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Abstract

Exposures to a hypomagnetic field can affect biological processes. Recently, it has been

observed that hypomagnetic field exposure can adversely affect adult hippocampal neuro-

genesis and hippocampus-dependent cognition in mice. In the same study, the role of reac-

tive oxygen species (ROS) in hypomagnetic field effects has been demonstrated. However,

the mechanistic reasons behind this effect are not clear. This study proposes a radical pair

mechanism based on a flavin-superoxide radical pair to explain the modulation of ROS pro-

duction and the attenuation of adult hippocampal neurogenesis in a hypomagnetic field. The

results of our calculations favor a singlet-born radical pair over a triplet-born radical pair. Our

model predicts hypomagnetic field effects on the triplet/singlet yield of comparable strength

as the effects observed in experimental studies on adult hippocampal neurogenesis. Our

predictions are in qualitative agreement with experimental results on superoxide concentra-

tion and other observed ROS effects. We also predict the effects of applied magnetic fields

and oxygen isotopic substitution on adult hippocampal neurogenesis.

Author summary

Exposure to magnetic fields influences many neurobiological processes. The formation of

new neurons (neurogenesis) in the hippocampal region of the adult brain plays a crucial

role in learning and memory. It can be adversely affected by shielding the earth’s magnetic

field, and this effect is intimately related to ROS concentration. In this study, we have

developed a quantum mechanical model to explain this magnetic field dependence of

adult hippocampal neurogenesis. Our model is also consistent with the observed ROS

effects.
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Introduction

Despite its great successes, many essential questions are still unanswered in neuroscience [1],

including the underlying principles of memory and learning, the workings of general anesthe-

sia, computational properties of the brain and, most fundamentally, the generation of subjec-

tive experience [2]. Therefore, it is crucial to explore whether the brain also uses quantum

resources apart from the known classical ones. In recent decades, researchers have tried to

understand some of the enigmatic biological processes such as animal magnetoreception, pho-

tosynthetic energy capture, olfaction, and consciousness using inherently quantum concepts

such as superposition and entanglement [3–8]. These results encourage the view that some

quantum processes may be going on in the brain and may help answer some of the previously

unanswered questions in neuroscience.

Exposure to magnetic fields influences many neurobiological processes in various animals,

from insects to human beings, for example, repetitive transcranial magnetic stimulation at

low-intensity (LI-rTMS) induces axon outgrowth and synaptogenesis in mice [9], drosophila’s

circadian clock can be perturbed by magnetic fields [10], and extremely low-frequency mag-

netic fields have been shown to induce human neuronal differentiation through N-methyl-D-

aspartate (NMDA) receptor activation [11]. Apart from all these magnetic field effects, several

isotopic effects have also been observed in the brain, such as in the anesthetic effects of Xenon

[12] and the behavioral effects of Lithium [13]. As shown in Refs [14, 15], these isotopic effects

may be interpreted as being due to the magnetic field of the nuclear spin.

Researchers have also shown that the cellular production of ROS is magnetically sensitive

[16–19]. ROS are biologically very vital chemical species. Studies have shown the importance

of ROS in cellular signaling [20]. ROS play an essential role in various cellular activities such as

cell proliferation, differentiation, migration, survival, and autophagy [21]. Oxidative stress,

which is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a

disruption of redox signaling and control and/or molecular damage [22], has been implicated

in several psychological disorders [23]. Studies have also shown that ROS play a role in neuro-

genesis and neuronal differentiation [24, 25].

Adult hippocampal neurogenesis plays a crucial role in learning and memory and is sensi-

tive to various external stimuli. Recently, Zhang et al. [25] have shown that mice exposed to a

hypomagnetic field (HMF) by shielding the geomagnetic field (GMF, present-day intensity

value 25 − 65 μT) show decreased neurogenesis in the hippocampal region, which results in

impaired cognition. An HMF is a static field with an intensity lower than 5 μT. An organism

can be exposed to HMF during long-term deep-space flights and in artificial environments on

earth, such as magnetically shielded rooms.

Zhang et al. [25] show that long-term exposure to HMF impaired neurogenesis through

decreasing adult neuronal stem cell proliferation, altering cell lineages in critical development

stages of neurogenesis, impeding dendritic development of newborn neurons in the adult hip-

pocampus, and resulting in impaired cognition. Using transcriptome analysis in combination

with endogenous ROS in situ labeling via hydroethidine, they revealed reduced levels of ROS

in HMF-exposed mice. Zhang et al. [25] have also shown that pharmacological inhibition of

ROS removal via diethyldithiocarbamate (DDC) rescues defective adult hippocampal neuro-

genesis in HMF-exposed mice and that the inhibition of ROS production via apocynin (APO)

blocks the rescue effect of a return to GMF on defective adult hippocampal neurogenesis in

HMF exposed mice. Based on these observations, they concluded that reduced levels of ROS

are responsible for HMF effects on adult hippocampal neurogenesis on a mechanistic level.

In recent years, the radical pair mechanism [26–28] (RPM) has been proposed as a quan-

tum mechanical explanation to several magnetically sensitive biological phenomena [14, 15,
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17, 29–31]. The canonical example of such an explanation is that of magnetoreception in

migratory birds [29]. This model relies on the coherent spin dynamics of pairs of radicals

involving the cryptochrome (CRY) protein [32]. Later, similar mechanisms were proposed for

other migratory animals [33]. It is natural to ask whether a similar explanation could also be

given to some of the magnetically sensitive phenomena happening in the brain. Recently,

RPM-based mechanisms, not all involving CRY, have been proposed to explain the isotope

effects on Xenon-induced anesthesia [14] and Lithium effects on hyperactivity [15], as well as

the magnetic field effects on Drosophila’s circadian clock [30] and microtubule reorganization

[31].

In the RPM, a pair of radicals (molecules that contain unpaired electrons) are created

simultaneously, such that the spins on the two electrons, one on each radical, evolve coherently

[34–36]. Radical pairs (RPs) are usually created in either singlet or triplet states. Nuclear spins

in the neighborhood of radicals and an external magnetic field interact with the RP via hyper-

fine (HF) interactions and the Zeeman interaction, respectively. Due to HF interactions, nei-

ther singlet nor triplet states are, in general, eigenstates of the spin Hamiltonian. Therefore, the

RP is initially in a non-stationary superposition which evolves coherently and causes singlet-

triplet interconversion at frequencies determined by the HF and Zeeman interactions. There-

fore, altering the external magnetic field or substituting an isotope with a different spin can

change the extent and timing of the singlet-triplet interconversion, resulting in altered yields

of products formed spin-selectively from the singlet and triplet states [34–38].

The conclusion of Ref [25] that HMF effects manifest via a change in ROS concentration

implies that ROS production is magnetically sensitive. Researchers have already observed

oscillating magnetic field effects on ROS production. Usselman et al. [16, 17] have observed

that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide

(O2
•−) and hydrogen peroxide (H2O2) ROS products in human umbilical cells.

ROS’s two primary cellular sources are the mitochondrial electron transport chain, and an

enzyme family termed NADPH oxidase (Nox) [21, 39, 40]. Flavin-containing enzymes are

known to play a role in mitochondrial ROS production [41]. Mitochondria-based ROS pro-

duction could involve magnetically sensitive flavin and superoxide-based RP. Nox enzymes

are present in several subcellular locations, including mitochondria in various cell types,

including in the hippocampus [21]. The catalytic core of Nox enzymes is composed of six α-

helical transmembrane domains. The sixth transmembrane domain is linked to an intracellu-

lar FAD-binding domain via a segment, and the FAD-binding domain is linked to an NADPH

binding domain at the C-terminus. Nox enzymes transport electrons from NADPH, through

FAD, across the plasma membrane to molecular oxygen (O2) to generate superoxide [21]. This

electron transfer as well as the magnetic field dependence of ROS production naturally sug-

gests an underlying flavin and superoxide-based RPM for ROS production and hence also as a

basis of HMF effects on adult hippocampal neurogenesis.

CRY can be an alternative source of magnetically sensitive flavin and superoxide-based RP.

The role of CRYs in many brain processes is well established [9, 42]. As mentioned earlier, the

RPM model for avian magnetoreception relies on the coherent spin dynamics of pairs of radi-

cals involving CRY protein, which contains the flavin adenine dinucleotide (FAD) [29, 32].

The canonical RP thought to be produced from CRY is in the form of flavosemiquinone radi-

cal (FAD•−) and terminal tryptophan radical (TrpH•+) [29, 43, 44]. However, considerable evi-

dence suggests an alternative RP with the superoxide radical, O2
•− as a partner for the flavin

radical, with FADH• and O2
•− acting as the donor and the acceptor, respectively [45–47].

Usselman et al. [17] have already proposed a flavin and superoxide-based RPM to explain

the effects of oscillating magnetic fields at Zeeman resonance on ROS production. Nox

enzyme, mitochondria, and CRY can all be the sources of this flavin-superoxide RP. Similar
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RP has also been in the RPM-based explanation for isotopic dependence of behavioral effects

of Lithium [15] and the magnetic field effects on the circadian clock [30]. In these studies both

singlet-born [15, 30] and triplet-born [17, 45–47] RPs have been considered.

Zhang et al. [25] suggest that the RPM cannot provide a viable explanation for their obser-

vations, but here we show that the RPM could be the underlying mechanism behind the HMF

effects on adult hippocampal neurogenesis. We have proposed a RPM model based on flavin-

superoxide RP to explain the modulation of ROS production and the resulting attenuation of

adult hippocampal neurogenesis in the hypomagnetic field. The theoretical predictions of our

model are compared with the experimental results of Zhang et al. [25], and we obtained effects

of comparable size. In this study, we have considered both singlet-born and triplet-born RP

and our calculations show that singlet-born RP is in agreement with the experimental results,

whereas triplet-born RP is in disagreement with the experiments. While our model is simple,

our work introduces the radical pair mechanism as a potential explanation for the observed

hypomagnetic field effects in neurogenesis.

Results

Hypomagnetic field effects on adult hippocampal neurogenesis and radical

pair mechanism

Quantifying HMF effects on adult hippocampal neurogenesis. Zhang et al. [25], have

produced qualitative and quantitative results to show the adverse effects of HMF on adult hip-

pocampal neurogenesis. They have found that long-term exposure to HMF impaired neuro-

genesis through decreasing adult neural stem cells (aNSCs) proliferation, altering cell lineages

in critical development stages of neurogenesis, and impeding dendritic development of new-

born neurons in the adult hippocampus. In this study, we will use the reduction in aNSCs pro-

liferation as the quantitative measure of the HMF effects on adult hippocampal neurogenesis.

Zhang et al. [25], tested the effect of exposure to HMF on aNSC proliferation in the dentate

gyrus (DG) of adult mice. The mice were injected with bromodeoxyuridine (BrdU) and sacri-

ficed 2 hr later to examine aNSC proliferation during exposure to GMF or HMF.

Compared with GMF groups, there was a decrease in the numbers of BrdU+ labeled prolif-

erating cells in the DG of HMF-exposed mice at 2 weeks of HMF exposure and beyond. For

mice exposed to HMF (0.29 ± 0.01 μT [25]) for 8 weeks, the average number of BrdU+ cells

was 1363.51, with a standard deviation of 131.34. Whereas, for the control (mice exposed to

GMF, 55.26 ± 0.05 μT [25]), the average number of BrdU+ cells after the same time was found

to be 1826.20, with a standard deviation of 174.55. A decrease of 25.37% is observed due to 8

weeks of exposure to HMF (See Table 1).

The ratio of numbers of BrdU+ cells at GMF to that of HMF (1.34 ± 0.18) will serve as a

measure of the strength of HMF effects. We will compare HMF effects predicted by our model

against this experimental measure. Zhang et al. [25] also observed that HMF exposure causes a

decrease in superoxide concentration, and we will look for qualitative agreement between our

model and this result. Zhang et al. [25] have also shown that pharmacological inhibition of

ROS removal rescues defective adult hippocampal neurogenesis in HMF-exposed mice and

Table 1. The numbers of BrdU+ cells in mice after a 8 week exposure to HMF and GMF.

Average number of BrdU+ cells (8 week) Stdev.

GMF 1826.20 174.55

HMF 1363.51 131.34

Ratio 1.34 0.18

https://doi.org/10.1371/journal.pcbi.1010198.t001
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that the inhibition of ROS production blocks the rescue effect of a return to GMF on defective

adult hippocampal neurogenesis in HMF exposed mice. We will also look for agreement

between our model and these observed effects of inhibition of ROS production and removal.

As our theoretical model will predict the fractional superoxide yield and Zhang et al. [25]

have quantified the superoxide levels by hydroethidine fluorescence measurements, the quan-

titative comparison of superoxide’s theoretical and experimental values seems a natural check

to our model. However, the large spread and non-normal distribution of data make the super-

oxide measurement unsuitable for such quantitative analysis. Therefore, we have only

demanded a qualitative agreement between the theory and experiment as far as superoxide is

concerned, i.e., the concentration of superoxide should decrease due to HMF exposure.

A small change at the level of ROS production does not necessarily mean a small change at

the level of neurogenesis. Sies et al. [48] have mentioned that signaling by oxidants can be

amplified by triggering kinase cascades. It might be possible that amplification happens rather

than a linear progression of effects [48, 49], but unfortunately, the extent of such amplification

is not known. Our quantitative comparison of triplet yield ratio with that of BRDU+ cell after

eight weeks of HMF exposure might be more conservative than required, and much more

minor alterations at ROS level could result in the observed HMF effects.

RPM model. We here propose an RP system of FADH• and O2
•− to reproduce the HMF

effects on adult hippocampal neurogenesis based on changes in the singlet-triplet yields at

HMF as compared to GMF. The correlated spins of RP are taken to be in the [FADH•. . .O2
•−]

form. The singlet-product is H2O2 and the triplet-product is O2
•− [17] (See Fig 1). It is impor-

tant to note that in our simple scheme, following ref [17], we are ignoring any O2
•− to H2O2

conversion.

We consider a simple spin Hamiltonian for our RP by only including Zeeman and HF

interactions [29, 50]. Given the possible randomized orientation of the molecules involved, we

only consider the isotropic Fermi contact contributions for the HF interactions. In our calcula-

tions, we assume that the unpaired electron on FADH• couples only with the H5 nucleus (See

Fig 2), which has the most prominent isotropic HF coupling constant (HFCC) among all the

nuclei in FADH• [47]. The other unpaired electron, on O2
•− (containing two 16O nuclei), has

no HF interactions. The Hamiltonian for our RP system reads as follows:

Ĥ ¼ oŜAz
þ a1ŜA:Î1 þ oŜBz

; ð1Þ

where ŜA and ŜB are the spin operators of radical electron A and B, respectively, Î1 is the

nuclear spin operator of the H5 of FADH•, a1 is the HFCC between the H5 of FADH• and the

Fig 1. Schematic of radical pair mechanism for [FADH•. . .O2
•−] radical pair.

https://doi.org/10.1371/journal.pcbi.1010198.g001
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radical electron A (a = −802.9 μT [47]), and ω is the Larmor precession frequency of the elec-

trons due to the Zeeman effect.

For simplicity, both the triplet and singlet reaction rates are identical and equal to k. The

coherence lifetime of RP is taken to be 1/r.
As mentioned earlier [FADH•. . .O2

•−] RP can be taken to start in either singlet [15, 30] or

triplet states [17, 45–47]. In this study, we have considered both singlet and triplet-born RPs.

Singlet-born radical pair. Let us first consider the initial state of the RP to be a singlet:

1

M
P̂S ¼ jSihSj �

1

M
IM; ð2Þ

where P̂S is the singlet projection operator, M is the total number of nuclear spin configura-

tions, |Si represents the singlet state of two electrons in RP, and ÎM is a M-dimensional identity

matrix representing the completely mixed initial state of the nuclei.

The fractional triplet yield produced by the RPM can be obtained by tracking the spin state

of the RP throughout the reaction [38, 51]. The ultimate fractional triplet yield for singlet-born

radical pair (FðSÞT ) for time periods much greater than the RP lifetime is:

FðSÞT ¼
3

4
þ

k
4ðkþ rÞ

�
1

M

X4M

m;n¼1

jhmjP̂Sjnij2kðkþ rÞ
ðkþ rÞ2 þ ðom � onÞ

2
; ð3Þ

where |mi and |ni are eigenstates of Ĥ (Eq 1) with corresponding eigenenergies of ωm and ωn,

respectively, k is the RP lifetime rate, and r is the RP spin-coherence lifetime rate.

The fractional singlet yield (FðSÞS ) can be calculated as:

FðSÞS ¼ 1 � FðSÞT : ð4Þ

We explore the effects of HMF on singlet (triplet) yield by calculating the singlet (triplet)

yield ratio at GMF to HMF. We have plotted the triplet yield ratio on the k and r plane in

Fig 3. A triplet yield ratio greater than 1 implies that the concentration of superoxide decreases

due to HMF exposure, which is in qualitative agreement with the experimental results. It also

implies that the concentration of H2O2 increases due to HMF exposure, which is something

not measured by Zhang et al. [25]. For the quantitative comparison of the strength of effects of

Fig 2. [FADH•. . .O2
•−] RP. H5 nucleus, which has the largest magnitude for isotropic HFCC among all the nuclei in

FADH• is highlighted in green.

https://doi.org/10.1371/journal.pcbi.1010198.g002
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HMF exposure between the experimental measurements and our RPM model, the triplet and

singlet yield ratios can be compared with the ratio of the numbers of BrdU+ cells after an 8

week exposure to GMF and HMF. The region between solid black lines in Fig 3 is in agreement

with the experimental range of this measure, 1.34 ± 0.18.

As seen in Fig 3, for values of r and k that are consistent with what is typically considered in

the context of the RPM, the experimental effects of HMF agree with theoretical predictions.

In a RPM the triplet (singlet) yield ratio can be altered by applying external magnetic fields.

The dependence of the triplet yield of the RPM on external magnetic field for a singlet-born

radical pair is shown in Fig 4.

Triplet-born radical pair. For comparison, we now consider the initial state of the RP to

be a triplet:

1

3M
P̂T ¼

1

3
fjT0ihT0j þ jTþ1ihTþ1j þ jT� 1ihT� 1jg �

1

M
IM; ð5Þ

where P̂T is the triplet projection operator, |T0i and |T±1i represent the triplet states of two

electrons in RP with mS = 0 and mS = ±1 respectively. ÎM represents the completely mixed ini-

tial state of the nuclei.

The ultimate relative triplet yield for triplet-born radical pair (FðTÞT ) for time periods much

greater than the RP lifetime is:

FðTÞT ¼
3

4
�

k
12ðkþ rÞ

þ
1

3M

X4M

m;n¼1

jhmjP̂Sjnij2kðkþ rÞ
ðkþ rÞ2 þ ðom � onÞ

2
; ð6Þ

where the symbols have the above-stated meanings.

Fig 3. Triplet yield ratio (GMF to HMF) for singlet-born RP in the k − r plane. The region between the solid black

lines (1.16 and 1.52) is in agreement with the experimental range for the ratio of the numbers of BrdU+ cells after an 8

week exposure to GMF and HMF(1.34 ± 0.18) [25]. The value of HFCC a1 is taken to be a1 = −802.9 μT [47].

https://doi.org/10.1371/journal.pcbi.1010198.g003
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As for the singlet-born case, we explore the effects of HMF on singlet (triplet) yield by cal-

culating the singlet (triplet) yield ratio at GMF to HMF. We have plotted the triplet yield ratio

on the k and r plane in Fig 5. A triplet yield ratio less than 1 implies that the concentration of

H2O2 decreases due to HMF exposure, which, as mentioned above, is not measured by Zhang

et al. [25]. It also implies that the concentration of superoxide increases due to HMF exposure,

Fig 4. Magnetic field dependence of FðSÞT . The dependence of the triplet yield of the RPM for singlet-born radical pair

on external magnetic field B for a1 = −802.9 μT [47], reaction rate k = 2 × 106 s−1, and relaxation rate r = 2 × 105 s−1.

https://doi.org/10.1371/journal.pcbi.1010198.g004

Fig 5. Triplet yield ratio (GMF to HMF) for triplet-born RP in the k − r plane. The value of HFCC a1 is taken to be

a1 = −802.9 μT [47].

https://doi.org/10.1371/journal.pcbi.1010198.g005
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which disagrees with the experimental results. Therefore, a triplet-born RP is ruled out as an

explanation for HMF effects on adult hippocampal neurogenesis.

In summary, our calculations show that for a singlet-born [FADH•. . .O2
•−] RP, a decline is

observed in the O2
•− production upon HMF exposure and HMF effect of similar strength

(defined earlier) as observed by Zhang et al. [25] can be achieved for typical values of k and r.
Isotopic effects of Oxygen. Isotope effects can be an indication of the RPM [14, 15]. Nat-

urally occurring oxygen is almost exclusively found in the form of the 16O isotope, which has a

zero spin. If one of the oxygen atoms in superoxide radical is replaced with 17O, which has a

spin, I2 = 5/2, an additional HF term must be added to the RP Hamiltonian. The new Hamilto-

nian for our RP system reads as follows:

Ĥ ¼ oŜAz
þ a1ŜA:Î1 þ oŜBz

þ a2ŜB:Î2; ð7Þ

Î2 is the nuclear spin operator of the 17O, a2 is the HFCC between the 17O and the radical elec-

tron B. We used density functional theory (DFT) to estimate the value of a2 to be 1886.8 μT
(see the methods section). The fractional triplet and singlet yields for singlet-born RP can be

calculated using Eqs 3 and 4. Experiments involving the substitution of 16O with 17O are not

new to researchers. Several such experiments have been performed in different biological con-

texts [52–54]. Some of these experiments [52, 54] have been performed with up to 70% 17O

enrichment, making our assumption of one 17O HFI reasonable.

To understand the effects of this isotopic substitution, we plotted the triplet yield ratio

(GMF to HMF) for RP containing 17O on the k-r plane (See Fig 6). The comparison with Fig 3

reveals a significant difference: the strength of HMF effects is reduced on substituting 16O with
17O. A quantitative comparison for k = 2 × 106 s−1 and r = 2 × 105 s−1 is shown in Table 2.

Fig 6. Triplet yield ratio (GMF to HMF) for singlet-born RP containing 17O in the k − r plane. The values of

HFCCs are taken to be a1 = −802.9 μT [47] and a2 = 1886.8 μT.

https://doi.org/10.1371/journal.pcbi.1010198.g006
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Discussion

In this study, our principal goal was to answer whether the RPM could be the underlying

mechanism behind the HMF effects on adult hippocampal neurogenesis as observed by Zhang

et al. [25]. Our results point to a possibility of such a mechanism. A simple RPM-based model

with a set of typical parameters can reproduce the HMF effects of the same strength as those

reported in the experimental findings of Zhang et al. [25]. It is important to note that we have

not modeled the neurogenesis process itself in this study, and that this would be an interesting

direction to look at in future studies.

We proposed that the chemistry of [FADH•. . .O2
•−] RP may be responsible for the decrease

in the concentration of superoxide in hypomagnetic conditions, which in turn results in adverse

effects on adult hippocampal neurogenesis and related cognition. This RP and its role in ROS

production have been implicated in the paper by Usselman et al. [17]. A similar RP has been

proposed in the past for avian magnetoreception [45–47], the magnetic field effects on the circa-

dian clock [30], and isotopic dependence of behavioral effects of Lithium [15], where it is

believed that lithium treatment modulates the oxidative stress level. We find that singlet-born

RP qualitatively mimics the measurement of superoxide concentration by Zhang et al. [25].

Zhang et al. [25] did not measure H2O2 concentration, any future measurement of H2O2

and O2
•− under hypomagnetic conditions will be an essential check for our model.

Zhang et al. show that the detrimental effects of long-term HMF exposure on adult neuro-

genesis were reversed by a pharmacological intervention to inhibit SOD1. Chemically, the dis-

mutase activity of SOD1 accelerates the reaction of the superoxide anion with itself to form

hydrogen peroxide and oxygen [55]. Therefore, inhibition of SOD1 should increase the super-

oxide concentration in HMF exposed mice. This is in agreement with our assumption that the

adverse effects of HMF on adult hippocampal neurogenesis are due to a decrease in the con-

centration of superoxide. Similarly, Zhang et al. also showed that inhibiting Nox-mediated

ROS production when returning HMF-exposed mice back to GMF blocks the positive effect of

a return to GMF on adult neurogenesis. Inhibition of Nox-mediated ROS production leads to

a decrease in Superoxide production [21] and therefore again agrees with our conclusion that

adverse effects of HMF on adult hippocampal neurogenesis is due to a decrease in the concen-

tration of superoxide.

Results of our calculations favor singlet-born [FADH. . .O2
•−] RP rather than a triplet-born

[FADH. . .O2
•−] RP. Mostly in RPs involving O2

•− and FADH• the initial state of RP is taken to

be a triplet state. It is assumed that in the RP formation process, the oxygen molecule prior to

the electron transfer from flavin is in its triplet ground state, and consequently, the initial state

of the the RP formed would be a triplet state. However, it is possible that the initial state of the

oxygen molecule is the excited singlet state [56–60] (which is a biologically relevant ROS)

instead. Note that singlet oxygen is much less abundant than triplet oxygen, but significantly

more reactive. Moreover, the spin-orbit coupling could also transform the initial state of the

RP from triplet to singlet states via intersystem crossing [61].

It has been suggested in the past that due to fast molecular rotation free O2
•− has a spin

relaxation lifetime on the orders of 1 ns and hence a fast spin relaxation rate r [45, 62]. The

Table 2. Percentage change in fractional triplet yield as one goes from GMF to HMF for singlet-born RP for both
16O and 17O cases. a1 = −802.9 μT, a2 = 1886.8 μT, k = 2 × 106 s−1, and r = 2 × 105 s−1.

Oxygen isotope FT at GMF FT at HMF Percentage change
16O 0.596924 0.409039 31.4755
17O 0.689092 0.630028 8.5714

https://doi.org/10.1371/journal.pcbi.1010198.t002
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relaxation rate requirement calculated by our model yields r significantly lower than this

expected value. However, it has also been pointed out that this fast spin relaxation of free super-

oxide can be lowered if the molecular symmetry is reduced and the angular momentum is

quenched by the biological environment [45, 62]. Although, it should be noted that for this to

happen O2
•− must be tightly bound [62]. However, no direct evidence of such inhibition of

spin relaxation (for example, an electron paramagnetic resonance spectrum of O2
•−) has been

reported so far. It has also been proposed that fast spin relaxation of O2
•− can be reduced by the

involvement of scavenger species around O2
•− [63–65]. However, it should be noted that this

radical-scavenging mechanism is no longer a simple RPM as considered in the present paper.

In our model we have considered only one nuclear spin. It should be noted that additional

nuclear spins reduce the triplet yield ratio (see S1 Supporting information). This might be

thought to imply the need for lower relaxation rates. However, as stated earlier in the results

section, a small change at the level of ROS production does not necessarily mean a small

change at the level of neurogenesis [48, 49]. Sies et al. [48] have mentioned that signaling by

oxidants can be amplified by triggering kinase cascades. Much smaller alterations at ROS level

might result in the observed HMF effects. Therefore, such low relaxation rates of flavin radicals

may not be required.

No inter-radical interactions have been included in our model. Exchange and dipolar inter-

actions can significantly affect the response of a radical pair to an applied magnetic field. It is

generally expected that the radicals should be far apart for these interactions to be neglected.

In this regard, we would like to point out the work of Efimova and Hore [50], who have shown

that substantial changes in product yields can be expected even at such small separation as

2.0 ± 0.2 nm, where the effects of exchange and dipolar interactions partially cancel. In addi-

tion, it is important to note that electron transfer via an electron transfer chain is also a possi-

bility, which could eliminate the need for two radicals to be close enough to have significant

inter-radical interactions [21]. Furthermore, Babcock et al. [65] have suggested that radical

scavenging could resolve the challenge posed by electron-electron dipolar interactions.

There is a possibility that other explanations may underlie the HMF effects on adult hippo-

campal neurogenesis. However, as our study shows, the outright rejection of RPM as by Zhang

et al. [25] does not seem justified. While our model is admittedly simple, it suggests that the

RPM as a potential underlying mechanism for the HMF effects on neurogenesis should be

taken seriously.

Let us also note that this model could be adapted for other possible radical pairs involving

superoxide such as tryptophan–superoxide and tyrosine-superoxide pair [14, 31, 66–70].

There is also a possibility that these HMF effects might be due to some non-superoxide radical

pair such as tyrosine-tryptophan. Several studies have pointed out the intraprotein electron

transfer between tyrosine and tryptophan in DNA photolyase and cryptochrome [71–74]. This

electron transfer suggests the possibility of tyrosine-tryptophan radical pair formation. In such

a scenario, changes in ROS concentration might be due to a back-reaction, similar to the cryp-

tochrome case [62].

Our RPM-based model for HMF effects on adult hippocampal neurogenesis implies the

dependence of hippocampal neurogenesis on changes in the external magnetic field (See Fig

4). It would be interesting to conduct experiments to explore the impact of the static and oscil-

lating external magnetic field on hippocampal neurogenesis.

Let us note that Pooam et al. [18] reported that ROS production in HEK293 cells responds

much more strongly to HMF than higher intensity static magnetic fields such as 500 μT. As it

is evident from Fig 4, the behavior of our model is in agreement with this observation, and we

should expect effects of similar nature concerning magnetic field sensitivity of adult hippocam-

pal neurogenesis.
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As singlet-triplet yield in an RPM can also be altered by isotopic substitution, it would be

interesting to check our predictions regarding substitution of 16O with 17O in superoxide radi-

cal. We expect the strength of HMF effects to be reduced as a result of this substitution. Lith-

ium is also known to affect hippocampal neurogenesis [75], it would also be interesting to

observe any isotopic dependence for Li on hippocampal neurogenesis.

It will be interesting to see whether the RPM-based explanation could be given for other

known magnetic field effects in the brain, such as LI-rTMS, where it is known that magnetic

fields and CRY play a central role [9]. It will also be interesting to see whether a role is played

by the RPM in other contexts where ROS play a crucial role, such as mental disorders associ-

ated with oxidative stress [23]. Van Huizen et al. [19] have reported that static weak magnetic

fields altered stem cell proliferation and differentiation via changes in reactive oxygen species

(ROS) in planaria. It will also be an interesting case for future studies to examine whether radi-

cal pairs play any role here.

Our results suggest that the initial singlet state might be necessary for the mechanism of

HMF effects on adult hippocampal neurogenesis. It is interesting to note that while singlet

state is is entangled whereas.

Our results suggest that the initial singlet state might be necessary for the mechanism of

HMF effects on adult hippocampal neurogenesis. It is interesting to note that the singlet state

is entangled, while the triplet is not. While far from providing definitive proof, this means that

our results are consistent with the idea that entanglement could be a useful resource in biology

[8]. Note that the entanglement discussed here is short-range. It has been suggested that bio-

photons could serve as quantum messengers to establish long-distance connections [76, 77].

In this context, it should also be noted that superoxide radicals can give rise to singlet oxygen,

which is a potential source of biophotons [78].

Materials and methods

RPM calculations

The state of the RP was described using the spin density operator. As shown in the results sec-

tion (Eq 1), the spin hamiltonian involved only the Zeeman and the HF interactions. The

exchange interaction of the electron spins and the dipolar interaction of the two electron spins

were ignored [14, 15, 29, 50, 65].

The Method of Timmel et al. [38, 51] was followed to deal with the RP dynamics. The time

dependence of the spin density operator in the absence of spin relaxation and chemical reac-

tions was obtained from the von Neumann equation, and the chemical fate of the RP was mod-

eled by means of separate first-order spin-selective reactions of the singlet and triplet pairs.

Spin relaxation was introduced phenomenologically following Bagryansky et al. [35]. The deri-

vation of Eq 6 has been given below.

The computational calculations and plotting were performed on Mathematica [79, 80].

Derivation of Eq 6

The initial triplet-state is given by:

rTð0Þ ¼
1

3
fjT0ihT0j þ jTþ1ihTþ1j þ jT� 1ihT� 1jg �

1

M
IM ð8Þ

¼
1

3M
P̂T ð9Þ

¼
1

3M
ðI4M � P̂SÞ: ð10Þ
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Ignoring spin relaxation and chemical reaction, the time evolved density matrix is given by:

rTðtÞ ¼
1

3M
ðI4M � e� iHtP̂SeiHtÞ: ð11Þ

The singlet fraction at time t is:

p00SðtÞ ¼ Tr½P̂SrTðtÞ� ¼
1

3
�

1

3

X4M

m¼1

hmjP̂SrsðtÞjmi ð12Þ

¼
1

3
�

1

3

X4M

m;n¼1

hmjP̂SjnihnjrsðtÞjmi; ð13Þ

where rsðtÞ ¼ 1

M e� iHtP̂SeiHt. Calculating hn|ρs(t)|mi:

hnjrsðtÞjmi ¼
1

M
hnjP̂Sjmieiðom � onÞt: ð14Þ

Plugging Eq 14 into Eq 13, we get:

p0SðtÞ ¼
1

3
�

1

3M

X4M

m;n¼1

jhmjP̂Sjnij2cosðom � onÞt: ð15Þ

The triplet fraction at time t:

p0TðtÞ ¼ 1 �
1

3
þ

1

3M

X4M

m;n¼1

jhmjP̂Sjnij2cosðom � onÞt ð16Þ

¼
2

3
þ

1

3M

X4M

m;n¼1

jhmjP̂Sjnij2cosðom � onÞt: ð17Þ

Spin relaxation is introduced phenomenologically following [35]:

pTðtÞ ¼
3

4
þ p0TðtÞ �

3

4

� �

e� rt: ð18Þ

The triplet yield is (taking chemical reactions into account):

FðTÞT ¼ k
Z 1

0

pTðtÞe
� ktdt ð19Þ

¼
3

4
�

k
12ðkþ rÞ

þ
1

3M

X4M

m;n¼1

jhmjP̂Sjnij2kðkþ rÞ
ðkþ rÞ2 þ ðom � onÞ

2
ð20Þ

¼
3

4
�

k
12ðkþ rÞ

þ
1

3M

X4M

m;n¼1

jhmjI4M � P̂Tjnij2kðkþ rÞ
ðkþ rÞ2 þ ðom � onÞ

2
: ð21Þ

DFT calculations

We used the ORCA package [81] for the DFT calculation to obtain the HFCC of 17O in super-

oxide. The molecular structure was optimized using PBE0/def2-TZVP. Using RI-B2GP-PLYP/

def2-QZVPP [82], we obtained a17O ¼ 1886:8 mT. Relativistic effects were treated by a scalar

relativistic Hamiltonian using the zeroth-order regular approximation (ZORA) [83]. We
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considered the solvent effects using the conductor-like polarizable continuum model (CPCM)

[84], with a dielectric constant of 2.

Supporting information

S1 Supporting information. Effects of having additional nuclear spins on the triplet yield

ratio (GMF to HMF) for a singlet-born radical pair.

(PDF)
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