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Abstract: The hallmarks of calcific aortic valve disease (CAVD), an active and regulated process
involving the creation of calcium nodules, lipoprotein accumulation, and chronic inflammation, are
the significant changes that occur in the composition, organization, and mechanical properties of
the extracellular matrix (ECM) of the aortic valve (AV). Most research regarding CAVD is based on
experiments using two-dimensional (2D) cell culture or artificially created three-dimensional (3D)
environments of valvular interstitial cells (VICs). Because the valvular ECM has a powerful influence
in regulating pathological events, we developed an in vitro AV tissue culture model, which is more
closely able to mimic natural conditions to study cellular responses underlying CAVD. AV leaflets,
isolated from the hearts of 6–8-month-old sheep, were fixed with needles on silicon rubber rings to
achieve passive tension and treated in vitro under pro-degenerative and pro-calcifying conditions.
The degeneration of AV leaflets progressed over time, commencing with the first visible calcified
domains after 14 d and winding up with the distinct formation of calcium nodules, heightened
stiffness, and clear disruption of the ECM after 56 d. Both the expression of pro-degenerative genes
and the myofibroblastic differentiation of VICs were altered in AV leaflets compared to that in VIC
cultures. In this study, we have established an easily applicable, reproducible, and cost-effective
in vitro AV tissue culture model to study pathological mechanisms underlying CAVD. The valvular
ECM and realistic VIC–VEC interactions mimic natural conditions more closely than VIC cultures
or 3D environments. The application of various culture conditions enables the examination of
different pathological mechanisms underlying CAVD and could lead to a better understanding of the
molecular mechanisms that lead to VIC degeneration and AS. Our model provides a valuable tool to
study the complex pathobiology of CAVD and can be used to identify potential therapeutic targets
for slowing disease progression.

Keywords: aortic valve stenosis; calcific aortic valve disease; CAVD; calcification; degeneration

1. Introduction

Calcific aortic valve disease (CAVD), a major cause of aortic stenosis (AS), is the most
frequent type of valvular disorder worldwide [1,2]. After an asymptomatic latent period
of 10–20 years, untreated AS is associated with a poor prognosis, and the 1-year mortality
rate nears 50% [3]. Due to a lack of medical treatment, aortic valve replacement, performed
surgically (SAVR) or transcatheterally (TAVI) remains the gold standard of the treatment of
symptomatic aortic valve stenosis [4,5].

CAVD is characterized by a complex multifactorial pathogenesis and was, for a long
time, considered as a simple, passive process, but nowadays, CAVD is recognized as an
actively regulated, cellularly driven, and slowly progressive disease [6–10]. Amongst the
hallmarks of CAVD are the significant changes that occur in the composition, organization,
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and mechanical properties of the highly organized extracellular matrix (ECM) of the aortic
valve (AV) [11,12]. The semilunar cusps are composed of three distinct layers, accurately de-
scribed as the fibrosa, the spongiosa, and the ventricularis [9,13]. The cellular components
of the aortic valve include a monolayer of valvular endothelial cells (VECs) on the outer
surface of the leaflets and valvular interstitial cells (VICs), which populate each of the three
layers [6,9]. VICs can differentiate into myofibroblast-like (aVIC) or osteoblast-like (obVIC)
phenotypes and have been considered as the key players in the progression of CAVD [14,15].
Further, the composition and stiffness of the ECM may have a profound impact on the VIC
phenotype [15,16]. VECs play an important role in maintaining valve homeostasis by regu-
lating permeability, inflammatory cell adhesion, and paracrine signaling. However, they
have also been indicated as key regulators in the initiation and early progression of CAVD
via the recruitment of immune cells, dysregulation of protective nitric oxide (NO) signaling,
or by undergoing endothelial-to-mesenchymal transition (EndMT) [17–22]. The role of
VICs and VECs in the development and progression of CAVD is difficult to study, and
models that can accurately replicate the pathological mechanism in CAVD are lacking [23].
Explanted calcified AVs from patients undergoing SAVR are of great value, but disease
mechanisms cannot be extrapolated from the end-stage pathology [24]. In general, most
research regarding CAVD is based on experiments using two-dimensional (2D) cell culture
or artificially created three-dimensional (3D) environments of VICs, most commonly ne-
glecting VECs. Simplistic 2D cell culture systems, created by the spontaneous aggregation
of primary VICs or VECs from a high-density monolayer culture, contributed significantly
to the better understanding of the pathobiology of CAVD but have many limitations, such
as different environmental cues compared to natural tissues causing radical alterations in
cell morphology and function [25,26]. Artificially created 3D systems provide symmetric
adhesions and confinement more similar to the native ECM environment but usually con-
sisting of a hydrogel matrix, which is unsuitable for studying the degenerative process
over a longer period [15,27]. The co-culturing techniques also have some disadvantages,
because maintenance of the quality and stability of the population of co-cultured species
is a tedious task [28]. However, recently described novel 3D models with human VICs,
which are suitable to investigate VIC phenotype changes as a result of both communication
with valvular endothelial cells and exposure to pathological stimuli, provide promising
tools to better understand the valve cell biology and pathological mechanisms underlying
CAVD [29,30].

Nevertheless, animal studies are currently the only option to examine potential medi-
cal treatments to prevent the progression of CAVD over a longer period, but so far, there is
no appropriate in vitro model available [23,31,32]. Hence, we developed a novel in vitro
CAVD model with realistic VIC–VEC interactions that is more closely able to mimic natural
conditions to study the cellular responses in degenerative processes of AVs, established
varying culture conditions, and compared our findings to 2D cell cultures.

2. Material and Methods
2.1. Preparation of AV Leaflets and Application of In Vitro CAVD Model

Tricuspid aortic roots were excised from the hearts of healthy 6–9-month-old Ovis aries
slaughtered in a local abattoir. Sheep were not killed specifically for the purpose of the
present study, and no experiments were performed on living animals before slaughtering.
Briefly, after removing the cardiac apex, the left heart was cut open alongside the lateral
wall of the left ventricle through the mitral valve basis and the left auricular appendage.
Afterward the aortic valve plane was opened by a straight cut along the commissure
between the left ventricle and the aorta, preserving the leaflet anatomy. The AV leaflets
were excised from the aortic root and washed multiple times in cold sterile phosphate-
buffered saline (PBS, supplemented with 100 U/mL penicillin–streptomycin (P/S; Thermo
Fisher Scientific, Waltham, MA, USA) and 1% amphotericin B (EurimPharm, Saaldorf-
Surheim, Germany)) until blood residues were completely removed. For application of the
CAVD model, AV leaflets were stretched with needles on silicon rubber rings with passive
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tension (Figure 1A). Care was taken that the AV leaflets were still slightly sagging and not
so taut. For further details, see Figures S1 and S2.

Figure 1. In vitro degeneration model of aortic valve leaflets. (A) Application of in vitro CAVD model: (1) Preparation of
AV leaflets. (2) Excised AV leaflets after washing in PBS. (3) Required materials (silicon rubber rings and needles). (4) AV
leaflet stretched on silicon rubber ring. (5) Cultivation of tensed AV leaflets. (B) Images of temporal progression of AV
leaflet degeneration. White areas indicate calcified domains. (C) Representative transmitted light images of AV leaflets
after 28 d cultivation and analysis of optical density (OD). Data (n = 8) are mean ± SEM. p-values are calculated by using
Student’s t-test with Dunn’s multiple comparison post hoc test.; ***: p < 0.001. Pd, (pro-degenerative) condition.

2.2. Isolation and Culture of Primary Ovine VICs

Valvular interstitial cells (VICs) were isolated as described previously [33]. Briefly,
excised leaflets were washed in cooled PBS, cut into small pieces, put into gelatine-coated
(0.5%) cell culture flasks and cultured with Dulbecco’s modified Eagle’s medium (DMEM)
containing 4.5 g/L glucose with GlutaMAX supplement (Invitrogen, Carlsbad, CA, USA)
including 10% fetal calf serum (FCS; Sigma-Aldrich, St. Louis, MO, USA), 100 U/mL
P/S, 1% non-essential amino acids (Sigma-Aldrich, St. Louis, MO, USA), and 1 µg/mL
amphotericin B at 37 ◦C and 5% CO2 to allow the VICs to emigrate. Cells were used
between passages 4 and 6.

2.3. In Vitro Degeneration

Valvular interstitial cells (VICs) and leaflets were cultured under pro-degenerative (pd)
conditions (DMEM, 10% FCS, 10 mM β-glycerophosphate disodium salt hydrate (β-GP,
Sigma-Aldrich, St. Louis, MO, USA), and 1.5 mM calcium chloride (CaCl2; Sigma-Aldrich,
St. Louis, MO, USA)) or pro-calcifying (pc) conditions (DMEM, 5% FCS, and 2 mM sodium
dihydrogen phosphate (Merck KGaA, Darmstadt, Germany)). For 2D VIC cultures, cells
were seeded in 6- or 48-well plates and treated upon confluence for 7 days with medium
change every 2–3 days. For immunohistochemical staining of cultured cells, VICs were
seeded on gelatine-coated glass cover slips (10 mm in diameter; Glaswarenfabrik, Karl
Hecht KG, Sondheim, Germany) placed in 6-well plates and cultured for 7 days using the
aforementioned treatments. Leaflet cultures were placed in 6-well plates in 10 mL culture
medium, and the cultivation period was expanded to 56 days with medium change once
a week.
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2.4. Optical Density Measurement

After cultivating the AV tissues according to different conditions and time durations,
the leaflets were photo documented using a camera (PowerShot SX20 IS, Canon, Tokyo,
JPN), a light pad (Slimlite LED, KAISER, Buchen, Germany), a self-made photo box,
and a measuring stick (METRIC INCHES Devon®, Covidien, Dublin, Ireland). Optical-
density measurements were accomplished using the image analysis software Image J 1.52a
(National Institutes of Health (NIH)). After calibration of the scale, the leaflet outlines were
encircled using polygon selections. Mean and median of the measurements inside the
leaflets, and their area, were determined. The mean of the measurements points out the
tissue intensity and comparing it to the measurements of the background yields the optical
density of each leaflet.

2.5. Alizarin Red S Calcium Staining of 2D VIC Cultures

The degeneration level of VIC cultures was determined as described previously.
Briefly, VIC monolayers were rinsed with PBS, fixed with neutral-buffered 4% formalin,
and stained with alizarin red S (pH 4.2; Roth, Karlsruhe, Germany) solution. Observations
and photographic records were made using an inverse microscope system (DM IL Type
LED; Leica, Wetzlar, Germany) equipped with a digital camera (DFC425C) using LAS
software version 3.8 (Leica DM IL Type LED, Wetzlar, Germany). For quantification,
alizarin red S was extracted with 100 mM cetylpyridinium chloride monohydrate (CPC,
Sigma-Aldrich, St. Louis, MO, USA). After 3 h of extraction (shaking, RT), absorbance
was measured at 540 nm using a Tecan infinite M1000 pro microplate Reader (Tecan,
Männerdorf, Switzerland).

2.6. Determination of Lactate Dehydrogenase, Alkaline Phosphatase, and Phosphate Levels
in Supernatants

The levels of lactate dehydrogenase (LDH) in supernatants were measured by using
the LDH Cytotoxicity Assay Kit according to manufacturer instructions (Thermo Fisher
Scientific, Waltham, MA, USA). The assay relies on conversion of lactate to pyruvate via
NAD+ reduction to NADH by LDH. Diaphorase then uses NADH to reduce a tetrazolium
salt (INT) to a red formazan product that can be measured at 490 nm. The level of for-
mazan formation is directly proportional to the amount of LDH released into the medium,
which is indicative of cytotoxicity. Absorbance at 490 and 680 nm was measured using a
Tecan infinite M1000 pro microplate Reader (Tecan, Männerdorf, Switzerland). Alkaline
phosphatase (ALP) content was measured using the ALP colorimetric assay kit, according
to manufacturer’s instructions (BioVision, Milpitas, CA, USA). The kit uses p-nitrophenyl
phosphate (pNPP) as a phosphatase substrate, which turns yellow (405 nm) when dephos-
phorylated by ALP. Phosphate content was measured using the phosphate colorimetric
assay kit, according to manufacturer’s instructions (BioVision, CA, USA). The assay utilizes
a formulation of malachite green and ammonium molybdate, which forms a chromogenic
complex with phosphate ions. The absorption of the latter complex was measured at
650 nm.

2.7. RNA Isolation and Semiquantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA from VIC cultures was isolated with a RNeasy mini kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. AV leaflets were frozen in liquid
nitrogen, crushed using a mortar and pestle, and lysed in TRIZOL (Thermo Fisher Scientific,
Waltham, MA, USA) before purifying with a RNeasy mini kit. RNA was reverse transcribed
using a commercial kit (Quantitect Reverse Transcription Kit, Qiagen, Hilden, Germany)
and Biometra T3000 Thermocycler (Göttingen, Germany). Quantitative RT-PCR was
performed using Promega SYBR Green PCR kit (Promega, Madison, WI, USA) on a real-
time cycler (Applied Biosystems StepOnePlus; Thermo Fisher Scientific, Waltham, MA,
USA). PCR protocol was as follows: starting with an initial step for 2 min at 50 ◦C, followed
by 2 min at 95 ◦C. In all, 40 cycles were performed for 15 s at 95 ◦C and 30 s at 60 ◦C followed
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by single steps for 15 s at 95 ◦C, 1 min at 60 ◦C, and 15 s at 95 ◦C (primer sequences are
shown in Table 1). The expression of the RPL-29A gene was used as a reference gene to
normalize the results using the comparative 2-∆∆Ct method.

Table 1. Primer sequences.

Gene Forward Sequences (5′–3′) Reverse Sequences (5′–3′)

RPL-29A CCAAGTCCAAGAACCACACC TATCGTTGTGATCGGGGTTT

ACTA2 TAGAACACGGCATCATCACC TGAGAAGGGTTGGATGCTCT

COL1A1 AAGACATCCCACCAGTCACC TAAGTTCGTCGCAGATCACG

COL3A1 GACATAGAGGCTTTGATGGACGA CACTTCCTCGAGCTCCATCG

COL5A1 CGAGAACCCGGATGAGAACC GGCCTCCGATCCCTTCATAGA

VIM GACCTGGAGCGTAAAGTGGA CTCTTGAATCTGGGCCTGAA

TGF-β GAGCCAGAGGCGGACTACTA TCGGACGTGTTGAAGAACAT

OPN GATGGCCGAGGTGATAGTGT TCGTCTTCTTAGGTGCGTCA

OPG GCGTGTGTGAATGTGAGGAG CGAGAAGAACCCATCTGGAC

2.8. SDS-PAGE and Western Blot Analysis

Analysis of smooth muscle alpha actin (α-SMA) and vimentin (VIM) was carried out
for VIC cultures and AV leaflets. Cells were lysed directly on the plate with RIPA buffer
(Sigma-Aldrich, St. Louis, MO, USA) containing PhosSTOP (Sigma-Aldrich, St. Louis,
MO, USA) and Complete Mini protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO,
USA) on ice, homogenized by pipetting up and down, and centrifuged at 14,000 rpm for
20 min at 4 ◦C. AV leaflet tissues were frozen in liquid nitrogen, crushed using a mortar
and pestle, and lysed with RIPA buffer. Protein homogenates were separated on a 10%
reducing SDS-polyacrylamide gel (Thermo Fisher Scientific, Waltham, MA, USA) using
the Laemmli method and then transferred to nitrocellulose membranes (Bio-Rad, Berkeley,
CA, USA). Detection of protein signals was performed with primary antibodies against
vimentin (VIM),1:1000, cat. no.: GP53, Progen, Heidelberg, Germany) and alpha smooth
muscle actin (α-SMA,1:1000, cat. no.: ab5694, Abcam, Cambridge, UK). For normalization,
detection of housekeeper protein signals was performed on the respective nitrocellulose
membranes with primary antibody against glyceraldehyde 3-phosphate dehydrogenase
(GAPDH, 1:2000, cat. no.: C52118, Cell Signaling, Danvers, MA, USA). For detection
of primary antibody signals, the following HRP-conjugated secondary antibodies were
used: goat anti rabbit IgG (1:10000, cat. no.: 111-035-003, Dianova, Hamburg, Germany),
goat-anti mouse IgG + IgM (1:10,000, cat. no.: 115-035-044, Jackson ImmunoResearch, West
Grove, PA, USA), and goat anti guinea pig IgG (1:10,000, cat. no.: 106-035-003, Dianova).
Molecular weight was determined using PageRuler Prestained Protein Ladder (cat. no.:
26616; Thermo Fisher Scientific, Waltham, MA, USA). Protein bands were visualized using
Western Bright™ Quantum Western Blotting Detection System (Advansta, Menlo Park, CA,
USA) following standard protocols. The membrane was digitalized using an Amersham
Imager 600 (GE Healthcare, Freiburg, Germany) and analyzed for densitometry with
ImageJ software 1.52a (National Institutes of Health, Bethesda, MD, USA).

2.9. Histological Staining

AV leaflets were washed in PBS, embedded in KP-CryoCompound (VWR Chemicals,
Radnor, PA, USA), and cryopreserved with liquid nitrogen. Cryosections of 8 µm thick-
nesses were prepared (Leica CM1950 microtome, Wetzlar, Germany) and analyzed after
staining with hematoxylin–eosin (HE), von Kossa, alizarin red S, and modified Movat’s
pentachrome. For HE staining, sections were rinsed in distilled water and then incubated
in hematoxylin solution (Thermo Fisher Scientific, Waltham, MA, USA), followed by differ-
entiation in 5% acid alcohol. After washing under tap water, the sections were dehydrated
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through 70%, 80%, 95%, and 100% alcohol, and then stained with 2% w/v eosin b solution
(Sigma Aldrich, Steinheim, Germany). For von Kossa staining, the sections were hydrated,
incubated in 5% w/v silver nitrate solution (VWR Chemicals, Radnor, PA, USA), washed in
5% w/v sodium carbonate (Sigma Aldrich, Steinheim, Germany), and counterstained with
nuclear fast red (Roth, Karlsruhe, Germany). For alizarin red S staining (Roth, Karlsruhe,
Germany), sections were rinsed in distilled water and then stained with 2% w/v alizarin red
S solution (pH 4.3), followed by dehydration though acetone, acetone–xylene (1:1), and xy-
lene. For Movat’s pentachrome staining, the sections were hydrated and fixed in formalin,
following Bouin’s solution (picric acid, acetic acid, and formaldehyde), and then sodium
thiosulfate. After rinsing with distilled water, the sections were stained with Alcian blue,
washed under tap water and stabilized with alkaline alcohol (3% ammonium hydroxide
in ethanol). After intense washing under tap water, sections were stained with Verhoeff’s
working solution (5% alcoholic hematoxylin, 10% ferric chloride, and Weigert’s iodine
solution (potassium iodine and iodine)). After rinsing with distilled water, sections were
stained with brilliant crocein acid fuchsin solution, washed with distilled water, stained
with phosphotungstic acid solution (5%), washed with acetic acid (1%), and dehydrated
in ethanol after another wash step. After staining in alcoholic saffron solution, sections
were washed with distilled water, dehydrated with alcohol, and degreased with xylene.
For AP staining, the sections were stained with nitrotetrazolium blue chloride (NBT)/5-
brom-4-chlor-3-indoxylphosphat (BCIP) substrate solution (Thermo Fisher Scientific, MA,
USA) for 30 min at 37 ◦C and then washed with distilled water. The stained sections were
then sealed with Roti™ HistoKitt (Roth, Karlsruhe, Germany) and imaged under a Leica
DM2000 microscope equipped with a digital camera (Leica DFC 425C, Wetzlar, Germany).
Pictures of the alizarin red S- and AP-stained sections were quantified by digital image
analyses with ImageJ software 1.52a. Clinical samples of calcified aortic valve tissue served
as the positive control.

2.10. Immunohistochemistry

Sections and pre-washed cells on cover slips were fixed with formalin (4%) for 10 min
and then incubated for 10 min in 0.25% Triton-X-100 in PBS, followed by three washing
steps in PBS. After blocking with 5% BSA for 60 min, primary antibodies against von
Willebrand factor (cat. no.: A0082, Dako, Agilent, CA, USA), VIM (cat. no.: GP53, Progen,
Heidelberg, Germany), and α-SMA (cat. no.: ab5694, Abcam, Cambridge, UK) were
incubated over night at 4 ◦C, followed by three washing steps with PBS. Then, sections
or cells were incubated with secondary fluorescent antibodies (Alexa488 and Alexa546;
Dianova, Hamburg, Germany) for 60 min and 4′,6-diamidino-2-phenylindole (DAPI; cat.
no.: 6335, Carl Roth, Karlsruhe, Germany) for 10 min and were washed three times with PBS.
After rinsing in distilled water, sections or cover slips were mounted on microscope slides.
Immunofluorescent micrographs were taken using a DM2000 microscope, a DFC425C
camera, and LAS software version 3.8 (Leica, Wetzlar, Germany).

2.11. Statistical Analysis

Statistical analysis was performed with Prism 6 software (GraphPad, San Diego, CA,
USA) using Student’s t-test or nonparametric Kruskal–Wallis test with Dunn’s multiple
comparison post hoc test. All data are reported as mean ± standard deviation (SD) or
standard error of the mean (SEM). Significance levels were expressed as p < 0.05 (*),
p < 0.01 (**), p < 0.001 (***).

3. Results
3.1. Degeneration of AV Leaflets Progresses over Time

Photo-optical images of AV leaflets point to a temporal progression of degeneration
under pd (pro-degenerative) conditions (Figure 1B). After 14 d of cultivation, the first
calcified domains were visible, but the shape of the AV leaflets was only slightly impaired
at the commissures. With increasing culture duration under pd conditions, both the
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calcified domains continued to increase, and the shape of the AV leaflets was clearly altered,
particularly at the commissures compared to control conditions. In experiments aiming
at long-term cultivation, a number of cultures had to be terminated due to contamination
and were replaced. There was no evident increase in contamination rate associated with
a certain treatment modality. Further, after a 56 d cultivation period, the formation of
calcium nodules was clearly visible, and the AV leaflets exhibited a heightened stiffness.
The significantly increased OD after 28 d of cultivation under pd conditions compared to
control conditions confirmed the strong degeneration of AV leaflets in our CAVD model
(p < 0.001, Figure 1C). Alizarin red S staining displayed that degeneration begins in the
outer layers, primarily in the ventricularis layer of the AV leaflet, before spreading into
the spongiosa layer (Figure 2A). After 28 d of cultivation, distinct calcium accumulation
could be detected in both the ventricularis and the fibrosa layer (Figure 2B). Ultimately,
after 56 d of cultivation, massive calcium accumulation could be substantiated in all
three layers of the AV leaflets (Figure 2C). Additional von Kossa staining confirmed our
findings (Figure S3). However, if the AV leaflets were not stretched on silicon rubbers, they
convolved during cultivation, leading to a more progressive and stronger degeneration
and loss of the layer-dependent progression (Figure S4).

Figure 2. Temporal progression of AV leaflet degeneration. Alizarin red S staining of AV leaflets under pro-degenerative
(pd) conditions (β-GP + CaCl2) after 14 d (A), 28 d (B), and 56 d (C) compared to control conditions. Red indicates sites of
biomineralization. Scale bar indicates 100 µm. Representative images of five different experiments are shown.

3.2. Progressing Degeneration Leads to ECM Disruption

Movat’s pentachrome stain was used to examine alterations of the ECM architec-
ture. After 14 d of cultivation under control conditions, the AV leaflets showed a defined
trilaminar ECM architecture and uniform thickness (Figure 3A). Under pd conditions,
the AV leaflets were distinctly thickened, particularly based on extensive condensation
of the spongiosa layer. After 28 d, the thickening of the fibrosa layer under control con-
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ditions is based on a qualitatively increased VIC density due to high proliferation rates
(Figures 3B and S5). Under pd conditions, a distinct structural disorganization could be
detected in the layered ECM structure. The amount of proteoglycans (blue) was increased
in the spongiosa layer and the collagen- (yellow) rich fibrosa layer was clearly disrupted.
After 56 d of cultivation, the trilaminar organization of AV leaflets was still discernible
(Figure 3C). The AV leaflets were unevenly thickened, and the ECM structure was clearly
disrupted under pd conditions. One of the most notable changes in the ECM was the
enrichment of proteoglycans throughout in all layers. Additional von Kossa and H&E
staining substantiated our findings (Figure S6).

Figure 3. Temporal progression of ECM remodeling of AV leaflets. Movat’s pentachrome staining of AV leaflets under
pro-degenerative (pd) conditions (β-GP + CaCl2) after 14 d (A), 28 d (B), and 56 d (C) compared to control conditions. Scale
bar indicates 100 µm. Representative images of five different experiments are shown.

3.3. The Endothelial Cell Layer of AV Leaflets Is Disrupted under PD Conditions

Under pd conditions, lactate dehydrogenase (LDH) levels were not higher as com-
pared to control conditions up to a 28 d cultivation period (Figure S7). However, under
control conditions, immunohistological staining of von Willebrand factor (vWF) after a
28 d cultivation period displayed a continuous layer of attached endothelial cells, while
in contrast, cultivation under pd conditions clearly led to a disruption and ablation of the
endothelial cell layer of the AV leaflets (Figures 4A and S8).
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Figure 4. Analysis of endothelial layer and expression of VIM and α-SMA. (A) Immunohistological images with antibodies
against von Willebrand factor (vWF) of AV leaflets under pro-degenerative (pd, β-GP + CaCl2) and control conditions after
a 28 d cultivation period. Representative images of four different experiments are shown. Scale bar indicates 400 or 100 µm.
Western blot images of 2D VIC cultures after 7 d (B) and AV leaflets after 28 d (C) for vimentin (VIM), smooth muscle
alpha actin (α-SMA) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) under pd and control conditions. Density
analysis for quantification of α-SMA (D) and VIM (E) in 2D VIC cultures and AV leaflets. Data (n = 4) are mean ± SEM.
p-values are calculated by using Kruskal–Wallis test with Dunn’s multiple comparison post hoc test. *: p < 0.05. Data were
normalized to GAPDH and expressed relative to control conditions. (F) Immunohistological images with antibodies against
VIM (green) and α-SMA (red) of 2D VIC cultures and AV leaflets under pd and control conditions. Representative images
of four different experiments are shown. DAPI, 4′,6-diamidino-2-phenylindole; VIC, Valvular interstitial cells.

3.4. Protein Expression

Based on our histological findings, we selected a 28 d cultivation period for protein
analysis of AV leaflet cultures and compared our finding with VIC cultures (7 d). The
expression of alpha smooth muscle actin (α-SMA) was increased under pd conditions both
in VIC cultures and in AV leaflets compared to control conditions (p < 0.05 Figure 4B–D).
In contrast, the expression of vimentin (VIM) increased significantly under pd conditions
in VIC cultures (p < 0.05) and decreased in AV leaflet cultures (p < 0.05) compared to that in
the respective control conditions (Figure 4E). Immunohistochemical staining confirmed the
findings of Western blot analyses (Figure 4F).

3.5. Gene Expression Is Altered in AV Leaflets Compared to VIC Cultures under PD Conditions

In AV leaflets, the RNA yield was at the same level after 14 and 28 d cultivation
periods under control and pd conditions (Figure 5A). Unfortunately, due to far advanced
degeneration, the RNA yield of AV leaflets cultured under pd conditions was very low
after the 56 d cultivation period. Therefore, gene expression analysis was implemented
with 14 and 28 d cultures and compared to VIC cultures. Analysis of the RNA integrity
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number (RIN) in AV leaflets after the 28 d cultivation period showed good quality of
the isolated RNA both under control conditions (8.30) and under pd conditions (9.20,
Figure 5B). We found that gene expression of alpha-1 type I collagen (Col1A1), alpha-1 type
III collagen (Col3A1), and alpha-1 type V collagen (Col151) was significantly upregulated
in AV leaflets under pd conditions after 28 d compared to control cultures (Col1A1: 18.1
fold, p < 0.001; Col3A1: 5.79 fold, p < 0.05; Col5A1: 4.22 fold, p < 0.01; Figure 5C). In VIC
cultures, expression of Col3A1 was downregulated (0.62 fold, p < 0.05) under pd conditions,
while Col1A1 and Col5A1 showed no significant changes. Moreover, the expression of
collagens was not increased after the 14 d cultivation period (Figure S9). Expression of
transforming growth factor beta 1 (TGF-β), alpha smooth muscle actin (ACTA2), and
osteoprotergerin (OPG) was significantly upregulated both in VICs cultures (TGF-β: 2.32
fold, p < 0.01; ACTA-2: 2.08 fold, p < 0.01; OPG: 6.92 fold, p < 0.01) and AV leaflets (TGF-β:
1.92 fold, p < 0.05; ACTA-2: 5.33 fold, p < 0.01; OPG: 4.19 fold, p < 0.05) under pd conditions
compared to the respective control cultures. In contrast, vimentin (VIM) and osteopontin
(OPN) were significantly upregulated under pd conditions in AV leaflets (VIM: 1.92 fold,
p < 0.05; OPN: 4.22 fold, p < 0.01).

Figure 5. Gene expression analysis. (A) Comparative RNA yields of 2D VIC cultures (7 d) and AV leaflets after 14, 28, and
56 d cultivation under pro-degenerative (pd) conditions (β-GP + CaCl2, dark column) compared to control conditions
(white column). (B) Representative RNA integrity numbers (RINs) of AV leaflets after 28 d cultivation. (C) Analysis of gene
expression of 2D VIC cultures (gray column, 7 d) and AV leaflets (dark column, 28 d) under pd conditions for alpha-1 type I
collagen (Col1A1), alpha-1 type III collagen (Col3A1), alpha-1 type V collagen (Col5A1), transforming growth factor beta 1
(TGF-β1), vimentin (VIM), alpha smooth muscle actin (ACTA2), osteopontin (OPN), and osteoprotergerin (OPG) compared
to control conditions (white column). Data (n = 6–8) are mean ± SEM. p-values are calculated by using Kruskal–Wallis test
with Dunn’s multiple comparison post hoc test. *: p < 0.05; **: p < 0.01; ***: p < 0.001. FU, fluorescence units.
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3.6. Inorganic-Phosphate-Induced, AP-Independent Degeneration

Because degeneration of VICs is often induced by treatment with inorganic phosphate,
we cultured AV leaflets under pro-calcifying (pc) conditions and compared the findings
with our established pd conditions. The degeneration of VIC cultures was distinctly
accelerated under pc conditions compared to pd conditions as demonstrated by alizarin
red S staining (p < 0.01, Figures 6A and S10). In AV leaflets, both conditions increased
the calcified areas (p < 0.05, Figure 6B) and calcium accumulation (Figure 6C). Further, a
distinct structural disorganization could be detected in the layered ECM structure under
both conditions (Figure 6D). Additional von Kossa and H&E staining substantiated our
histological findings (Figure S11). Expression of AP was remarkably decreased under pc
conditions both in AV tissue (Figure 6E) and in supernatants of VIC (p < 0.001) an AV
leaflet cultures (p < 0.01) at all points compared to control conditions (Figure 6F). Further,
phosphate content in supernatants was significantly higher under pd and pc conditions
compared to that in control conditions both in VIC cultures (pd and pc, p < 0.001) and AV
leaflets (pd, p < 0.001; pc, p < 0.05) during the entire cultivation period (Figure 6G).

Figure 6. Comparison of pro-degenerative and pro-calcifying conditions. (A) Alizarin red S staining and quantification of
2D VIC cultures (n = 16) after 7 d under pro-degenerative (pd, β-GP + CaCl2; blue line) and pro-calcifying (pc, NaH2PO4,
red line) conditions compared to control conditions. (B) Images and transmitted light images of AV leaflets after 28 d
cultivation under pd and pc conditions and analysis of optical density (OD). Data (n = 6) are mean ± SEM. Alizarin red S
(C), Movat’s pentachrome (D), and AP staining (E, purple areas) of AV leaflets under pd, pc, and control conditions after
28 d cultivation. Scale bar indicates 100 µm. Representative images of five different experiments are shown. Analysis of AP
(F) and phosphate (G) in supernatants of 2D VIC cultures (d2–d7) and AV leaflet cultures (d3–d27) under pd (blue line)
and pc (red line) conditions compared to control conditions (gray line). Data (n = 5) are mean ± SEM. p-values (*: pd vs.
control, #: pc vs. control) are calculated by using Kruskal–Wallis test with Dunn’s multiple comparison post hoc test. * and
#: p < 0.05; ** and ##: p < 0.01; *** and ###: p < 0.001.
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4. Discussion

Even though our understanding of cellular and molecular mechanisms in the pro-
gression of CAVD has increased enormously in the last years, the lack of reproducible
tissue models mimicking natural conditions and accurately replicating pathological mech-
anisms has proven to be challenging for researchers in this field [23,24,31,34,35]. The
maladaptations of the highly organized valvular ECM, which is constantly remodeled,
either enzymatically or non-enzymatically are not simply a consequence of impaired valve
cells but rather contribute to the progression of CAVD by altering various fundamental bio-
logical processes [11,36–39]. In this study, we utilized AV tissue culture as a novel in vitro
CAVD model, deployed different pro-degenerative conditions, and conducted a compar-
ative analysis of simplistic 2D VIC cultures. The degeneration of AV leaflets progressed
over time, commencing with the first visible calcified domains after 14 d and winding up
in the distinct formation of calcium nodules, heightened stiffness, and clear disruption of
the ECM after 56 d. Both the expression of pro-degenerative genes and the myofibroblas-
tic differentiation of VICs were altered in AV leaflets compared to those in VIC cultures.
The applied in vitro tissue culture model of AV leaflets provides a valuable tool to study
complex pathological processes of CAVD and can be used to identify potential therapeutic
targets. Moreover, by varying culture conditions (osteogenic or phosphate-mediated), the
examination of different aspects of CAVD becomes feasible.

In general, 2D cell culture systems are indispensable tools and of great value to study
pathological mechanisms in CAVD [14,40]. Unfortunately, they do have some appertaining
flaws. Because most 2D cell cultures models are adhesion dependent, the cells are cultured
on flat, coated polystyrene plastic dishes and exhibit a different structural and functional
behavior compared to natural environments [26,41,42]. The unpredictability of 2D cultures,
due to the lack of cell–cell and cell–extracellular environment interactions, which are re-
sponsible for cell differentiation, proliferation, vitality, expression of genes and proteins,
responsiveness to stimuli, drug metabolism, and other cellular functions, increases the cost
and failure rate of new drug discovery and clinical trials [26,42]. Another drawback of
2D monolayer culture is that cells have unlimited access to medium ingredients such as
oxygen, nutrients, metabolites, or signal molecules and issues caused by the growth media
and expansion of cells can result in toxic waste products, dead cells, nutrition depletion,
and damage of the environment the cells are in [26,42]. Despite these disadvantages, 2D cell
cultures are still used for the majority of cell cultures, because they are less expensive than
some other systems, well established, and typically easier to analyze. Further, there is a lot
of literature, to which current results and outcome measures can be compared [26,41,42].
Artificially created 3D environments of VICs are more physiologically relevant and predic-
tive than 2D cultures and exhibit a higher degree of structural complexity and homeostasis
but are time consuming, labor intensive, and expensive [27,33,41,42]. Furthermore, 3D
cultures created from specific tissues (e.g., basement membrane extracts) can contain unde-
sirable components such as viruses or growth factors. It also must be mentioned that the
microscopical analysis of 3D cultures is accompanied by technical challenges, while 2D
cultures can be analyzed by almost any kind of imaging [27,33,41,42].

Our in vitro AV leaflet tissue culture model is easily applicable, reproducible, and
cost effective and could be a major alternative to animal testing. The complex pathological
processes underlying CAVD can be examined in a natural environment with a native
valvular ECM and realistic VIC–VEC interactions. Our model can be used to identify
potential drug targets for slowing disease progression or even reversing and curing it and
may accelerate the discovery and validation of a drug-based therapy for CAVD.

CAVD is an actively regulated, slowly progressive disease with a long asymptomatic
latent period usually of 10–20 years [1,2,6]. In 2D VIC cultures, the degeneration progresses
fairly quickly, with an obvious calcium accumulation already after 7 d, while in tissue
culture, the degeneration of AV leaflets is distinctly slower. Calcified domains are initially
visible after 14 d and progress slowly over time up to 56 d. So far, no in vitro CAVD
model has proven suitable for long cultivation periods. Three-dimensional environments
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usually consist of a hydrogel matrix. In the degeneration process, cellular signals promote
qVICs to become activated (aVICs), which results in an increased secretion of matrix
metalloproteinase (MMP) and leads to an enhanced degradation of the ECM. Consequently,
3D cell cultures of VICs on a hydrogel basis dissolve with progressing degeneration, and
this makes them unsuitable for prospective long-term studies. With our tissue culture
model, the cultivation period of AV leaflets for 4 to 8 weeks is unproblematic, future-
oriented, and could also be expanded up to 3 months or even longer.

It was recently demonstrated that media culture conditions impact the calcification
potential of primary human aortic VICs [43]. In this study, we applied two different
culture conditions. Pro-degenerative media induces AP-dependent degeneration due
to the organic phosphate source being β-GP [43–46]. Under pc conditions, containing
inorganic phosphate, calcification is induced independent of AP activity by high phosphate
availability [43,47–49]. While in 2D VIC cultures, the degeneration is distinctly accelerated
under pc conditions compared to that in pd conditions, in AV tissue culture, the calcium
accumulation is increased similarly. However, it is still obscure whether different culture
conditions model divergent pathologies of CAVD. While supplementation with β-GP is
generally used to induce calcification by promoting osteogenic differentiation, the elevated
phosphate uptake is presumably the mediator of VIC degeneration in pc media [43,44,47].
Application of various culture conditions enables the examination of different pathological
mechanisms underlying CAVD and could lead to a better understanding of the molecular
processes that lead to VIC degeneration and AS.

CAVD is also characterized by alterations of the valvular ECM architecture, which
exerts an important role in mediating pro-degenerative events [11,12,36]. The changes in
ECM that occur in the organization and composition during the progression of CAVD
deteriorate the mechanical properties of the valve and ultimately result in stiffened stenotic
leaflets that obstruct flow and compromise cardiac function [6,11,12,36,39]. In our AV tissue
culture model, progressing degeneration results in clear disruption and distinct structural
disorganization of the ECM. While calcium accumulation begins in the outer layers of the
AV leaflets, mainly in the ventricularis layer before spreading into the spongiosa layer, the
thickening of the leaflets is primarily based on extensive condensation of the spongiosa
layer. Despite massive calcium accumulation in all three layers after 56 d, the trilaminar
organization of the AV leaflets was still discernible. In contrast to usually applied 3D cell
culture systems, with our AV tissue culture model, it is possible to study ECM alterations
during the progression of CAVD and to conduct layer-specific analyses.

Studies have shown dramatic morphological and biochemical differences between
cells grown on 2D plastic substrates and in a 3D environment [25,26,41,42,50]. Compar-
ing 2D VIC cultures and AV tissue culture, our data support the influence of the ECM
on myofibroblastic differentiation and gene expression. The differentiation of VICs into
myofibroblast-like (aVICs) phenotypes plays a crucial role in maintaining valve homeosta-
sis and integrity and is considered a key mechanism in the progression of CAVD [14,15]. In
our study, α-SMA was consistently upregulated in VIC cultures and AV tissue cultures,
while VIM increased in VIC cultures but decreased in tissue culture. In AV tissue, VICs
are embedded in a realistic ECM, consequently the secretion of ECM components was not
increased as in VICs cultures. Further, higher expression of collagens and OPN was only
detectable in AV tissue cultures. The variations potentially caused by the composition and
stiffness of the valvular ECM underline its role in the progression of CAVD. In addition
to the profound impact on VIC phenotypes, the valvular ECM also triggers expression of
essential ECM components for further remodeling processes.

Endothelium damage is an early feature of CAVD and favors the accumulation of cal-
cium and lipids, the infiltration of inflammatory cells, and the expression of pro-calcifying
factors in the progression of CAVD [2,51,52]. In our model, the endothelial cell layer of
AV leaflets was clearly impaired and disrupted under pd conditions compared to control
conditions. Consequently, AV tissue culture enables researchers both to examine the role
of the endothelial layer in the pathogenesis of CAVD and to explore potential approaches
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to prevent endothelial dysfunction. However, for further studies of endothelial function
in our CAVD model, advanced investigations regarding the viability of VECs under both
control and pd conditions are necessary.

Further, our model provides realistic VIC–VEC interactions. In general, 2D cell cultures
are usually monocultures and allow the study of only one cell type. Indeed, co-culturing
systems enable the analysis of interactions between cell populations but commonly lack
a natural ECM [28,53]. However, VIC–VEC interactions play an important role in the
pathogenesis of CAVD [14,15,22,54]. For instance, the potential of VECs undergoing
endothelial-to-mesenchymal transition (EndMT) is a potential trigger and contributor to
CAVD [22,55,56]. VECs can acquire a mesenchymal phenotype wherein the expression
of endothelial markers and endothelial functional capacity is lost, but the expression of
mesenchymal cell markers, such as α-SMA is upregulated [20,57]. In the aortic valve,
EndMT can be induced by altered ECM but also inhibited by cross-talk interactions with
VICs [22,56]. Further, dysregulation of protective nitric oxide (NO) signaling as well as the
recruitment of immune cells by VECs may also be prevented by crosstalk with VICs [18,19].

However, the applied AV tissue culture model also has some limitations. One lim-
itation is that the AV leaflets are cultured under passive tension. Hemodynamic forces
(such as hypertension, elevated stretch, or shear stresses) experienced by the valve leaflets
can cause tissue remodeling and inflammation, which may lead to calcification, stenosis,
and ultimate valve failure. Another one is the missing direct contact with blood cells and
factors of the circulatory system, which may also be a major contributor to altered VEC
plasticity. Prospective, future improvements should focus on the application of dynamic
shear stress and realistic mechanical forces as well as the adjustment of culture conditions
to include cells and factors of the bloodstream.

5. Conclusions

In this study, we have established an easily applicable, reproducible, and cost-effective
in vitro AV tissue culture model to study the pathological mechanisms underlying CAVD.
The valvular ECM and realistic VIC–VEC interactions mimic natural conditions more
closely than VIC cultures or artificially created 3D environments. Application of various
culture conditions enables the examination of different pathological mechanisms underly-
ing CAVD and could lead to a better understanding of the molecular mechanisms that lead
to VIC degeneration and AS. Our model provides a valuable tool to study the complex
pathobiology of CAVD and can be used to identify potential therapeutic targets for slowing
disease progression.
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remodeling of AV leaflets. Figure S7: Analysis of LDH secretion. Figure S8: Analysis of endothelial
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degeneration.
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