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Transient Receptor Potential Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels
are expressed in nociceptive primary sensory neurons, and play an integrative role
in pain processing and inflammatory functions. Lipid rafts are liquid-ordered plasma
membrane microdomains rich in cholesterol, sphingomyelin, and gangliosides. We
earlier proved that lipid raft disintegration by cholesterol depletion using a novel
carboxamido-steroid compound (C1) and methyl β-cyclodextrin (MCD) significantly and
concentration-dependently inhibit TRPV1 and TRPA1 activation in primary sensory
neurons and receptor-expressing cell lines. Here we investigated the effects of C1
compared to MCD in mouse pain models of different mechanisms. Both C1 and
MCD significantly decreased the number of the TRPV1 activation (capsaicin)-induced
nocifensive eye-wiping movements in the first hour by 45% and 32%, respectively,
and C1 also in the second hour by 26%. Furthermore, C1 significantly decreased
the TRPV1 stimulation (resiniferatoxin)-evoked mechanical hyperalgesia involving central
sensitization processes, while its inhibitory effect on thermal allodynia was not
statistically significant. In contrast, MCD did not affect these resiniferatoxin-evoked
nocifensive responses. Both C1 and MCD had inhibitory action on TRPA1 activation
(formalin)-induced acute nocifensive reactions (paw liftings, lickings, holdings, and
shakings) in the second, neurogenic inflammatory phase by 36% and 51%, respectively.
These are the first in vivo data showing that our novel lipid raft disruptor carboxamido-
steroid compound exerts antinociceptive and antihyperalgesic effects by inhibiting
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TRPV1 and TRPA1 ion channel activation similarly to MCD, but in 150-fold lower
concentrations. It is concluded that C1 is a useful experimental tool to investigate the
effects of cholesterol depletion in animal models, and it also might open novel analgesic
drug developmental perspectives.

Keywords: inflammation, lipid rafts, methyl β-cyclodextrin, nerve terminal, pain, sensory neuron, steroid,
Transient Receptor Potential channel

INTRODUCTION

Transient Receptor Potential (TRP) Vanilloid 1 and Ankyrin 1
(TRPV1 and TRPA1) cation channels are multisteric receptors
activated by a variety of inflammatory mediators and tissue
irritants, temperature changes and mechanical stimuli besides
the classical exogenous agonists such as capsaicin (CAPS),
resiniferatoxin (RTX) and formaldehyde, allyl-isothiocyanate (in
mustard oil), respectively (McKemy et al., 2002; Peier et al.,
2002; Reid and Flonta, 2002; Grimm et al., 2003, 2005; Lee
et al., 2003; Bandell et al., 2004; Corey et al., 2004; Jordt
et al., 2004; Macpherson et al., 2005, 2007; McNamara et al.,
2007; Trevisani et al., 2007; Wagner et al., 2008; Majeed et al.,
2010; Vilceanu and Stucky, 2010; Vriens et al., 2011, 2014;
Bautista et al., 2013; Drews et al., 2014; Oberwinkler and
Philipp, 2014). TRPV1 and TRPA1 are often co-localized on
the CAPS-sensitive peptidergic sensory neurons and play key
regulatory roles in pain and inflammation (Szolcsányi, 2004;
Salas et al., 2009). Pro-inflammatory neuropeptides such as
Substance P and calcitonin gene-related peptide released from the
activated CAPS-sensitive sensory nerve fibers evoke vasodilation,
plasma protein extravasation and inflammatory cells activation
in the innervated area called neurogenic inflammation, as
well as nociceptor sensitization (Helyes et al., 2003a, 2009;
Szolcsányi, 2004). Therefore, both TRPV1 and TRPA1 have
been in the focus of analgesic and anti-inflammatory drug
development, especially for the treatment of chronic neuropathic
pain and inflammatory diseases with neurogenic inflammatory
components (chronic obstructive pulmonary diseases, psoriasis,
arthritis, inflammatory bowel diseases) (Moran et al., 2011;
Kaneko and Szallasi, 2014; Nilius and Szallasi, 2014). The
presently available drugs do not provide satisfactory pain
relief in most cases or induce severe side effects after long-
term use (Botz et al., 2017). Great efforts have been put
into the development of TRPV1 antagonists which proved
to be very effective in both preclinical and phase II and
III clinical trials, but due to their hyperthermic side effects
they could not be registered in the clinical practice (Helyes
et al., 2003b; Lee et al., 2015). TRPA1 is also considered to

Abbreviations: C1, carboxamido-steroid compound; CAPS, capsaicin;
CRAC, Cholesterol Recognition/interaction Amino acid Consensus; DHEA,
dehydroepiandrosterone; DRG, dorsal root ganglion; E2, 17-β estradiol; MCD,
methyl β-cyclodextrin; PGE2, prostaglandin E2; PI(4,5)P2, phosphatidylinositol
4,5-bisphosphate; PS, pregnenolone sulfate; RAMEB, random methylated
β-cyclodextrins; RTX, resiniferatoxin; TrkA, tropomyosin-related kinase A; TRP,
Transient Receptor Potential; TRPA1, Transient Receptor Potential Ankyrin 1;
TRPC5, Transient Receptor Potential Canonical 5; TRPM3, Transient Receptor
Potential Melastatin 3; TRPM8, Transient Receptor Potential Melastatin 8;
TRPV1, Transient Receptor Potential Vanilloid 1.

be a promising analgesic target based on experimental and
human studies which seem to be free of severe side effects
(Romanovsky et al., 2009; Botz et al., 2017). These data clearly
suggest the drug developmental potential of TRPV1 and TRPA1
blockade, therefore alternative mechanisms in addition to the
direct antagonism have been proposed as promising inhibitors
options (Ferrari and Levine, 2015; Sághy et al., 2015, 2018;
Lin et al., 2019).

Recent results of extensive lipid raft research in the last
two decades have had a great impact on cell biology and
pharmacology. Lipid rafts are specialized microdomains in
the plasma membrane rich in cholesterol, sphingomyelins and
gangliosides (Simons and Ikonen, 1997). Several receptors, ion
channels and signaling molecules including TRPV1 and TRPA1
ion channels are located in lipid rafts and disruption of these
membrane regions affects their functions (Liu et al., 2006;
Morenilla-Palao et al., 2009; Szőke et al., 2010; Sághy et al.,
2015). However, data are controversial about the outcomes of
lipid raft modulation on TRP channels. Although several in vitro
data show that lipid raft decomposition inhibits TRP channel
opening, there are only two recent in vivo evidence. Methyl
β-cyclodextrin (MCD)-induced membrane cholesterol depletion
led to antinociception in the RTX-evoked mononeuropathy
model via phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)
hydrolysis (Lin et al., 2019) and significantly attenuated the
prostaglandin E2 (PGE2)-evoked mechanical hyperalgesia in rats
(Ferrari and Levine, 2015).

Several endogenous steroids have been described to inhibit
TRPV1. Dehydroepiandrosterone (DHEA) is able to decrease
CAPS-evoked currents in primary sensory neurons (Chen
et al., 2004). However, it is not clear if DHEA bind directly
to the CAPS-binding domain or it is an allosteric modulator
of TRPV1. The neurosteroid pregnenolone sulfate (PS) has a
variety of neuropharmacological actions including glycinergic
synaptic transmission in the pain pathway. PS, pregnanolone,
pregnanolone sulfate, progesterone or dihydrotestosterone
administration in extracellular way significantly inhibited TRP
Canonical 5 (TRPC5) channel activation within 1–2 min,
17β-estradiol (E2) and dehydroepiandrosterone sulfate had
weak inhibitory effects. TRPC5 channels are able to direct
stereo-selective steroid modulation quickly, and it is lead to
channel inhibition (Majeed et al., 2011). We published earlier
that our novel synthetic carboxamido-steroid compound (C1)
decreased activation of TRP channels located on primary
sensory neurons, such as TRPV1, TRPA1, TRP Melastatin
3 (TRPM3), and TRP Melastatin 8 (TRPM8). Furthermore,
we provided the first evidence and the presence and the
position of the carboxamido group was important for this
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action mediated by cholesterol depletion from the plasma
membrane. This effect was similar to that of MCD, but in a
much lower, 1000-fold concentration (Szánti-Pintér et al., 2015;
Sághy et al., 2018).

Based on these data obtained on primary sensory neuronal
cultures here we investigated the effects of C1 compound in
mouse pain models of different mechanisms related to TRPV1
and TRPA1 activation in comparison with MCD.

MATERIALS AND METHODS

Animals and Ethics
Twelve to sixteen week-old male C57BL/6 mice were used to
test CAPS-evoked nocifensive reactions, and NMRI mice of the
same age and sex in the formalin-, and RTX-induced models. The
animals were kept in standard plastic cages at 24–25◦C, under
a 12–12 h light-dark cycle and provided with standard rodent
chow and water ad libitum in the Laboratory Animal House
of the Department of Pharmacology and Pharmacotherapy,
University of Pécs. All experimental procedures were carried out
according to the 1998/XXVIII Act of the Hungarian Parliament
on Animal Protection and Consideration Decree of Scientific
Procedures of Animal Experiments (243/1988). The studies
were approved by the Ethics Committee on Animal Research
of Pécs University according to the Ethical Codex of Animal
Experiments and license was given (license No.: BAI/35/702-
6/2018.).

Synthesis of Steroid Compound C1
The steroid compound C1 was synthesized by a method,
which was described earlier in details (Horváth et al., 2011;
Szánti-Pintér et al., 2011, 2015). In brief, the 16-keto-18-nor-
13α-steroid was obtained via an unusual Wagner–Meerwein
rearrangement of 16α,17α-epoxy-5α-androstane in the presence
of an imidazolium-based ionic liquid (Horváth et al., 2011).
The derivatization of the unnatural steroid was performed
by Barton’s methodology leading to an iodoalkene mixture
(Szánti-Pintér et al., 2015). The iodoalkene mixture was
converted to N-(prop-2-ynyl)-carboxamides via a palladium-
catalyzed aminocarbonylation reaction and after a column
chromatography, C1 was obtained in pure form.

CAPS-Evoked Acute Chemonocifensive
Reaction
The effects of C1 and MCD compared to the saline control were
investigated on acute chemonociception, 30 µg/ml CAPS (20 µl)
was instilled in the right eye of the mice. Local pretreatments
(20 µl) with 100 µM C1 or 15 mM MCD were performed 30 min
before the test. CAPS-induced eye-wiping movements with the
forelegs were counted during 1 min, as previously described
(Szolcsányi et al., 1975; Szöke et al., 2002). We counted only
the one-leg movements, washing- or other two-hand movements
were excluded. CAPS instillation was repeated 2 and 3 h after its
first administration.

RTX-Induced Thermal Allodynia and
Mechanical Hyperalgesia
Resiniferatoxin (0.1 µg/ml, 20 µl, ultrapotent TRPV1 agonist)
was injected intraplantarly into right hindpaws. RTX induces
an acute neurogenic inflammation with rapid development of
thermal allodynia due to peripheral sensitization, and later
mechanical hyperalgesia due to both peripheral and central
mechanisms (Meyer and Campbell, 1981; Pan et al., 2003).
Control thermo- and mechanonociceptive thresholds were
measured on two consecutive days before the experiment,
which were used for self-control comparisons. Intraplantar
pretreatments (20 µl) with 100 µM or 500 µM C1 and 15 mM
MCD were performed 30 min before the RTX administration,
which evokes a short acute nocifensive reaction of paw licking,
biting, lifting or shaking. The thermonociceptive threshold
was measured by an increasing temperature Hot Plate (IITC
Life Science, Woodland Hills, CA, United States) 10, 20, and
30 min after RTX injection, and the mechanical hyperalgesia
was investigated by Dynamic Plantar Aesthesiometer (DPA, Ugo
Basile, Italy) 30, 60, and 90 min after RTX administration,
as described earlier (Almási et al., 2003; Payrits et al., 2017;
Kántás et al., 2019).

Formalin-Evoked Acute Nocifensive
Behavior
Intraplantarly injected formalin (20 µl, 2.5%) immediately
induced nocifensive reactions. The duration of hindpaw licking,
lifting, shaking and holding in an elevated position were
measured between 0 and 5 min (first phase). It is related to
direct chemical stimulation of nociceptors mainly via the TRPA1
receptor. After a resting period (ca. 10–15 min), the duration
of the nocifensive behaviors was measured between 20 and
45 min (second phase). This is due to neurogenic inflammatory
mechanisms (Tjølsen et al., 1992). Intraplantar pretreatments
(20 µl) with 100 µM C1 or 15 mM MCD were performed 30 min
before formalin administration.

Drugs and Chemicals
Methyl β-cyclodextrin (Sigma, St. Louis, MO, United States)
was dissolved in saline to reach final concentration of 15 mM
(500 mg/kg). C1 was dissolved in dimethyl sulfoxide to obtain
a 10 mM stock solution. Further dilution was made with saline
to reach final concentrations of 100 µM (850 µg/kg) or 500 µM
(4.25 mg/kg). CAPS from Sigma was diluted with saline from
a 10 mg/ml stock solution of 10% ethanol, 10% Tween 80 in
saline to reach final concentration of 30 µg/ml. RTX (Sigma) was
dissolved in ethanol to yield a 1 mg/ml stock solution, and further
diluted with saline to reach final concentration of 0.1 µg/ml.
Formalin was diluted with phosphate-buffered saline from a 6%
formaldehyde stock solution (Molar Inc., Hungary).

Statistical Analysis
All data are the means ± SEM of six animals per group in
the CAPS-evoked eye wiping test and formalin test, and 12–
20 animals per group in the RTX-induced thermal allodynia
and mechanical hyperalgesia model. Statistical analysis was

Frontiers in Physiology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 559109

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-559109 September 23, 2020 Time: 17:40 # 4

Horváth et al. Carboxamido-Steroid Exerts Antinociceptive Effect

performed by Two-way ANOVA followed by Bonferroni’s
multiple comparisons post hoc test, in all cases p < 0.05 was
considered statistically significant.

RESULTS

C1 and MCD Reduce the Number of
CAPS-Evoked Eye-Wiping Movements
The number of CAPS-evoked eye-wipings in the 1st, 2nd, and
3rd h in the saline-pretreated group were 42.0 ± 1.9; 33.7 ± 1.8;
28.0 ± 3.3, respectively. In contrast, the corresponding values in
the C1-pretreated group were: 23.0 ± 4.2; 23.0 ± 3.8; 23.7 ± 3.5
(Figure 1A). In case of MCD pretreatment, the number of CAPS-
evoked wiping in the saline-pretreated control animals were
32.2± 3.9; 27.2± 2.1 and 26.5± 2.2 after 1st, 2nd, and 3rd CAPS
instillation. MCD-pretreated animals showed less of eye-wipings
with the following results: 23.8 ± 2.7; 24.2 ± 3.3; 22.7 ± 2.7
(Figure 1B).

In both cases slightly decreasing response to CAPS was
observed due to CAPS-evoked desensitization of the TRPV1
receptor. C1 significantly and gradually decreased the number
of eye-wipings both in the 1st and 2nd h, while MCD exerted
significant effect only in the 1st h.

C1 and MCD Do Not Influence
RTX-Induced Thermal Allodynia
The baseline heat threshold values of untreated mice were
between 44◦C and 49◦C. RTX-induced 9.5–16.3 ± 2.3–3.1%;
9.1–9.6 ± 2.3–3.2% and 4.3–5.3 ± 1.4–1.6% (39.0–41.9 ± 1.1–
1.5◦C; 41.8–42.3 ± 0.8–1.4◦C; 43.9–44.5 ± 0.6–1.0◦C) drop of
the thermonociceptive threshold 10, 20, and 30 min after its
intraplantar injection in the saline-pretreated control groups.
The corresponding values were 11.6 ± 2.3% (40.7 ± 1.1◦C);
3.3± 1.6% (43.9± 0.9◦C); 3.8± 1.6% (47.0± 0.5◦C) for 100 µM
C1, 14.5 ± 1.8% (39.7 ± 0.9◦C); 6.6 ± 1.4 (43.3 ± 0.6◦C);
0.3 ± 1.7% (46.5 ± 0.6◦C) for 500 µM C1 and 8.3 ± 2.0%
(42.4 ± 1.0◦C); 7.8 ± 0.9% (42.6 ± 0.3◦C); 5.8 ± 2.1%
(43.5± 1.2◦C) for 15 mM MCD.

Neither C1 nor MCD altered the RTX-induced thermal
allodynia (Figures 2A,B).

C1 Diminishes RTX-Induced Mechanical
Hyperalgesia
The basal mechanonociceptive thresholds of the intact mouse
paw were between 8 and 10 g. RTX-evoked drop of the
mechanonociceptive threshold values were 43.9–44.5 ± 3.2–
6.2%; 37.3–37.9 ± 3.9–8.1% and 26.9–39.5 ± 3.0–4.2% (5.0–
5.4 ± 0.3–0.6 g; 5.6–6.0 ± 0.4–0.7 g; 5.5–7.0 ± 0.2–0.4 g)
30, 60, and 90 min after the injection in the saline pretreated
control groups. The corresponding values were 30.0 ± 5.2%
(6.5± 0.4 g); 20.1± 5.0% (7.4± 0.4 g); 10.4± 4.8% (8.3± 0.4 g)
for 100 µM C1, 19.0 ± 3.1% (7.8 ± 0.3 g); 16.6 ± 2.9%
(8.0 ± 0.3 g); 14.3 ± 3.0% (8.2 ± 0.8 g) for 500 µM C1 and
36.6± 6.4% (5.4± 0.5 g); 43.4± 3.4% (4.9± 0.3 g); 29.7± 6.4%
(6.0± 0.5 g) for 15 mM MCD.

Both 100 µM and 500 µM of C1 alleviated the RTX-induced
mechanical hyperalgesia, but MCD had no effect (Figures 3A,B).

C1 and MCD Alleviate Formalin-Evoked
Acute Nocifensive Behaviors
The durations of formalin-evoked acute nocifensive behaviors
in the saline-pretreated control group were 179.5 ± 16.0 s and
331.5 ± 45.0 s in the first and second phases, respectively. In
the C1 pretreated animals these values were 144.2 ± 18.5 s and
212.2 ± 31.5 s (Figure 4A). In case of MCD pretreatment, the
nocifensive behaviors durations in the saline control group were
173.9 ± 17.6 s and 330.5 ± 49.2 s in the two phases, respectively.
Compared to the MCD-pretreated group, the corresponding
values were 155.9± 5.1 s and 163.2± 31.3 s (Figure 4B).

Neither C1 nor MCD modified the nocifensive behaviors
in the first phase related to direct chemical activation of
TRPA1 receptors, but both compounds significantly decreased
the pain reactions in the second phase resulting from acute
neurogenic inflammation.

DISCUSSION

We present here the analgesic effect of lipid raft decomposition
depleting cholesterol by C1 and MCD (Szánti-Pintér
et al., 2015; Sághy et al., 2018). We demonstrated that
C1 and MCD diminished TRPV1 and TRPA1 activation-
induced acute nocifensive behaviors, furthermore, C1
inhibited the development of TRPV1 stimulation-evoked
mechanical hyperalgesia.

Both C1 and MCD significantly diminished the number
of CAPS instillation-induced eye-wiping movements in the
1st h by 45 and 32%, respectively, and C1 also in the
2nd h by 26%. We observed a slightly decreasing response
in the 2nd and 3rd h to CAPS due to desensitization
of TRPV1 receptor (Sharma et al., 2013). Furthermore, C1
significantly decreased RTX-induced mechanical hyperalgesia
involving central sensitization processes as well, while its
inhibitory effect on thermal allodynia induced predominantly
by peripheral sensitization mechanisms (Pan et al., 2003) was
not statistically significant. In contrast MCD did not affect
these RTX-induced nocifensive responses. Both compounds
had inhibitory action on formalin-evoked acute neurogenic
inflammatory nocifensive reactions (paw liftings, lickings,
holdings, and shakings) in the second, neurogenic inflammatory
phase by 36 and 51%, respectively.

These novel in vivo results are well supported by our previous
in vitro findings showing that C1 and MCD significantly and
concentration-dependently inhibit TRPV1 and TRPA1 receptor
activation both on primary sensory neuronal cultures and
receptor-expressing cell line (Szőke et al., 2010; Szánti-Pintér
et al., 2015; Sághy et al., 2015, 2018). We have previously
proved by filipin staining and fluorescence spectroscopy
that C1 similarly to MCD depleted cholesterol from the
plasma membrane of sensory neurons, and therefore, they
are both considered to be lipid raft disruptors (Sághy et al.,
2018). Furthermore, we described that the presence and the
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FIGURE 1 | Effect of 100 µM C1 (A) and 15 mM MCD (B) in the CAPS-evoked acute chemonociceptive reaction. Both compounds reduced the number of
eye-wipings. Data are means ± SEM of n = 6 animals/group. Two-way ANOVA with Bonferroni post hoc test was used for statistical analysis (*p < 0.05;
****p < 0.0001 C1/MCD pretreatment vs. saline pretreatment).

FIGURE 2 | Effect of 100 µM or 500 µM (A) and 15 mM MCD (B) on the RTX-induced thermal allodynia. Neither lower or higher concentration of C1, nor MCD did
not influence the thermonociceptive threshold changing. Red lines represent the saline pretreatment, brown or green lines the 100 µM or 500 µM C1 pretreatment
and blue line the 15 MCD pretreatment, respectively. Data are means ± SEM of n = 12–20 animals/group. Red hashes represent the significance in the
saline-pretreated group (values after RTX-injection compared to control). Two-way ANOVA with Bonferroni post hoc test was used for statistical analysis.

FIGURE 3 | Effect of 100 µM or 500 µM (A) and 15 mM MCD (B) on the RTX-induced mechanical hyperalgesia. Both 100 µM and 500 µM C1 alleviated, while
MCD did not altered the mechanonociceptive threshold changing. Red lines represent the saline pretreatment, brown or green lines the 100 µM or 500 µM C1
pretreatment and blue line the 15 MCD pretreatment, respectively. Data are means ± SEM of n = 12–20 animals/group. Red hashes represent the significance in the
saline-pretreated group (values after RTX-injection compared to control). Two-way ANOVA with Bonferroni post hoc test was used for statistical analysis (*p < 0.05;
**p < 0.01; ****p < 0.0001 C1 pretreatment vs. saline pretreatment).

position of the carboxamido group on the steroidal skeleton
are substantial for TRP channel inhibition. The importance
of stereoselectivity was emphasized for the inhibitory effects
of steroids on the TRPC5 cation channel. Progesterone and

pregnanolone diminished TRPC5 channel function, while
the stereo-isomer of pregnanolone, pregnenolone and a
progesterone metabolite allopregnanolone had no inhibitory
effects. It is suggested, that stereo-isomerism due to a minimal
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FIGURE 4 | Effect of 100 µM C1 (B) and 15 mM MCD (A) in the formalin-evoked acute nocifensive behaviors. Both C1 and MCD altered the second, neurogenic
inflammatory phase. Data are means ± SEM of n = 6 animals/group. Two-way ANOVA with Bonferroni post hoc test was used for statistical analysis (**p < 0.01;
****p < 0.0001 C1/MCD pretreatment vs. saline pretreatment).

structural change might be sufficient to alter the biological effect
(Majeed et al., 2011). CAPS-induced currents in sensory neurons
were decreased by DHEA, but the molecular mechanism is
unclear. Although the authors suggested its direct effects on
the CAPS-binding domain or an allosteric modulation its
action on the lipid rafts surrounding the TRPV1 is also possible
(Chen et al., 2004). In a previous study we demonstrated that
E2 incubation anticipated the TRPV1 desensitization via the
tropomyosin-related kinase A (TrkA) receptor. We provided
in vivo and in vitro evidence for E2-induced TRPV1 receptor
sensitization mediated by TrkA via E2-evoked genomic and
non-genomic mechanisms (Payrits et al., 2017). Cholesterol
depletion by MCD decreased the CAPS-evoked currents in
dorsal root ganglion (DRG) primary sensory neurons (Liu et al.,
2006). In contrast, MCD did not influence the heat-evoked
responses on TRPV1-transfected Xenopus laevis oocytes (Liu
et al., 2003) or 3H-RTX binding to TRPV1 receptors on rat
C6 glioma cells (Bari et al., 2005). Cholesterol enrichment in
isolated membrane segments can modulate the temperature
threshold for TRPV1 activation through specific Cholesterol
Recognition/interaction Amino acid Consensus (CRAC)
motifs (Morales-Lázaro and Rosenbaum, 2019). Increased
membrane cholesterol, but not its diastereoisomer epicholesterol
addition, inhibited CAPS-, heat- and voltage-induced TRPV1
currents (Picazo-Juárez et al., 2011). These results were also
supported by structural studies of CRACs (Levitan et al., 2014;
Saha et al., 2017).

Although there are several in vitro evidence that lipid raft
disruption affected TRP channel activation (Szőke et al., 2010;
Sághy et al., 2015), there are only sporadic, recent in vivo reports.
MCD-related cholesterol depletion induced antinociception in
RTX-induced mononeuropathy through PI(4,5)P2 hydrolysis
in mice (Lin et al., 2019). Intraplantar injection of MCD
attenuated the PGE2-, but not cyclopentyladenosine-evoked
mechanical hyperalgesia. It is suggest that the development
of PGE2-evoked hyperalgesia is closely related to lipid raft
integrity (Ferrari and Levine, 2015). Both local and systemic
administration of random methylated β-cyclodextrins (RAMEB)
attenuated complete Freund’s adjuvant-induced thermal
allodynia and mechanical hyperalgesia in rats. RAMEB might

capture the prostaglandin content and then decrease the
inflammatory pain which might be a novel anti-inflammatory
and analgesic tool (Sauer et al., 2017). Intraplantar injection
of another components of lipid rafts, the ganglioside GT1b,
produced nociceptive responses and enhanced formalin-induced
nocifensive reactions. On the other hand, intraplantar injection
of sialidase, which cleaves sialyl residues from gangliosides,
attenuated these responses (Watanabe et al., 2011; Sántha
et al., 2020). The flavanone isosakuranetin blocked PS-induced
Ca2+-influx in DRG neurons and significantly attenuated
the noxious heat- and PS-induced pain sensation in mice
(Straub et al., 2013).

The present in vivo data provide the first evidence that
the novel C1 compound modifying lipid rafts surrounding the
TRPV1 and TRPA1 ion channels exerts antinociceptive and
antihyperalgesic effects. The maximal inhibitory effect observed
in both TRPV1 and TRPA1 activation-induced nocifensive
tests were similar to that of MCD, but in 150-fold lower
concentrations. Furthermore, C1 proved to be effective also on
RTX-evoked mechanical hyperalgesia that was not affected by
MCD. However, despite the well-established lipid rafts disrupting
abilities of both C1 and MCD (Szőke et al., 2010; Sághy et al.,
2015, 2018), their direct inhibitory actions on the TRPV1 and
TRPA1 ion channel activation cannot be excluded.

We conclude that the novel C1 compound is a useful
experimental tool to investigate the effects of cholesterol
depletion in animal models, and it also might open novel
opportunities for analgesic drug development.
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Szőke, É, Börzsei, R., Tóth, D. M., Lengl, O., Helyes, Z., Sándor, Z., et al. (2010).
Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal
sensory neurons and transfected cell line. Eur. J. Pharmacol. 628, 67–74. doi:
10.1016/j.ejphar.2009.11.052

Szolcsányi, J. (2004). Forty years in capsaicin research for sensory pharmacology
and physiology. Neuropeptides 38, 377–384. doi: 10.1016/j.npep.2004.
07.005

Szolcsányi, J., Jancsó-Gábor, A., and Joó, F. (1975). Functional and fine
structural characteristics of the sensory neuron blocking effect of capsaicin.
Naunyn Schmiedebergs Arch. Pharmacol. 287, 157–169. doi: 10.1007/BF0051
0447

Tjølsen, A., Berge, O. G., Hunskaar, S., Rosland, J. H., and Hole, K. (1992). The
formalin test: an evaluation of the method. Pain 51, 5–17. doi: 10.1016/0304-
3959(92)90003-t

Trevisani, M., Siemens, J., Materazzi, S., Bautista, D. M., Nassini, R., Campi, B.,
et al. (2007). 4-Hydroxynonenal, an endogenous aldehyde, causes pain and
neurogenic inflammation through activation of the irritant receptor TRPA1.
Proc. Natl. Acad. Sci. U.S.A. 104, 13519–13524. doi: 10.1073/pnas.070592
3104

Vilceanu, D., and Stucky, C. L. (2010). TRPA1 mediates mechanical currents in
the plasma membrane of mouse sensory neurons. PLoS One 5:e12177. doi:
10.1371/journal.pone.0012177

Vriens, J., Held, K., Janssens, A., Tóth, B. I., Kerselaers, S., Nilius, B., et al. (2014).
Opening of an alternative ion permeation pathway in a nociceptor TRP channel.
Nat. Chem. Biol. 10, 188–195. doi: 10.1038/nchembio.1428

Frontiers in Physiology | www.frontiersin.org 8 September 2020 | Volume 11 | Article 559109

https://doi.org/10.1038/nature05544
https://doi.org/10.1038/nature05544
https://doi.org/10.1016/j.cub.2005.04.018
https://doi.org/10.1016/j.cub.2005.04.018
https://doi.org/10.1111/j.1476-5381.2010.00892.x
https://doi.org/10.1111/j.1476-5381.2010.01136.x
https://doi.org/10.1038/nature719
https://doi.org/10.1073/pnas.0705924104
https://doi.org/10.1126/science.7280675
https://doi.org/10.1007/978-3-030-14265-0_6
https://doi.org/10.1038/nrd3456
https://doi.org/10.1074/jbc.M807228200
https://doi.org/10.1124/pr.113.008268
https://doi.org/10.1007/978-3-642-54215-2_17
https://doi.org/10.1523/JNEUROSCI.23-07-02911.2003
https://doi.org/10.1523/JNEUROSCI.23-07-02911.2003
https://doi.org/10.1210/en.2017-00101
https://doi.org/10.1016/S0092-8674(02)00652-9
https://doi.org/10.1074/jbc.M111.237537
https://doi.org/10.1016/S0304-3940(02)00181-7
https://doi.org/10.1124/pr.109.001263
https://doi.org/10.1194/jlr.M084723
https://doi.org/10.1016/j.phrs.2015.07.028
https://doi.org/10.1016/j.phrs.2015.07.028
https://doi.org/10.1038/s41598-017-16780-w
https://doi.org/10.1111/j.1460-9568.2009.06702.x
https://doi.org/10.1111/j.1460-9568.2009.06702.x
https://doi.org/10.3390/ijms21031005
https://doi.org/10.3390/ijms21031005
https://doi.org/10.1213/ANE.0000000000001674
https://doi.org/10.1016/j.ejphar.2013.10.053
https://doi.org/10.1016/j.ejphar.2013.10.053
https://doi.org/10.1038/42408
https://doi.org/10.1124/mol.113.086843
https://doi.org/10.1124/mol.113.086843
https://doi.org/10.1016/j.steroids.2011.07.006
https://doi.org/10.1016/j.steroids.2011.07.006
https://doi.org/10.1016/j.steroids.2015.10.016
https://doi.org/10.1016/j.steroids.2015.10.016
https://doi.org/10.1016/s0306-4522(02)00208-7
https://doi.org/10.1016/s0306-4522(02)00208-7
https://doi.org/10.1016/j.ejphar.2009.11.052
https://doi.org/10.1016/j.ejphar.2009.11.052
https://doi.org/10.1016/j.npep.2004.07.005
https://doi.org/10.1016/j.npep.2004.07.005
https://doi.org/10.1007/BF00510447
https://doi.org/10.1007/BF00510447
https://doi.org/10.1016/0304-3959(92)90003-t
https://doi.org/10.1016/0304-3959(92)90003-t
https://doi.org/10.1073/pnas.0705923104
https://doi.org/10.1073/pnas.0705923104
https://doi.org/10.1371/journal.pone.0012177
https://doi.org/10.1371/journal.pone.0012177
https://doi.org/10.1038/nchembio.1428
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-559109 September 23, 2020 Time: 17:40 # 9

Horváth et al. Carboxamido-Steroid Exerts Antinociceptive Effect

Vriens, J., Owsianik, G., Hofmann, T., Philipp, S. E., Stab, J., Chen, X., et al. (2011).
TRPM3 is a nociceptor channel involved in the detection of noxious heat.
Neuron 70, 482–494. doi: 10.1016/j.neuron.2011.02.051

Wagner, T. F. J., Loch, S., Lambert, S., Straub, I., Mannebach, S., Mathar, I.,
et al. (2008). Transient receptor potential M3 channels are ionotropic steroid
receptors in pancreatic β cells. Nat. Cell Biol. 10, 1421–1430. doi: 10.1038/
ncb1801

Watanabe, S., Tan-No, K., Tadano, T., and Higashi, H. (2011). Intraplantar
injection of gangliosides produces nociceptive behavior and hyperalgesia via a
glutamate signaling mechanism. Pain 152, 327–334. doi: 10.1016/j.pain.2010.
10.036

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
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