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ABSTRACT
Background. Kawasaki disease (KD) is an acute and febrile systemic vasculitis of
unknown etiology. This study aimed to identify the competing endogenous RNA
(ceRNA) networks of lncRNAs, miRNAs, and genes in KD and explore the molecular
mechanisms underlying KD.
Methods. GSE68004 and GSE73464 datasets were downloaded from the Gene Ex-
pression Omnibus. Differentially expressed lncRNAs (DElncRNAs) and genes (DEGs)
in KD were identified using the criteria of p< 0.05 and | log2 (fold change) | ≥ 1.
MicroRNAs (miRNAs) related to KD were searched from databases. The lncRNA-
miRNA-mRNA networks involving the DElncRNAs and DEGs were constructed.
Results. A total of 769 common upregulated, 406 common downregulated DEGs,
and six DElncRNAs were identified in the KD samples. The lncRNA-miRNA-
mRNA network consisted of four miRNAs, three lncRNAs (including the upregulated
PSORS1C3, LINC00999, and the downregulated SNHG5) and four DEGs (including
the downregulated GATA3 and the upregulated SOD2, MAPK14, and PPARG). Vali-
dation in the GSE18606 dataset showed that intravenous immunoglobulin treatment
significantly alleviated the deregulated profiles of the above RNAs in KD patients.
Three ceRNA networks of LINC00999-hsa-miR-6780-SOD2, PSORS1C3-hsa-miR-
216a-PPARG/MAPK14, and SNHG5-hsa-miR-132/hsa-miR-92-GATA3were identified.
Four genes were associated with functional categories, such as inflammatory response
and vascular endothelial cell.
Conclusions. The ceRNAnetworks involve genes, such as SOD2,MAPK14, andPPARG,
and lncRNAs, including PSORS1C3, LINC00999, and SNHG5, which might play a key
role in the pathogenesis and development of KD by regulating inflammation.

Subjects Bioinformatics, Computational Biology, Molecular Biology, Immunology, Science and
Medical Education
Keywords Kawasaki disease, Microarray, Competing endogenous RNA, Long non-coding RNA

INTRODUCTION
Kawasaki disease (KD), also namedmucocutaneous lymph node syndrome, is an acute, self-
limiting, and febrile systemic vasculitis. The incidence of KDand rates of hospitalizations for
KD are different across nations and ethnicities (Elakabawi et al., 2020; Holman et al., 2010;
Kim et al., 2017; Lin & Wu, 2017). The incidence of KD is approximately 200 per 100,000
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children <5 years old worldwide (Kim et al., 2017) and the KD-related hospitalization
rate is approximately 20 per 100,000 children (Holman et al., 2010). KD predominantly
affects children aged between 6 months and 5 years old. Intravenous immunoglobulin
(IVIG) is the major treatment strategy for KD (Kim et al., 2017; Kim & Kim, 2016). The
incidence of acute systemic vasculitis and acquired heart disease (including coronary artery
abnormality) can be reduced by appropriate and timely treatment with IVIG and aspirin.
However, the etiology of KD is largely unknown and the diagnosis of both complete and
incomplete KD is challenging.

Many clinical and epidemiologic research studies suggest an infectious etiology for
KD (Rowley, 2017; Shulman & Rowley, 2015). Viral respiratory infections are common in
KD patients (Maggio, Fabiano & Corsello, 2019; Rosenfeld et al., 2020). KD is an immune-
mediated echo of viral infection and viral infection might trigger KD (Rigante, 2020;
Rosenfeld et al., 2020). The coronavirus disease (COVID-19) pandemic, characterized
by profound hyperinflammation, leads to a missed or delayed diagnosis of KD (Jones
et al., 2020; Ouldali et al., 2020; Roe, 2020; Toubiana et al., 2020). Jones et al. (2020) first
presented a severe KD infant triggered by COVID-19 (SARS-CoV-2). SARS-CoV-2
infection contributes to a rapid increase in KD incidence (Ouldali et al., 2020). Also,
many genetic factors, including genes, microRNAs (miRNA), and long non-coding RNAs
(lncRNA), play crucial roles in KD and associate with IVIG resistance and coronary artery
lesions (CAL) secondary to KD (Ahn et al., 2019; Kuo et al., 2017; Jones et al., 2020; Ko
et al., 2019; Rong et al., 2017;Wang et al., 2019;Wright et al., 2018).

Genes, miRNAs, and lncRNAs play important roles in the regulation of many biological
processes. LncRNAs affect gene regulation transcriptionally or post-transcriptionally by
sponging miRNAs (Yan et al., 2015; Zhu et al., 2016). For instance, lncRNA myocardial
infarction associated transcript (MIAT ) regulates cardiac hypertrophy, angiogenesis, and
endothelial cell function by sponging miR-150 and miR-150-5p (Yan et al., 2015; Zhu
et al., 2016). Also, the competing endogenous RNA (ceRNA) networks of lncRNAs trigger,
control, or suppress disease conditions (Leisegang, 2018; Sun et al., 2019). However, there is
insufficient information on the regulatory ceRNA networks of lncRNAs in KD. Additional
evidence is required to probe into the clues of lncRNAs in KD.

This study was performed to investigate the ceRNA networks of differentially expressed
lncRNAs (DElncRNAs) and differentially expressed genes (DEGs) in KD. DElncRNAs and
DEGs in the blood samples from patients with KDwere identified. The ceRNAmechanisms
in KD were identified using integrated bioinformatics analysis of microarray datasets. This
study might provide a reference for exploring the pathology of KD.

MATERIAL AND METHODS
Microarray data
The microarray datasets, GSE68004, GSE73464, and GSE18606, were downloaded from
the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) in August 2020.
The GSE68004 dataset (GPL10558, Illumina HumanHT−12 V4.0 expression beadchip)
contained 89 blood samples collected from 76 pediatric patients with complete KD, 13
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pediatric patients with incomplete KD, and 37 blood samples from age- and sex-matched
healthy controls. The GSE73464 dataset consisted of 839 samples, including 55 samples
from healthy controls and 78 samples from patients with KD. The GSE18606 dataset was
downloaded and 48 blood samples from nine healthy controls and 20 KD patients (eight
IVIG non-responding and 12 IVIG-responding patients) at the acute and convalescent
stages. The GSE68004 and GSE73464 datasets were used to screen DElncRNAs and DEGs
and the GSE18606 dataset was used to validate the expression profiling.

Data processing
The non-normalized raw data were downloaded and processed using the Limma package
(Smyth, 2005). The expression levels of background-corrected and normalized probes
were calculated. Probes mapped to human mRNAs and lncRNAs in the GRCh38 human
reference genome were retained; otherwise, they were removed. In the case of multiple
probes mapped to one mRNA or lncRNA, the mean expression value of the probes was
calculated and regarded as the expression level of that mRNA or lncRNA.

Analysis of differential expression
The DEGs and DElncRNAs in the KD samples were screened using the GEO2R analysis
tool (http://www.ncbi.nlm.nih.gov/geo/geo2r/). Significant DEGs and DElncRNAs were
identified using the criteria of p value <0.05 and |log2(fold change, FC)|≥1. DEGs and
DElncRNAs with log2FC ≥1 were upregulated, and log2FC ≤−1 were downregulated,
respectively. Common DEGs between the GSE68004 and GSE73464 datasets were retained
and used for further analysis.

Identification of KD-related genes databases
The Comparative Toxicogenomics Database (CTD, update 2019; http://ctdbase.org/) is a
premier public resource consisting of literature-based and manually curated associations
between diseases, genes, pathways, and chemicals (Davis et al., 2019). KD-related genes
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified from
the CTD database using the search keyword ‘‘mucocutaneous lymph node syndrome’’. The
genes and pathways that overlapped between DEGs and items in the CTD database were
retained.

Construction of the protein-protein interaction (PPI) network
The protein interaction pairs were identified in the STRING database (Version 11.0,
https://string-db.org/cgi/input.pl) with a score >0.4. The PPI network was constructed
using the Cytoscape software (version 3.8.0; https://cytoscape.org/) and network modules
were identified using the Molecular Complex Detection (MCODE) plugin of Cytoscape.

Functional enrichment analysis
The annotation of Gene Ontology biological processes and KEGG pathways presents the
biological properties of DEGs. Gene Ontology biological processes and KEGG pathways
related to DEGs were identified using the database for annotation, visualization, and
integrated discovery (DAVID, version 6.7; https://david.ncifcrf.gov/) in this study.
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Significant enrichment was identified when the adjusted (BH correction) p value was
<0.05.

Identification of KD-related miRNAs
miRNAs related to DEGs in KD were searched in the miRWalk (http://mirwalk.umm.uni-
heidelberg.de/), miRTarbase (http://mirtarbase.cuhk.edu.cn/php/index.php), and starBase
(version 2.0 https://www.starbaserobins.org/our-programs/starbase-2-0/) databases. The
miRNA-mRNA pairs identified from at least two databases were retained and used to
construct the miRNA-mRNA regulatory network.

Construction of the lncRNA-miRNA-mRNA ceRNA network
The miRNA-lncRNA pairs were obtained from the miRcode (http://www.mircode.org/),
DIANA-LncBase v2 (http://carolina.imis.athena-innovation.gr/diana_tools/web/index.
php?r=lncbasev2%2Findex-experimental), and starBase (version 2.0; https://www.
starbaserobins.org/our-programs/starbase-2-0/) databases. LncRNA-miRNA pairs
included in at least two databases were retained and used for the construction of the
lncRNA-miRNA network. The ceRNA networks were subsequently constructed using the
Cytoscape software.

Functional clustering of the key items
GeneCLiP 3.0 (http://ci.smu.edu.cn/genclip3/analysis.php) is aweb-based literaturemining
database providing the functional clustering of potential candidates. The hub DEGs and
DElncRNAs in the ceRNA networks were subjected to GeneCLiP3.0. The heatmap of
functional clustering was obtained with the criteria of p< 0.01 and hit ≥ 4.

RESULTS
Identification of DEGs and DElncRNAs in KD
Based on the criteria of p value <0.05 and |logFC | ≥1, a total of 2721 DEGs (1786
upregulated and 935 downregulated genes) and 1848 DEGs (1161 upregulated and
687 downregulated genes) were identified in the datasets GSE68004 and GSE73464,
respectively (Figs. 1A and 1C). We also identified 48 DElncRNAs (36 upregulated and
12 downregulated) and 68 DElncRNAs (34 upregulated and 34 downregulated) in
the GSE68004 and GSE73464 datasets, respectively (Figs. 1B and 1D). The DEGs and
DElncRNAs showed distinctive expression profiles in the KD and control samples in the
GSE68004 dataset (Figs. 1E and 1F).

Venn diagram identified 769 common upregulated and 406 common downregulated
DEGs between the GSE68004 and GSE73464 datasets (Figs. 1G and 1H). In addition, 5927
KD-related genes were identified in the CTD, including 413 DEGs (308 upregulated and
105 downregulated genes; Fig. 1I; Table S1 ). Also, six common DElncRNAs were included
in the two datasets, including four upregulated (MRVI1-AS1, PSORS1C3,MAFA-AS1, and
LINC00999) and two downregulated lncRNAs in KD compared with controls (SNHG5
and KLF3-AS1).
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Figure 1 The differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) in Kawasaki disease
(KD). A and B, the Volcano plots of the DEGs and DElncRNAs between KD and control samples in the
GSE68004 dataset, respectively. C and D, the Volcano plots of the DEGs and DElncRNAs in KD in the
GSE73464 dataset, respectively. E and F, the heatmaps of the DEGs and DElncRNAs in the blood samples
in the training GSE68004 dataset, respectively. G and H, the Venn diagrams indicating the common up-
regulated and downregulated DEGs between the two datasets, respectively. I, the Venn diagram identifying
the shared genes between DEGs and the KD-related genes in the Comparative Toxicogenomics Database.

Full-size DOI: 10.7717/peerj.11169/fig-1

Functional analysis of the DEGs
Functional enrichment analysis of the 413 common DEGs showed that the up-
regulated genes were significantly enriched with 279 biological processes including
‘‘GO:0006952∼ defense response’’, ‘‘GO:0001817∼ regulation of cytokine production’’,
and ‘‘GO:0032675∼ regulation of interleukin-6 production’’, and six KEGG pathways,
including ‘‘hsa04060: Cytokine-cytokine receptor interaction’’, ‘‘hsa04620: Toll-like
receptor signaling pathway’’, and ‘‘hsa04610: Complement and coagulation cascades’’
(Table S2). The downregulated genes were associatedwith 73 biological processes, including
‘‘GO:0042110∼ T cell activation’’, ‘‘GO:0002694∼ regulation of leukocyte activation’’, and
‘‘GO:0050870∼ positive regulation of T cell activation’’, and six KEGG pathways, including
‘‘hsa05340: Primary immunodeficiency’’, ‘‘hsa04660: T cell receptor signaling pathway’’,
and ‘‘hsa04060: Cytokine-cytokine receptor interaction’’ (Table S2).
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Figure 2 The modules and the protein–protein interaction (PPI) network of the differentially ex-
pressed genes (DEGs) in Kawasaki disease (KD). The protein-protein interaction (PPI) network and
modules of the differentially expressed genes (DEGs) in Kawasaki disease (KD). (A & B) The PPI network
and modules of the upregulated and downregulated DEGs, respectively. Red and green color notes the sig-
nificant upregulation (p < 0.05 and log2Fold change ≥ 1) and downregulation (p < 0.05 and log2Fold
change ≤−1), respectively.

Full-size DOI: 10.7717/peerj.11169/fig-2

Construction of the PPI network and functional analysis
The PPI network of the upregulated genes consisted of 101 DEGs and 504 interaction
pairs (Fig. 2A). We identified two modules (score >5) consisting of 17 and 11 upregulated
genes in the upregulated PPI network (Table 1). The PPI network of the downregulated
DEGs included 68 DEGs and 213 lines (Fig. 2B). One module consisting of 14
downregulated genes was included in the downregulated PPI network (Fig. 2B). The
functional enrichment analysis showed that genes in module 1 of upregulated DEGs were
enriched in 44 biological processes, including ‘‘GO:0009617∼ response to bacterium’’,
‘‘GO:0032496∼ response to lipopolysaccharide’’, ‘‘GO:0042981∼ regulation of apoptosis’’,
and ‘‘GO:0001817∼ regulation of cytokine production’’ (Table S3), and oneKEGGpathway
‘‘hsa04670:Leukocyte transendothelial migration’’. None functional categories enriched
the DEGs in the other two modules. Genes in three PPI network modules were used to
identify miRNA-target pairs.
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Table 1 The list of the genes in the modules in the protein–protein network of the upregualted and
downregulated genes in Kawasaki disease.

Module Genes

Up-Module 1 MAPK14, THBD, PPARG, ITGAM, FCGR2A, HP, LCN2,
SLPI, MPO, SELP, MYD88, IL1R1, MMP9, TIMP1, CASP1,
JAK2, SOCS3

Up-Module 2 DUSP1, SERPINB2, SOD2, IL1B, IL1RN, IL4R, IL1R2,
ABCA1, IL10, TLR4, TLR2

Down-Module 1 GATA3, IL2RB, CD27, CD40LG, CD3D, ZAP70, CD8A,
KLRB1, IL7R, CD4, LCK, CD5, RORC, CD86

Identification of ceRNAs networks
A total of 423 miRNA-target pairs were identified from databases, including 30 DEGs
(nine downregulated and 21 upregulated genes) and 298 miRNAs in the miRNA-
mRNA regulatory network (Fig. 3A). Also, we identified 42 lncRNA-miRNA pairs of
four DElncRNAs from databases, including two upregulated lncRNAs (PSORS1C3 and
LINC00999) and two downregulated lncRNAs (SNHG5 and KLF3-AS1).

According to the co-expression profiles of the DElncRNAs and DEGs, five lncRNA-
miRNA-mRNA pairs were extracted from the lncRNA-miRNA and miRNA-mRNA
pairs (Fig. 4A). The upregulated superoxide dismutase 2 (SOD2) gene was regulated
by LINC00999 through hsa-miR-6780. The upregulated genes peroxisome proliferator-
activated receptor gamma (PPARG) and mitogen-activated protein kinase 14 (MAPK14)
were regulated by lncRNA PSORS1C3 through hsa-miR-216a. Besides, the downregulated
lncRNA SNHG5 regulated theGATAbinding protein 3 (GATA3) gene throughhsa-miR-132
and hsa-miR-92.

Microarray dataset validation of DEGs and DElncRNAs
Figure 4B presents the expression profiling of the seven DEGs and DElncRNAs in KD
samples in microarray datasets. LINC00999, SOD2, PPARG, PSORS1C3, and MAPK14
were upregulated in KD in all datasets, while GATA3 and SNHG5 were downregulated in
KD samples in at least two datasets (Fig. 4B). We also observed that the IVIG treatment
significantly attenuated the increased levels of LINC00999, SOD2, PPARG, and MAPK14,
and increased the expression levels of SNHG5 and GATA3 in patients with KD (p< 0.05
by t -test, Fig. 4C). These results suggested that the lncRNA-miRNA-mRNA regulatory
pairs, including the upregulated LINC00999-hsa-miR-6780-SOD2 and PSORS1C3-hsa-
miR-216a-PPARG/MAPK14 networks and the downregulated SNHG5-hsa-miR-132/hsa-
miR-92-GATA3 network, might have crucial roles in the pathology of KD and treatment
for KD.

Functional clustering of the hub DElncRNAs and DEGs
The functional clustering of the hub DEGs and DElncRNAs in the lncRNA-miRNA-mRNA
ceRNAnetwork is shown in Fig. S1. SNHG5was associatedwith four items, including ‘‘acute
myeloid leukemia’’, ‘‘ovarian cancer’’, ‘‘myeloid leukemia’’, and ‘‘renal cell carcinoma’’, and
PSORS1C3 was associated with two items, including ‘‘DNA methylation’’ and ‘‘psoriasis’’.
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Figure 3 The predicted miRNA-mRNA and lncRNA-miRNA regulatory networks in Kawasaki disease
(KD). The miRNA-mRNA and lncRNA-miRNA networks in Kawasaki disease (KD). (A) The miRNA-
mRNA network consists of 12 differentially expressed genes (DEGs) and 257 miRNAs. (B) The lncRNA-
miRNA network consists of 10 differentially expressed lncRNAs (DElncRNAs) and 79 miRNAs. The green
and red colors note the downregulation and upregulation, respectively.

Full-size DOI: 10.7717/peerj.11169/fig-3

Four DEGs (SOD2, GATA3, PPARG, and MAPK14) were related to various functional
categories, including ‘‘inflammatory response’’, ‘‘cell activation’’, ‘‘autoimmune disease’’,
and ‘‘vascular endothelial cell’’ (Fig. S1). These results indicated that DEGs andDElncRNAs
were involved in various pathways.

DISCUSSION
The association of KD with COVID-19 provides a novel insight into the pathology of KD.
Also, the associations ofmiRNAs and lncRNAswith pandemic COVID-19 suggested the key
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Figure 4 The predicted lncRNA-miRNA-mRNA regulatory networks in Kawasaki disease (KD). The
lncRNA-miRNA-mRNA networks in Kawasaki disease (KD).(A) The lncRNA-miRNA-mRNA network
contains four differentially expressed lncRNAs (DElncRNAs: two downregulated lncRNAs, green color;
and two upregulated lncRNAs, red color), 11 miRNAs (gray color), and four differentially expressed genes
(DEGs: three upregulated genes, red color; and one downregulated gene, green color). (B) The expres-
sion levels (log2Fold change values) of the seven RNAs in three datasets. Significant differences (p < 0.05)
are indicated by stars (*). NA: not detectable in the corresponding dataset. (C) The expression levels of
RNAs in patients with KD before and after the intravenous immunoglobulin (IVIG) treatment. Data are
expressed as mean± standard deviation, and the differences are analyzed using the t-test.

Full-size DOI: 10.7717/peerj.11169/fig-4

roles of them in COVID-19management (Gambardella et al., 2020;Ramaiah, 2020; Teodori
et al., 2020). Our study identified the significantly deregulated genes, lncRNAs, and ceRNA
networks in KD. DEGs including SOD2, GATA3, PPARG, and MAPK14 were associated
with biological processes related to ‘‘inflammatory response’’. LncRNAs including the
downregulated SNHG5 lncRNA and the upregulated LINC00999 and PSORS1C3 lncRNAs
might have crucial roles in KD by regulating the above DEGs. Microarray validation
showed that the IVIG treatment attenuated the expression of SNHG5, LINC00999, SOD2,
GATA3, PPARG, andMAPK14 in patients with KD, indicating the crucial roles of them in
KD pathology and treatment.

Among the DElncRNAs in KD patients, SNHG5 regulatedGATA3 by sponging hsa-miR-
132 and hsa-miR-92. SNHG5 plays an important role in human tumors as an oncogenic
lncRNA (Damas et al., 2016; Li et al., 2019b; Li et al., 2018; Zhang et al., 2019). SNHG5
promotes tumor cell proliferation, survival, and drug resistance by sponging miRNAs to
enhance gene expression (Damas et al., 2016; Li et al., 2019b; Li et al., 2018; Zhang et al.,
2019). Zhang et al. (2019) showed that SNHG5 is upregulated in colorectal cancer tissues
and its expression increased cell proliferation, metastasis, and migration by inhibitingmiR-
132-3p and enhancing CAMP responsive element binding protein 5. Plasma miR-132-5p
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might be a diagnostic biomarker for early acute myocardial infarction (Li et al., 2019a).
However, the inhibition of miR-132 attenuates cortical inflammation (Mishra et al., 2017).
Also, miR-92 exhibits an anti-inflammatory effect and suppresses inflammatory responses
in macrophages (Lai et al., 2013). Besides, the GATA3 gene is an essential transcription
factor and a critical regulator of immune cell function (Usary et al., 2004; Zhu et al., 2004).
GATA3 controls T helper type 2 (Th2) cell differentiation and Foxp3 + regulatory T cell fate
(Wohlfert et al., 2011; Zhu et al., 2004). Th2 cells and the GATA3 gene both were involved
in airway inflammation (Choi et al., 2016; Jang et al., 2016; Peng et al., 2018). However,
this is no direct information showing the association of miR-132/92, SNHG5, and GATA3
with KD. Our study indicated that the expression levels of SNHG5 and GATA3 were
downregulated in KD but were enhanced by the IVIG treatment. These results indicated
that SNHG5 and GATA3 and the SNHG5-hsa-miR-132/hsa-miR-92-GATA3 axis might
have crucial roles in the pathology of KD through regulating inflammation.

Delayed diagnosis and treatment for KD may cause prolonged inflammation of vessel
walls and a high risk for IVIG resistance and a high rate of CALs (Lech et al., 2019; Rigante,
2020; Türkuçar et al., 2020). Also, clinical variables, including the levels of platelet-derived
microparticles, platelet count, and neutrophil count were associated with CALs (Chen
et al., 2011; Hu et al., 2020; Jin et al., 2019). Molecular factors, including the Th2 cytokine
thymus, activation-regulated chemokine/chemokine ligand 17 (TARC/CCL1 7) and the
neutrophil hematopoietic cytokine granulocyte colony-stimulating factor (G-CSF) were
related to IVIG resistance in KD (Abe et al., 2008; Lee et al., 2013). Patients with KD having
an allele of the TARC/CCL17 (rs4784805) had a better response to the IVIG treatment (Lee
et al., 2013). Abe et al. (2008) showed that the serum G-CSF levels in IVIG nonresponsive
patients were significantly higher than in responsive patients before treatment. These
studies indicate the inflammatory biomarkers play critical roles in the pathogenesis of IVIG
resistance and CALs in KD.

Oxidative stress contributes to inflammation and tissue injury. Elevated cardiac reactive
oxygen species (ROS) accumulation is a common pathologic feature in KD and cardiac
hypertrophy (Yahata & Hamaoka, 2017; Zhang et al., 2017). Neutrophil respiratory burst
produces ROS and predicts the risk of CALs in KD (Hu et al., 2020). SOD2 is the primary
antioxidant enzyme neutralizing •O2− and its overexpression promotes reductive stress
(Zhang et al., 2017). SOD2 prevents cardiac ROS production and hypertrophy features
(Xie et al., 2020). These studies showed that SOD2 upregulation might be a self-healing
mechanism in KD.However, the associations of hsa-miR-6780, SOD2, and LINC00999 with
vasculitis and KD have not been reported till now. Also, microarray validation showed that
IVIG treatment attenuated SOD2 and LINC00999 expression levels in the blood samples
from patients with KD. These results showed that the ceRNA network of upregulated SOD2
and LINC00999 might protect against oxidative stress-induced damage in KD.

Another upregulated ceRNA network in KD was the PSORS1C3-hsa-miR-216a-
PPARG/MAPK14 network. PPAR γ is a nuclear hormone receptor predominantly expresses
in adipose tissue and involves in adipogenesis (Fang et al., 2016; Son et al., 2007). Son et al.
(2007) showed that PPAR γ 1 overexpression increased the expression of fatty acid oxidation
genes in mouse hearts. Heart function could be improved by PPAR γ agonist (Fang et al.,
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2016;Vikramadithyan et al., 2005). PPAR γ is a target of anti-inflammatory drugs including
the agonist thiazolidinediones which could ameliorate COVID-19 progression (Carboni,
Carta & Carboni, 2020). Besides, MAPK14/p38 α regulates inflammatory response (Fazia
et al., 2020; Wu et al., 2019). MAPK14 mediates autophagy and activates inflammation
and proliferation in vascular smooth muscle cells (VSMCs) through the NF-kB signaling
(Wu et al., 2019). Also, miR-216a has an anti-inflammatory effect in in vitro cell models
(Kong et al., 2020; Tian et al., 2018; Yang et al., 2018). The upregulation of miR-216a or
miR-216a-5p protects cells from oxidative stress-induced injury via targeting the NF- κB
and JAK signaling pathways (Kong et al., 2020; Tian et al., 2018; Yan et al., 2019; Yang et al.,
2018). Microarray validation showed that the PPARG and MAPK14 genes in KD were
decreased following the IVIG treatment in the GSE18606 dataset. These results showed
that the PPARG andMAPK14 might be therapeutic targets for KD.

CONCLUSIONS
In conclusion, we confirmed that the ceRNA networks, including the upregulated networks
LINC00999-hsa-miR-6780-SOD2 and PSORS1C3-hsa-miR-216a-PPARG/MAPK14 and
the downregulated network SNHG5-hsa-miR-132/hsa-miR-92-GATA3, might relate
to the pathogenesis of and development of KD. These networks are associated with
inflammation and response to IVIG treatment in KD. Our study provides new insights
into the pathogenesis of KD. However, the ceRNA networks and their associations with
KD should be validated.
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