
of such enzymes, and then can be quantified the digestion-
resistant (methylated) cff-DNA by quantitative methods, in-
cluding real-time PCR or digital PCR [41,54]. Compared with 
bisulfite conversion, this digestion-based method introduces 
less damage to the plasma DNA. However, the enzyme cleav-
age effectiveness, depending on the duration of digestion or 
the amount of enzymes used, can affect the quantification of 
cff-DNA [55]. Recently, MeDIP, which captures DNA contain-
ing methylcytosine, has been applied to quantify cff-DNA. This 
method can capture only methylated DNA fragments using a 
monoclonal antibody specific for methylcytosine and provides 
up to a 90-fold enrichment of methylated DNA. Generally, the 
unmethylated or methylated DNA sequences can be quanti-
tatively measured by a methylation-specific PCR (MSP) using 
a fluorescence probe. The copy number is calculated directly 
from the amplification curves of the fluorescence signal by a 
series of calibration standards. This method has been widely 
used to identify methylation patterns of cff-DNA in maternal 
plasma [56,57] and applied to develop effective epigenetic 
tests for the NIPD of fetal T21.

Potential of Fetal-specific Epigenetic 
Marker in NIPD of Fetal T21

Analysis of differences in the DNA methylation patterns be-
tween the maternal and fetal circulating DNA molecules has 
been proposed as an alternative strategy to the analysis of 
cff-DNA sequences in the NIPD of fetal T21. Such epigenetic 
markers could be useful either via the analysis of the epigen-
etic allelic ratios or directly compared with a placenta-derived 
DNA methylation marker on a reference chromosome. 

The fetal-specific epigenetic markers require:1) the detec-
tion of a number of DNA sequences that are differentially 
methylated between maternal and fetal DNA and 2) quan-
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tification of these fetal-specific DNA sequences by methods 
such as quantitative MSP or quantitative real-time PCR. 
Previous studies described that PDE9A on 21q22.3, which 
were hypomethylated in the placental tissues while com-
pletely methylated in the maternal peripheral blood cells, can 
be used for the NIPD of T21 [58,59]. The putative promoter 
regions of HLCS on 21q22.13, which are hypermethylated in 
the placental tissue compared with the maternal blood cells, 
are also applied for the NIPD of fetal T21 and have reported 
promising results [60]. Theoretically, the allelic ratio of a 
fetal-specific epigenetic marker may present equal signal in-
tensity for unaffected fetuses and an increased signal inten-
sity of chromosome 21 for T21 fetuses. Using this approach, 
fetal T21 can be detected non-invasive even during the first 
trimester [42,60]. The enrichment of sequences which are 
specifically methylated in the placenta and/or the analysis of 
multiple informative markers on the chromosome 21 have 
been applied to detect fetal T21 with high sensitivity and 
specificity. Recently, various methylation-specific techniques, 
such as antibody-mediated enrichment of methylated frag-
ments by MeDIP and differential amplification of methylated 
fragments via HpaII tiny fragment enrichment by ligation-me-
diated PCR (HELP), were used for the NIPD of fetal T21 using 
fetal epigenetic markers [61-64]. The correct diagnosis in the 
NIPD for fetal T21 using fetal epigenetic markers is based on 
the ratio of a subset of fetal-specific methylated regions lo-
cated on chromosome 21 compared with normal cases. This 
new platform is calculated with further statistical analysis of 
multiple markers and has exhibited excellent clinical perfor-
mance (both the sensitivity and specificity were 100%) [65]. 
This methodology seems to be easily reproducible and can 
be readily performed by equipment currently present in most 
diagnostic laboratories without sophisticated analytical plat-
forms. Moreover, this approach can be simultaneously detect-
ed in all known aneuploidies, if regions exist where the fetal 
DNA is hypermethylated compared to the maternal periph-
eral blood DNA are provided. Therefore, this technique seems 
to have the right properties to become a NIPD technique for 
T21 and would provide a cost-effective alternative. However, 
such an approach is limited in the practical applicability of 
NIPD for fetal T21 because of the low number of copies of 
cff-DNA in maternal blood and the variability in the levels of 
DNA methylation of individual fetal-derived epigenetic mark-
ers can affect the results and its clinical value remains to be 
proven in large-scale clinical studies. 

Conclusion

The development of an NIPD technique for fetal T21 that 
would provide true genetic information without carrying risk 
for the progress of the pregnancy will continue to be an ac-
tively researched area in prenatal diagnosis. Trials performed 
so far highlight the medical and commercial potential of 
NIPD, but the proposed techniques warrant further valida-
tion in clinical practice. Throughout the last decade, consid-
erable achievement has been made regarding the technical 
possibilities for the NIPD of T21. In the previous years, male-
specific signals or paternally inherited polymorphisms have 
been proposed as targeted fetal DNA markers, but research 
interest has now evolved to the detection of fetal-specific 
patterns or epigenetic signatures with a unique methylation 
pattern that will allow the application of NIPD in all preg-
nancies. In parallel, novel sequencing methods with high 
diagnostic accuracy have already been applied in the clini-
cal setting as an effective breakthrough for the NIPD using 
cff-DNA. Yet, population-based, double-blind, large-scale 
clinical trials are required to verify the diagnostic potential 
of these methods and their cost-effectiveness compared 
with the conventional screening tests before their introduc-
tion into the clinical practice of fetal medicine. In particular, 
the fact that NIPD using cff-DNA requires a small sample 
of maternal blood may create numerous ethical, social and 
legal implications, owing to the ease with which the test 
can be performed. Therefore, the use of this method should 
be carefully considered in clinical situations. Nevertheless, 
in the near future, the NIPD of fetal T21 using cff-DNA will 
be applied in the clinical setting as an effective choice for 
all pregnant women who opt for safer prenatal diagnostic 
testing. Eventually, the availability of a reliable non¬invasive 
test to determine fetal T21 would reduce unintended fetal 
losses and would presumably be welcomed by pregnant 
women.
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