
Estimating the effect size of a hidden causal 
factor between SNPs and a continuous trait: 
a mediation model approach
Zhuoran Ding1, Marylyn D. Ritchie1,2,3, Benjamin F. Voight2,3,4,5*† and Wei‑Ting Hwang1*† 

Introduction
One of the goals in studying the associations between heritable traits and disease out-
comes is to identify which of these factors are truly causal for the outcome. Expansion 
of causal inference studies like Mendelian randomization studies [1] in recent years 
have provided one piece of causal evidence to risk factors identified from observational 

Abstract 

Background:  Observational studies and Mendelian randomization experiments have 
been used to identify many causal factors for complex traits in humans. Given a set of 
causal factors, it is important to understand the extent to which these causal factors 
explain some, all, or none of the genetic heritability, as measured by single-nucleotide 
polymorphisms (SNPs) that are associated with the trait. Using the mediation model 
framework with SNPs as the exposure, a trait of interest as the outcome, and the known 
causal factors as the mediators, we hypothesize that any unexplained association 
between the SNPs and the outcome trait is mediated by an additional unobserved, 
hidden causal factor.

Results:  We propose a method to infer the effect size of this hidden mediating causal 
factor on the outcome trait by utilizing the estimated associations between a continu‑
ous outcome trait, the known causal factors, and the SNPs. The proposed method 
consists of three steps and, in the end, implements Markov chain Monte Carlo to 
obtain a posterior distribution for the effect size of the hidden mediator. We evaluate 
our proposed method via extensive simulations and show that when model assump‑
tions hold, our method estimates the effect size of the hidden mediator well and 
controls type I error rate if the hidden mediator does not exist. In addition, we apply 
the method to the UK Biobank data and estimate parameters for a potential hidden 
mediator for waist-hip ratio beyond body mass index (BMI), and find that the hidden 
mediator has a large effect size relatively to the effect size of the known mediator BMI.

Conclusions:  We develop a framework to infer the effect of potential, hidden media‑
tors influencing complex traits. This framework can be used to place boundaries on 
unexplained risk factors contributing to complex traits.
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epidemiological studies [2]. However, generating causal evidence between exposures and 
disease outcome leaves unaddressed the question of whether the genetic heritability of 
the trait can be fully explained by the set of known causal factors or if there exist addi-
tional ones that are unidentified but further explain disease risk or trait heritability. For 
example, it is known that high body mass index (BMI) and potentially low-density lipo-
protein cholesterol (LDL-C) increase the risk of developing type 2 diabetes (T2D) [3, 4], 
but can the genetic heritability of T2D be fully explained by BMI and LDL-C? If the herit-
ability of a disease can be fully explained by the set of existing known causal factors, then 
research on the disease can focus on studying the biological mechanisms of those causal 
factors. On the other hand, if there is genetic heritability that remains unexplained, 
other causal factors for the disease may exist and are currently hidden from observation. 
Studying the characteristics of the hidden causal factors may provide insights into the 
novel biological associations and mechanisms that remain undiscovered.

The classic mediation framework decomposes the associations between the exposures 
and the outcome into direct effect and indirect effect through a mediator (i.e., medi-
ated effects) [5, 6]. The question described earlier can be considered within a mediation 
framework with the trait of interest as the outcome, identified single nucleotide poly-
morphisms (SNPs) associated with the trait as the exposure, and the known causal fac-
tors of the trait as the mediators. Under this framework, any remaining direct effects 
between the identified SNPs and the outcome trait are viewed as the residual associa-
tions that are not explained by causal factors or mediators included in the model. Thus, 
the residual associations could be due to one or more hidden mediators. As the first 
step towards learning about the residual associations in the following work, we con-
sider the simplest case that the remaining direct effects between the identified SNPs and 
the outcome trait are due to a single hidden mediator. Under this case, we can further 
decompose the unexplained genetic heritability into two parts: (i) the SNP effects on the 
hidden mediator, and (ii) the effect size of the hidden mediator on the outcome trait. In 
this study, we aim to determine whether the hidden mediator exists, and if so, estimate 
the effect size of the hidden mediator on the outcome trait. We believe that the results 
of our work can be helpful in at least two ways. First, the compatibility of the data with 
the presence of a hidden mediator suggests additional work to understand complex trait 
heritability. Secondly, given the presence of a hidden mediator, enumerating the distri-
bution of effects of that mediator across loci could be important. For example, in T2D, 
a locus which is entirely mediated by BMI / obesity (e.g., FTO) but not by other risk 
factors is interesting, and could point to known disease etiology [7]. In contrast, a locus 
which is not explained at all (or incompletely) by known mediators could help focus 
investigation on a locus where novel biological insight could be obtained.

In this work, we assume that the values of the SNPs, the known mediators, and the 
outcome trait are accurately measured and there are no unmeasured confounding var-
iables in the model. Furthermore, we assume that the effect sizes of the SNPs on the 
standardized known and hidden mediators have the same distribution. This is reason-
able due to the following: because there is little or no prior information about the hidden 
mediator, the unexplained genetic heritability can theoretically be decomposed by infi-
nitely many combinations of the two parts. Thus, to limit the number of possible com-
binations of the two parts and infer a reasonable range of the hidden mediator’s effect 
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size on the outcome, we propose to restrict the effect sizes of the SNPs on the hidden 
mediator to be similar to the effect sizes of the SNPs on the known mediators. Under 
this assumption, one part of the unexplained genetic heritability, that is, the SNP effects 
on the hidden mediator, can be learned from the SNP effects on the known mediators. 
Furthermore, the effect size of the hidden mediator on the outcome trait can be inferred 
by dividing the direct effects between the SNPs and the outcome trait by the inferred 
SNP effects on the hidden mediator.

The rest of the report is organized as follows: In the "Methods" Section, we provide a 
broad overview of our approach and describe each step of our method in detail. We also 
describe the settings for the simulation study. In the  "Results" Section, we present the 
simulation results and the application on investigating the trait of waist-hip ratio. We 
conclude inthe "Discussion"  Section with thoughts about limitations and possible exten-
sions to the approach.

Methods
The mediation model and notations

We illustrate our method using a model with two known mediators, although our 
method can extend to the case with more than two mediators or only one known media-
tor. We denote a continuous trait of interest as Y, the vector of SNPs associated with Y 
as G, and the two known mediating causal factors of Y as M1 and M2 (Fig. 1A). M1 and 
M2 are both standardized to have unit variance. Furthermore, the SNP effects from G to 
M1 are represented by a vector a1 and the SNP effects from G to M2 are represented by a 
vector a2, the direct effects between G and Y are represented by a vector c, the effect size 
of M1 on Y is denoted by a scalar b1, and the effect size of M2 on Y is denoted by a scalar 
b2.

If there is an unexplained genetic heritability between G and Y (i.e., c  = 0), then we 
assume a hidden mediator exists and is denoted by MH (Fig. 1B). The SNP effects from G 
to MH are represented by a vector aH. The goal of the proposed work is to infer the effect 
size of the hidden mediator MH on Y, denoted by bH. To account for the scenario that 
some of the SNPs in G are not associated with MH, we use πH to denote the proportion 
of the SNPs in G that are associated with MH.

If we were to observe MH, the direct effect vector c can be decomposed as c = aHbH. 
However, since MH is not observed, we can only estimate a1, a2, b1, b2, and c as shown in 

Fig. 1  The mediation model framework. (A) The observed model. (B) The hypothesized model
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Fig. 1A but not aH and bH as shown in Fig. 1B. We propose to use the estimates of a1, a2, 
and c, denoted as a∗1, a∗2, and c∗ to infer aH and, subsequently, infer bH. For simplicity, 
we denote the joint vector of a1 and a2 and the joint vector of a∗1 and a∗2 as a and a∗, 
respectively.

Overview of the proposed method and the rationales

To infer the effect size of the hidden mediator, bH, we utilize the fact that we can decom-
pose the direct effect c as aHbH. To do so, we assume that the SNP effects on the hidden 
mediator, aH, share some similarities with the SNP effects on the known mediators, a1 
and a2. We first consider the simplest case, in which we assume that all the SNP effects 
(on both the known and unknown mediators) come from the same distribution. Under 
this assumption, the true mean and standard deviation of a∗H can be consistently esti-
mated by the SNP effects a∗1 and a∗2 if the sample size is large and a large number of 
SNPs are included in the model. We estimate the SNP effects a∗1 and a∗2 by fitting two 
linear regression models with the known mediators M1 and M2 as the dependent vari-
ables and G as the independent variable. Recognizing that assuming similar SNP effect 
sizes and variances on different mediators may be a strong assumption, we present a 
more general setting in which the SNP effects could vary according to a three-level 
structure (Additional file 1).

One challenge in the decomposition of the direct effects of SNPs on Y is that we might 
not expect every SNP associated with the outcome trait will be associated with the 
known and hidden mediators. Therefore, we model the SNP effects on the known medi-
ators (a), using a mixture model with a point mass at zero and a true effect size distribu-
tion that centers at a non-zero value. Because we estimate the SNPs effects on the known 
mediators (a∗) using linear regression models that come with estimation uncertainty, the 
distribution of a∗ will be a mixture of a distribution centered at zero and the true effect 
distribution with a non-zero mean and a variance that is larger than the true disper-
sion. Similarly, the SNP effects on the hidden mediator, aH, can also be modeled using a 
mixture model with a point mass at zero and a true effect distribution that centers at a 
non-zero value. For the same reason as in the case of a∗, the estimated c∗ will be the mix-
ture of a point mass at zero and a true effect distribution not centered at zero and with a 
larger dispersion. Therefore, we utilize Gaussian mixture models (GMMs) to model the 
distributions of a∗ and c∗.

The proposed multi‑step method

Our method consists of three major steps as shown in Fig. 2. In Step 1, we estimate the 
individual SNP effects on the known mediators to obtain a∗ and estimate the direct 
effects between the SNPs and the outcome trait to obtain c∗ by fitting a series of linear 
regression models. In Step 2, we fit GMMs on a∗ and c∗ using an Expectation–Maximi-
zation (EM) algorithm to separate the SNP effects on the known and hidden mediators 
from the zero-mean noises and estimate the GMM parameters from both distribu-
tions. In Step 3, we incorporate the estimated GMM parameters from Step 2 to a GMM 
Markov Chain Monte Carlo (MCMC) procedure to generate a posterior distribution for 
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bH. Details of each step are presented below. All steps are implemented in R (version 
3.6.1) [8].

Step 1: Mediation regressions

In Step 1, we estimate the SNP effects on the known mediators, a1 and a2, and direct 
effects between the SNPs by fitting linear regressions for each known mediator sepa-
rately where the mediator (e.g., M1) is the dependent variable and the elements of G 
are the independent variables. To estimate the direct effects between the SNPs and the 
outcome trait, c, we fit a linear regression with Y being the dependent variable and G, 
M1, M2, and other covariates being the independent variables. The resulting estimated 
effects are a∗ and c∗. We denote a∗ as the joint vector of a∗1 and a∗2.

Step 2: EM

In Step 2, we separate the true effects in c∗ from the zero-mean noise component by fit-
ting a GMM. In addition, because it is possible that not all the SNPs are associated with 
the set of known mediators, we also fit a GMM on a∗ to capture the actual effects of the 
SNPs on the known mediators. Specifically, we use the EM algorithm to fit the GMMs 
on a∗ and c∗ via the normalmixEM function in the R package mixtools (version 1.2.0) 
[9–11] with the initial value of mixing proportions, lambda, set to 0.5, which represents 
that initially, the SNPs have equal probabilities of being associated with the trait or not 
(i.e., the hidden mediator in the case of c∗ or the corresponding known mediators in the 
case of a∗).

The EM algorithm works as follows. Let Xi for i = 1…n be random variables generated 
from a GMM consist of two normal distributions (Eq. 1), and let Zi = {1,2} for i = 1…n 

Fig. 2  Flowchart of the multi-step method. In the first step, we use linear regression models to estimate the 
SNP effects on the known mediators (a∗) and the direct effects between the SNPs and the outcome (c∗). In 
the second step, we apply the EM algorithm to fit GMMs on a∗ and c∗. In the third step, a MCMC procedure 
is performed using the estimated GMM parameters from the last step in the priors to generate a posterior 
distribution for the hidden mediator’s effect size, bH
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be binary latent variables that each indicates which of the two normal distribution the 
corresponding Xi comes from.
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2; the value of σ 2
2

 is set to the estimated variance of the non-zero-mean Gaussian distri-
bution in the fitted GMM in step 2. The parameters estimated by this MCMC procedure 
are bH and the binary indicator variables zj for j = 1…n, which indicate which Gaussian 
distribution in the GMM the corresponding cj belongs to. We specify the same categori-
cal distribution prior for zj, where the weight parameters of the two categories are set 
to the corresponding estimated weights for the two Gaussian distributions in the fitted 
GMM in Step 2. Lastly, we specify a normal prior with mean zero and variance 100 for 
bH so its distribution is almost flat at small values close to 0, which is the potential region 
of the hidden mediator’s effect size.

When bH is equal to zero, the distribution for c∗ reduces to a single Gaussian distribu-
tion instead of a GMM, and the resulting GMM from EM will likely assign a very small 
weight to one of the Gaussian distributions in the GMM. If the Gaussian distribution 
that involves bH in the MCMC procedure happens to be the one that receives a very 
small weight, the posterior distribution of bH will span a very wide region around the 
true value of bH. This is because during each MCMC iteration, due to the small weight, 
very few or none of the elements in c∗ will be assigned to the Gaussian distribution that 
involves bH so that the MCMC procedure is uncertain about the estimation of bH. This 
situation can also occur when the true value of bH is very small such that the two Gauss-
ian distributions in the GMM are not separable. Under these scenarios, the resulting 
interval estimators will be extremely wide and will not be useful in terms of giving a pre-
cise estimate of bH. Thus, if one observes an extremely wide posterior distribution of bH, 
we propose to flip the binary labeling of the fitted GMM from Step 2 and perform Step 3 
again. Based on the results of the simulation study presented below, we observe that this 
adjustment generally results in more meaningful estimates of bH.

A simulation study

We conduct a simulation study to evaluate the proposed method. We consider a base 
case and eight additional settings (Table  1). The base case is an ideal setting for our 
method. For each of the eight settings, we vary different aspects of the base case and 
evaluate the behavior of our method. In Setting 1, we vary the proportion of the SNPs 
that are associated with the hidden mediator, which we denote as πH; in Setting 2, we 
allow two of the known mediators to have negative effects on the outcome trait; in Set-
ting 3, we decrease the sample size (number of individuals); in Setting 4, we consider 
cases where there are 1 and 10 known mediators of the outcome trait; in Setting 5, we 
consider four cases where some of the known mediators affect other known mediators; 
in Setting 6, we simulate two cases under the three-level SNP effect structure; in Set-
ting 7, we simulate the case where bH is equal to zero (i.e., negative control); in Setting 
8, we vary the number of SNPs included in the model. For the base case and Settings 
1–7, we consider a scenario where there are 70 SNPs associated with the outcome trait 
and another scenario where there are 500 SNPs associated with the outcome trait. We 
select the 500 SNP scenario because it is similar to the number of SNPs used in the data 
application example (522 SNPs) described in the next section. We also examine the 70 
SNP scenario and repeated all the simulations done with 500 SNPs to access how our 
method behaves when there are a significantly smaller number of SNPs in the model. 
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For both scenarios, we let the hidden mediator’s effect size on the outcome trait, bH, 
be 0.02, 0.25, and 0.5 and perform 1000 independent simulations for each of the three 
values of bH. Also, for Settings 1–6, we simulate data for 49 additional bH between 0.02 
and 0.5 with a step size of 0.01 to show a behavior trend of our posterior distribution as 
bH increases. As previously mentioned, when the true value of bH is very small or equal 
to zero, the MCMC posterior distribution of bH may be too wide occasionally to make 
any meaningful inference about its true value. Therefore, we apply the labeling-switching 
adjustment if the width of the 90% quantile interval derived from the initial posterior 
distribution for bH is wider than 5. The detailed setting of the base case is presented in 
the next paragraph with its simulation results being presented in "Results" Section. The 
detailed settings and the simulation results of the other eight settings are presented in 
the Additional file 1. All simulations were performed in R (version 3.6.1) [8].

Table 1  Parameters specifications of the 9 simulation settings

Parameters separated by ";" belong to separate simulations

Setting πH Know 
mediator 
effects

Sample 
size

Number 
of known 
mediators

Associations 
among 
mediators

Level 
1 and 
Level 2 
standard 
deviation 
ratios

Hidden 
mediator 
effect

Number 
of SNPs

Base 
case

0.8 (0.4, 0.2, 
0.3, 0.2, 
0.4)

100,000 5 Independent 0:1 Non-zero 70; 500

Setting 1 0.3; 0.5; 1 (0.4, 0.2, 
0.3, 0.2, 
0.4)

100,000 5 Independent 0:1 Non-zero 70; 500

Setting 2 0.8 (0.4, 0.2, 
0.3, -0.2, 
-0.4)

100,000 5 Independent 0:1 Non-zero 70; 500

Setting 3 0.8 (0.4, 0.2, 
0.3, 0.2, 
0.4)

25,000; 
50,000

5 Independent 0:1 Non-zero 70; 500

Setting 4 0.8 (0.4);
(0.4, 0.2, 
0.3, 0.2, 
0.4, 0.2, 
0.1, 0.3, 
0.2, 0.2)

100,000 1; 10 Independent 0:1 Non-zero 70; 500

Setting 5 0.8 (0.4, 0.2, 
0.3, 0.2, 
0.4)

100,000 5 M1- > (0.3) M2;
M1- > (0.9) M2;
M1- > (0.3) M2 
and M3- > (0.2) 
M4;
M1- > (0.5) M2 
and M3- > (0.4) 
M4

0:1 Non-zero 70; 500

Setting 6 0.8 (0.4, 0.2, 
0.3, 0.2, 
0.4)

100,000 5 Independent 1:3; 1:1 Non-zero 70; 500

Setting 7 / (0.4, 0.2, 
0.3, 0.2, 
0.4)

100,000 5 Independent 0:1 Zero 70; 500

Setting 8 0.8 (0.4, 0.2, 
0.3, 0.2, 
0.4)

100,000 5 Independent 0:1 Non-zero 20; 40; 700
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The data for the base case are simulated as follows. The sample size is 100,000. The 
SNPs associated with the outcome trait, G, are simulated independently with minor 
allele frequencies generated from a uniform distribution between 0.1 and 0.5, and we 
assume the SNP effects are additive. The SNP effects on the mediators a1, a2, a3, a4, a5 
and aH are generated from mixture distributions of zero point-masses and normal dis-
tributions with the mean being 0.2 and the standard deviation being 0.08 as shown in 
Eqs. 7–12. The frequencies that the five known mediators are associated with the expo-
sure SNPs are (0.5, 0.6, 0.8, 0.2, 0.5), i.e., 50% of the SNPs associated with the outcome 
trait are associated with M1; 60% of the SNPs associated with the outcome trait are asso-
ciated with M2, and so forth. There are five known mediators of the outcome trait. The 
effect sizes of the five known mediators (M1, M2, M3, M4, M5) on the outcome trait are 
(0.4, 0.2, 0.3, 0.2, 0.4). The known mediators are generated as Eqs. 13–17. The proportion 
of the SNPs that are associated with the hidden mediator, πH, is 0.8. The hidden media-
tor is generated as Eq. 18. We also include two covariates, C1 and C2, in the outcome 
model. C1 is generated from a normal distribution with a mean of 7 and a standard devi-
ation of 0.5; C2 is generated from a normal distribution with a mean of 4 and a standard 
deviation of 0.4. Their corresponding effect sizes on the outcome trait are 0.8 and -0.3. 
The outcome trait is generated based on Eq. 19. Note that we only add a relatively small 
error term ( ε ) to the outcome trait because we assume that almost all the leftover genetic 
heritability of the outcome trait can be explained by the hidden mediator. The mediators 
in the base case do not affect each other (i.e., no correlation among M1, M2, M3, M4, and 
M5).

(7)a1 ∼

{

0with probability 0.5

N
(

0.2, 0.082
)

with probability 0.5

(8)a2 ∼

{

0with probability 0.4

N
(

0.2, 0.082
)

with probability 0.6

(9)a3 ∼

{

0with probability 0.2

N
(

0.2, 0.082
)

with probability 0.8

(10)a4 ∼

{

0with probability 0.8

N
(

0.2, 0.082
)

with probability 0.2

(11)a5 ∼

{

0with probability 0.5

N
(

0.2, 0.082
)

with probability 0.5

(12)aH ∼

{

0with probability 0.2

N
(

0.2, 0.082
)

with probability 0.8

(13)M1 = 50+ a1G + ε1, ε1 ∼ N
(

0, 1
2
)
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Data application

We apply the proposed method to UK Biobank data. We consider Waist-to-hip Ratio 
(WHR) as the outcome, the significant SNPs from the latest GWAS meta-analysis 
of WHR as the exposure, and body mass index (BMI) as the known causal media-
tor between WHR and the SNPs [14]. The goal of the analysis is to determine whether 
there exists a second, hidden mediator on WHR and if so, estimate the effect size of this 
hidden mediator. In addition to waist circumference, hip circumference and BMI, we 
also include sex, age, and the first ten genetic principal components in the UK Biobank 
phenotype data as covariates in the mediation model. Only individuals with European 
ancestry are considered for the current analysis, which includes those described as “Brit-
ish”, “Irish”, “White” or “Any other white background”. Individuals with missing pheno-
type data (i.e., “NA”) in any of the data fields are removed.

Because the GWAS meta-analysis used for identifying the exposure SNPs involves 
UK Biobank data, to minimize over-estimated SNP effect sizes in our analyses, we use 
a stringent p-value threshold of 5 × 10−9 when choosing the exposure SNPs. The result-
ing SNPs are clumped using the R package TwoSampleMR (version 0.5.6) with a clump-
ing window of 250  kb and a cutoff for correlation due to linkage disequilibrium (LD 
r2 = 0.01) based on the 1000 Genomes Continental European groups reference [15, 16]. 
After LD clumping, a total of 535 independent SNPs associated with WHR are iden-
tified and extracted from the imputed UK Biobank genotype using plink (version 2.0) 
[17] (Additional file  2: Table  S1). Furthermore, ten SNPs with low imputation quality 
(INFO score < 0.9) are dropped from further analyses (labeled with “INFO” in Additional 
file 2: Table S1), and a hard-call threshold of 0.4 is used when converting the imputed 
alleles probabilities to the number of allele copies. After joining the genotype data with 
the phenotype data, we further remove two SNPs with more than 10,000 missing rows 
(labeled with “NA” in Additional file 2: Table S1) and a multi-allelic SNP (labeled with 
“M” in Additional file 2: Table S1). Individuals with missing data (i.e., “NA”) in any of the 

(14)M2 = 5+ a2G + ε2, ε2 ∼ N
(

0, 1
2
)

(15)M3 = 10+ a3G + ε3, ε3 ∼ N
(

0, 1.5
2
)

(16)M4 = 6+ a4G + ε4, ε4 ∼ N
(

0, 1.2
2
)

(17)M5 = 15+ a5G + ε5, ε5 ∼ N
(

0, 1
2
)

(18)MH = 20+ aHG + εH , εH ∼ N
(

0, 1
2
)

(19)
Y = 0.4M1+0.2M2+0.3M3+0.2M4+0.4M5+bHMH+0.8C1−0.3C2+ε, ε ∼ N

(

0, 0.2
2
)



Page 11 of 19Ding et al. BMC Bioinformatics          (2022) 23:420 	

data SNP fields are removed. In the end, 218,277 individuals and 522 SNPs are included 
in the application of our method. WHR is calculated as the ratio of waist circumference 
to hip circumference, and WHR and BMI are standardized to have means of zero and 
standard deviations of one.

The cleaned data are analyzed using the proposed multi-step method according to the 
flowchart in Fig.  2. In Step 1, an initial regression was performed to access the effect 
direction of the SNPs on the outcome trait WHR using WHR as the dependent variable 
and all the SNPs, sex, age, and the first 10 genetic principal components as the inde-
pendent variables. Based on the direction (positive or negative) of the estimated effect, 
the coding of each SNP is flipped such that all SNPs have a positive effect on WHR. 
In the subsequent mediator (BMI) regression models (to obtain a∗) and the outcome 
(WHR) regression model (to obtain c∗), sex, age and the first ten principal components 
are adjusted for as covariates. For both a∗ and c∗, SNPs with effects that are greater than 
the 3rd quartile + 3 × interquartile range (IQR) and values that are smaller than the 1st 
quartile—3 × IQR are removed to avoid the downstream GMM methods to be driven 
by these outliers. A total of 12 SNPs were removed (label with “O” in Additional file 2: 
Table S1). In Step 3, the MCMC chain length is set to 30,000 with a burn-in length of 
5,000. We also estimate BMI’s effect on WHR by fitting a regression model with the 
dependent variable being WHR and the independent variables being BMI, sex, age and 
the first ten principal components. As a sensitivity analysis, we repeated the proposed 
multi-step method multiple times with some SNPs dropped. Specifically, we randomly 
divided 522 SNPs into 20 groups (i.e., approximately 26 SNPs per group), and the analy-
sis was repeated 20 times with each of the 20 groups dropped.

Fig. 3  Results of one simulation setting: base case, varying bH, 1000 simulations. The first and second row 
presents the results for 70 SNPs and 500 SNPs, respectively. (A, E) Box plots of the posterior median and the 
mean of bH. The purple lines indicate the true values. (B, F) Box plots of the widths of 90% HDIs and QIs. (C, G) 
The posterior medians and the 90% HDIs of the 49 equally spaced values of bH between 0.02 and 0.5. (D, H) 
The posterior means and the 90% QIs of the 49 equally spaced values of bH between 0.02 and 0.5. Outliers are 
defined as the values more extreme than the third quartile + 1.5 * (the third quartile—the first quartile) or the 
first quartile—1.5 * (the third quartile—the first quartile)
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Results
Simulation results

For the base case, simulation results on the median, mean, 90% highest density inter-
val (HDI) and 90% quantile interval (QI) of bH’s posterior distributions are summarized 
in Fig. 3. Rather than the usual 95% intervals, 90% intervals are reported to avoid the 
potential instability at the tails of the MCMC posterior distributions. We also report the 
root mean square error, the average bias, the number of outliers of the mean and the 
median point estimators, the proportion of the times that the HDI and QI contain the 
true value of bH, and empirical power / type I error of the HDI and the QI interval esti-
mators for each of the eight simulation settings (Additional files 3 and 4: Tables S2 and 
S3). The outliers are defined as the values more extreme than the third quartile + 1.5 * 
(the third quartile – the first quartile) or the first quartile – 1.5 * (the third quartile – 
the first quartile). For the base case and Settings 1–6, the empirical power is calculated 
as the number of simulations with the interval not containing zero divided by the total 
number of simulations. For Setting 7, the empirical type I error is calculated as the num-
ber of simulations with the interval not containing zero divided by the number of total 
simulations.

Under the base case, the performances of the posterior median and mean of bH are 
similar; both are close to the true value of bH, and slightly downward biased only when 
the true value of bH is 0.5. Both the median and the mean have a smaller variation for the 
cases with 500 SNPs compared to 70 SNPs (Fig. 3A –H). In the case with 70 SNPs, where 
both bH = 0.25 and bH = 0.5, for one out of the one thousand simulation runs the median 
and the mean were far away from the corresponding true value (at values close to zero) 
(Fig. 3A). But we did not observe this in the 500 SNPs case. The 90% HDI and the 90% 
QI behaved similarly as well; the intervals were wider for the cases with 70 SNPs than 
500 SNPs only a few times, and the HDI and the QI were extremely wide. For bH = 0.02, 
bH = 0.25 and bH = 0.5 98.1%, 98.3%, and 97.3% of the 90% HDI and the 90% QI con-
tains the true value of bH, indicating both intervals were conservative. In addition, when 
the true value of bH is small, both interval estimators were slightly wider. Although the 
behavior of the posterior distribution of bH did not change dramatically with the number 
of SNPs in the model, having more SNPs in the model can lead to slightly better estima-
tions of bH in terms of both the point estimators and the interval estimators.

Simulations were also conducted for eight additional settings. In Setting 1, where a low 
proportion of the SNPs are associated with the hidden mediator, the posterior median 
and meanindicated slightly larger downward biases, and the HDI and the QI were 
wider when there is a smaller number of SNPs in the model. In contrast, when all of the 
SNPs were associated with the hidden mediators, the posterior median and mean were 
biased upward and the HDI and QI were less likely to capture the true value of bH when 
the true value of bH is large (Additional file 1: Sect. 3.1). For Settings 2, 3 and 4, the simu-
lation results showed that having known mediators with negative effects on the outcome 
trait and  varying the sample size (number of individuals) and the number of known 
mediators did not have dramatic impacts on the posterior distribution of bH (Additional 
file  1: Sect.  3.2, 3.3, 3.4). We also observe that in Setting 5, the posterior median and 
mean can be biased and the HDI and the QI are less likely to include the true value of bH 
if the causal relationships among the known mediators are not appropriately adjusted for 
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in the mediation regressions during Step 1 (Additional file 1: Sect. 3.5). Furthermore, if 
the assumption that the SNP effects on all the mediators come from the same distribu-
tion does not hold, depending on the degree, the posterior median and mean can vary 
greatly and the HDI and the QI can have a low chance to include the true value of bH as 
shown in Setting 6 (Additional file 1: Sect. 3.6). Next, according to the simulation result 
for Setting 7, the posterior median and meanwere close to the true value of bH, zero, 
and the HDI and the QI have Type I error rates thatwere close to 0.1 (Additional files 1 
and 4: Sect. 3.7 and Table S3). Finally, the simulation result for Setting 8 showed that as 
the number of SNPs in the model decreases, the interval estimates become wider, and 
the point estimators become less precise, which is as expected. However, the point and 
interval estimators still have decent performance when therewere only 20 SNPs in the 
model, indicating that the performance of our method is not greatly affected as long as 
there are asufficient number of SNPs in the model. (Additional file  1 and 4: Sect.  3.8, 
Table S3). Detailed results of the additional settings are presented in the Additional files.

Application on waist‑hip ratio

The regression estimated SNP effects on BMI (a∗) and direct effects between the SNPs 
and WHR c∗ are shown in Fig.  4A and C, respectively. As shown in the histograms, 
therewere some extreme values or outliers in both a∗ and c∗. The histograms with 

Fig. 4  Histograms of the regression estimated effects. (A) Estimated SNP effects on BMI (a∗). (B) Estimated 
SNP effects on BMI with outliers removed. (C) Estimated direct effects between the SNPs and WHR (c∗). (D) 
Estimated direct effects between the SNPs and WHR with outliers removed
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outliers removed are shown in Fig. 4B and D. Two modes can be observed from the dis-
tribution of a∗ with the mode on the left being approximately at zero suggesting a∗ fol-
low a mixture model. It is less clear whether the distribution of c∗ has two modes. EM 
estimated means of a∗ and c∗ are indicated by the vertical red lines shown in Fig. 4B and 
D. The fitted GMM on a∗ estimates a mixture weight of 0.882 for the distribution on the 
left, and the fitted GMM on c∗ estimates a mixture weight of 0.836 to the distribution on 
the left. From the posterior distribution of bH, the point estimate for bH using the poste-
rior median is 1.5556 and 1.5562 using the posterior mean; the HDI is (1.4658, 1.6440); 
the QI is (1.4683, 1.6469). The whole procedure of the multi-step method on waist-hip-
ratio (218,277 individuals, 522 SNPs, 1 known mediator, 5,000 iterations for the MCMC 
burn-in, and 30,000 iterations for the MCMC chain length) took 6.33 min on a MacBook 
Pro laptop with a 2.8 GHz Intel Core i7 processor and 16 GB memory. The runtime can 
be variable based on how long the MCMC chain is set to. In the sensitivity analysis that 
repeats the multi-step method 20 times with approximately 1/20 of the SNPs dropped 
each time, the median of the posterior median of bH from 20 repeats is 1.5486, the first 
quartile is 1.4483, the third quartile is 1.6355, the smallest value is 1.0511, and the largest 
value is 1.9575. For the posterior mean of bH, the median of the 20 repeats is 1.5494, the 
first quartile is 1.4492, the third quartile is 1.6368, the smallest value is 1.0511, and the 
largest value is 1.9584. The posterior median and mean from three repeats are relatively 
extreme (posterior median = 1.0511, 1.0643, 1.9574) indicating that some SNPs are more 
influential than other SNPs. Finally, the effect of BMI on WHR conditional on sex, age 
and the first ten principal components is estimated to be 0.3834 (95% CI: 0.3807, 0.3861).

Discussion
In this work, we propose to infer the effect size of a potential hidden mediator on a trait 
of interest based on the observed associations between the trait of interest, its known 
causal factors, and the associated SNPs that have been identified previously. Utilizing the 
mediation framework, we propose a multi-step method to estimate the effect size of the 
hidden factor by treating the trait of interest, its associated SNPs, and the known causal 
factors as the outcome, exposure, and known mediators in the mediation model, respec-
tively. Assuming the direct effects between the outcome trait and the identified SNPs 
that are unexplained by the known mediators can be explained by a hidden mediator, 
we obtain the effect of this hidden mediator on the outcome trait by decomposing the 
direct effects between the outcome trait and its associated SNPs into the SNP effects on 
the hidden mediator and the hidden mediator’s effect size on the outcome trait. In Step 
1 of our proposed method, we estimate the SNP effects on the known mediators and 
the direct effects between the SNPs and the outcome trait via a series of linear regres-
sions. In Step 2, we fit two GMMs on the estimated SNP effects on the known mediators 
and the direct effects between the SNPs and the outcome trait using the EM algorithm 
to separate the actual SNP effects from the zero-mean noises (i.e., the estimated effects 
of those SNPs not associated with the known and hidden mediators). Lastly in Step 3, 
based on the EM estimated GMM parameters, a GMM MCMC procedure is applied to 
generate a posterior distribution for the hidden mediator’s effect size, bH.

Through extensive simulation studies, we show that our method can produce a pos-
terior distribution that captures bH well. We observe that if the model assumptions are 
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correct, both using the posterior median and mean to estimate bH provides only small 
biases, and good coverage of the simulated true effect by the 90% HDI and QI. When 
there are more identified SNPs associated with the outcome trait, in general, both the 
point and the interval estimators perform better. Also, our posterior distribution esti-
mates the hidden mediator’s effect size well if some of the known mediators have nega-
tive effects on the outcome trait while others have positive effects. Our method can also 
accommodate varying numbers of known mediators and the performance is not dra-
matically affected by decreasing sample size. In addition, our method estimates bH well 
even if the hidden mediator does not exist (i.e., bH = 0). However, we notice that when 
the hidden mediator is associated with all of the identified SNPs that are associated with 
the outcome trait, both the median and the mean are upward biased and both the HDI 
and the QI are less likely to include the true value of bH. This is expected because the 
assumed GMM distribution on the estimated direct effects between the SNPs and the 
outcome trait is wrong. On the other hand, if the hidden mediator is associated with 
too few identified SNPs, the point estimators have large biases and the interval estima-
tors become wider. This is also expected as there are fewer SNPs that can provide infor-
mation about bH. Also, if causal relationships exist among the known mediators, these 
effects need to be adjusted in the mediation regressions. Otherwise, the point estimators 
can have relatively large biases and the interval estimators are likely to include the true 
value if the causal relationships are large enough. Finally, our method assumes that the 
SNP effects on different mediators (including both the known and hidden mediators) are 
similar. The posterior distribution estimates bH poorly when the SNP effects on different 
mediators are very different, especially when the number of SNPs in the model is large. 
This is because little information can be borrowed from the observed SNP effects to 
infer the SNP effects on the hidden mediator, which can make it difficult to decompose 
the direct effects between the outcome trait and the associated SNPs to estimate bH.

Occasionally, a posterior distribution with little information about bH (i.e., is extremely 
wide) can be generated when the true value of bH is either zero or very close to zero 
such that the distribution of the estimated direct effects between the outcome trait and 
the associated SNPs follows a single Gaussian distribution around zero rather than a 
GMM. Under this scenario, by chance alone, the EM algorithm in Step 2 may assign a 
tiny weight to the distribution that involves bH in the MCMC model in Step 3 and assign 
a large weight to the other distribution in the GMM. As a result, little data can be used 
to infer bH in the MCMC procedure. To avoid this situation, we suggest one inspect the 
histogram of estimated direct effects and the EM fitted GMM from Step 2. If the histo-
gram of estimated direct effects does not have two modes and is centered approximately 
at zero, and the EM fitted GMM assigns a tiny weight to the distribution that involves 
bH relative to the weight of the other distribution, then it is reasonable to flip the binary 
labeling of GMM and proceed to Step 3.

We applied our proposed method on UK Biobank data to estimate the effect size for a 
potential hidden mediator of waist-hip ratio. From the posterior distribution generated 
by our method, the posterior median estimates that a potential hidden mediator exists 
in the European population with an effect size of 1.56 (90% QI: 1.47, 1.64). This result 
suggests that the hidden mediator has a larger effect on waist-hip ratio comparing to 
BMI (0.38). Some caution here is warranted, as we used the same UK Biobank data for 
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both identifying SNPs associated with waist-hip ratio and for estimating the SNP effects. 
Although we used an extra stringent p-value threshold (5 × 10−9) for filtering SNPs asso-
ciated with waist-hip ratio to mitigate biases from winner’s curse, some degree of biases 
from the winner’s curse is unavoidable. A more optimal approach is to identify SNPs 
associated with waist-hip ratio and perform the estimation in two independent popula-
tions with similar ancestries such that the effects are similar in the two populations but 
the biases from the winner’s curse are minimal. There are a couple of possible biologi-
cal or physiological explanation for the hidden mediator identified in the current analy-
sis that could contribute to the remaining association. For example, the distribution of 
brown fat (the cell type responsible for non-shivering thermogenesis) varies across indi-
viduals and could influence body size and weight, and studies have reported the negative 
association between WHR and having active brown fat in males [18] and the negative 
association between WHR and neuregulin 4, an adipokine secreted by brown fat, in chil-
dren [19]. However, there are no great quantitative measurements of that trait nor have 
genetic studies of this trait been performed. Another possibility is the propensity for 
physical activities, which can be measured by actigraphy and could certainly influence 
body size and weight [20, 21].

Our proposed method has some limitations. First, the performance of the posterior 
distribution for bH under our method largely depends on the how well we estimate the 
regression coefficients for the mediation regressions during Step 1, as the downstream 
steps treat the estimated regression coefficients as input data. Precise and accurate esti-
mates of the coefficients require the mediation regression to be performed on data sets 
with large samples size, especially when many SNPs are included in the model. For large 
population genetics data, this may be less of a concern. As we learned from the simula-
tion studies, the posterior distribution captures bH well when the sample size is 25,000, 
which for today’s conventional size of DNA biobanks is not unreasonable. However, if 
strong correlations among the known mediators are not properly adjusted in the media-
tion regressions, the regression coefficients will be biased, which can lead to substantial 
biases in the resulting posterior of bH. Thus, our method relies on one’s input of prior 
domain knowledge and the specification of reasonable regression models. Future work 
can be devoted to extending the methods to address the situation when the known 
mediators are correlated with each other and no prior knowledge on the causal direc-
tions among the known mediators is available. Second, our method relies on the strong 
assumption that the SNP effects on all the mediators between the SNPs and the outcome 
trait come from the same distribution, and departure from this assumption can lead to 
substantial variation for the posterior distribution for bH such that the inference based 
on the posterior distribution can be very inaccurate. However, we argue that it is some-
what reasonable to constrain the SNP effects on the hidden mediator to be similar to the 
SNP effects on the known mediators and there will be infinite number of ways to decom-
pose the direct effect between the SNPs and the outcome trait without this assumption. 
Future work can focus on relaxing this assumption or inventing ways to incorporate 
information about the potential SNP effect sizes from another modality. Furthermore, 
we view our work that considers the simplest case with one hidden mediator as an initial 
step in learning about the residual associations between an outcome and the existing 
mediator. The current model cannot distinguish whether the estimated effect size is for 
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one hidden mediator or the combined effect size of multiple hidden mediators. In real-
ity, any leftover associations—and perhaps more likely—could be due to multiple hidden 
mediators each with a relatively small effect size. Even if there are multiple hidden medi-
ators, our approach to determine whether the known mediators fully explain the herit-
ability of the outcome trait is still applicable, and we can interpret the estimated effect 
size assuming a single hidden mediator as the combined effect of multiple potential hid-
den mediators. Future work can be devoted to developing a method capable of inferring 
the number of potential hidden mediators and decomposing the combined effect into 
individual effects from each of the hidden mediators. Furthermore, specifying priors for 
the SNP effect sizes based on the heritability model, as suggested by one of the review-
ers, may be a way to incorporate the estimation uncertainties of the SNP effect sizes into 
the model, lead to a better estimation of the hidden mediator’s effect size. Lastly, future 
work can extend the continuous outcome trait to other outcome types such as binary 
variables potentially via the counterfactual framework. This will involve utilizing gen-
eralized linear models in the meditation regressions in Step 1. Such extension will make 
the method useful for many applications such that the disease trait is binary.

Conclusions
We developed a method for estimating the effect size of a potential hidden estima-
tor between a trait of interest and its associated SNPs. In the first step, a series of 
regression models are used to estimate the SNP effects on the hidden mediators 
and the direct effects between the SNPs and the trait of interest. In the second step, 
GMM models are fitted to the estimated SNP effects on the hidden mediators and 
the estimated direct effects between the SNPs via the EM algorithm. In the final step, 
an MCMC procedure that utilizes parameters estimated in the second step is used 
for generating a posterior distribution for the hidden mediator’s effect size. Extensive 
simulations show that our method can generate accurate estimators for the hidden 
mediator’s effect size. Also, when the hidden mediator does not exist, our method 
has controlled type I error rates. By applying our method to UK Biobank data, we 
found a potential hidden mediator between waist-hip-ratio and its associated SNPs in 
the European population and estimated its effect size on waist-hip-ratio to be larger 
than a known mediator BMI’s effect size on waist-hip-ratio. Although, as an initial 
step toward finding the hidden mediators between a trait of interest and its associated 
SNPs, we hypothesize a simple model with only one hidden mediator left, we hope 
that our method can provide some insights into the characteristics of the remaining 
one or multiple hidden mediators and inspire further method developments in this 
direction.
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