
Frontiers in Immunology | www.frontiersin.

Edited by:
Lucy S.K. Walker,

University College London,
United Kingdom

Reviewed by:
James Badger Wing,

Osaka University, Japan
Alex Dent,

Purdue University Indianapolis,
United States

*Correspondence:
Iain Comerford

iain.comerford@adelaide.edu.au

†Present Address:
Carola G. Vinuesa,

Francis Crick Institute, London,
United Kingdom

‡These authors have contributed
equally to this work

Specialty section:
This article was submitted to

T Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 11 February 2022
Accepted: 23 May 2022
Published: 22 June 2022

Citation:
Bastow CR, Kara EE, Tyllis TS,

Vinuesa CG, McColl SR and
Comerford I (2022) TFR Cells

Express Functional CCR6 but It Is
Dispensable for Their Development

and Localization During Splenic
Humoral Immune Responses.
Front. Immunol. 13:873586.

doi: 10.3389/fimmu.2022.873586

ORIGINAL RESEARCH
published: 22 June 2022

doi: 10.3389/fimmu.2022.873586
TFR Cells Express Functional CCR6
But It Is Dispensable for Their
Development and Localization During
Splenic Humoral Immune Responses
Cameron R. Bastow1, Ervin E. Kara1, Timona S. Tyllis1, Carola G. Vinuesa2†,
Shaun R. McColl 1‡ and Iain Comerford1*‡

1 Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The
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Follicular T cells including T follicular helper (TFH) and T follicular regulatory (TFR) cells are
essential in supporting and regulating the quality of antibody responses that develop in the
germinal centre (GC). Follicular T cell migration during the propagation of antibody
responses is largely attributed to the chemokine receptor CXCR5, however CXCR5 is
reportedly redundant in migratory events prior to formation of the GC, and CXCR5-
deficient TFH and TFR cells are still capable of localizing to GCs. Here we comprehensively
assess chemokine receptor expression by follicular T cells during a model humoral
immune response in the spleen. In addition to the known follicular T cell chemokine
receptors Cxcr5 and Cxcr4, we show that follicular T cells express high levels of Ccr6,
Ccr2 and Cxcr3 transcripts and we identify functional expression of CCR6 protein by both
TFH and TFR cells. Notably, a greater proportion of TFR cells expressed CCR6 compared to
TFH cells and gating on CCR6+CXCR5hiPD-1hi T cells strongly enriched for TFR cells.
Examination ofCcr6-/-mice revealed that CCR6 is not essential for development of the GC
response in the spleen, and mixed bone marrow chimera experiments found no evidence
for an intrinsic requirement for CCR6 in TFR cell development or localisation during splenic
humoral responses. These findings point towards multiple functionally redundant
chemotactic signals regulating T cell localisation in the GC.

Keywords: germinal center T cell, T follicular helper (Tfh) cell, CCR6, T follicular regulatory (Tfr) cells,
chemokine receptor
INTRODUCTION

The GC is a dynamic niche within secondary lymphoid organs that supports immunoglobulin gene
mutagenesis in antigen-specific B cells and subsequent selection of B cell clones with increased
affinity for antigen. Ultimately, the GC response drives affinity maturation of antigen-specific B cells
and generates long-term immunity to pathogens through the formation of memory T- and B-cell
subsets and long-lived antibody-secreting plasma cells (LLPCs). Thus, the GC reaction underpins
both current vaccination strategies and host protection against invading pathogens, and when
org June 2022 | Volume 13 | Article 8735861

https://www.frontiersin.org/articles/10.3389/fimmu.2022.873586/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.873586/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.873586/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.873586/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.873586/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:iain.comerford@adelaide.edu.au
https://doi.org/10.3389/fimmu.2022.873586
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.873586
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.873586&domain=pdf&date_stamp=2022-06-22


Bastow et al. CCR6 Function in TFR Cells
perturbed, can result in lymphoma (1) or antibody-mediated
autoimmune disease (2). Importantly, the success of the GC rests
on interactions between GC B cells (GCB cells) and T follicular
helper cells (TFH cells), whilst governance of this process is
performed by T follicular regulatory cells (TFR cells) to limit
the generation of autoantibodies (3–6). These cellular
interactions are highly co-ordinated and governed by dynamic
chemotactic signals that underpin the success of the
GC response.

TFH cells are a distinct subset of CD4+ T cells defined by
expression of the master transcription factor BCL6 and
chemokine receptor CXCR5 necessary for their localisation in the
GC light zone (7–14). Differentiation of TFH cells from naïve CD4+

T cell precursors is initiated by dendritic cells in the T cell zone (15,
16) and subsequently reinforced by activated cognate B cells at the
T-B border (17, 18). In turn, TFH cells trigger cognate B cell
expansion, immunoglobulin class-switch recombination, and
direct the differentiation of B cells into an early memory, transient
extrafollicular plasmablast (EFPB), or GCB cell lineage (19). Within
the GC, GCB cells cycle between a compartmentalized light and
dark zone via dynamic CXCR4 expression (20, 21), and undergo
successive rounds of division and somatic hypermutation targeted
within immunoglobulin hypervariable genes to diversify their
affinity for antigen (22). Ultimately, competition between arising
GCB cell clones for limited TFH help ensures selection of the
highest-affinity clones for selection and direction down LLPC and
memory B cell differentiation pathways under the instruction of GC
TFH cells (23, 24). Critically, the number of TFH cells must be limited
to establish a basis for competition and selection of the highest
affinity GCB cell clones. This process is regulated in part by TFR

cells- a population of follicular T cells that arise from natural T
regulatory cells (nTregs) that co-opt the differentiation pathway of
TFH cells to gain access to lymphoid niches crucial in the formation
of antibody responses (25–27). Given their differentiation from
nTregs, TFR cells display oligoclonal specificity for self-antigen and
express a suite of immunosuppressive receptors and soluble factors
such as neuritin, whilst lacking B-helper molecules (25–29).
Together, the TFR cell program lends itself to both restrict TFH

and GCB cell expansion prior to GC formation (4, 25–27) and
suppress the expansion of non-specific antibodies (3, 4, 30) and
autoreactive antibody clones (3–6).

The last two decades have provided great insight to the
molecular signaling pathways and migratory events that govern
antibody responses. However, the factors facilitating some
migratory events and their biological importance remain
incompletely understood. Whilst the discovery of CXCR5
expression by T cells with B cell helper function was a was a
major step in the identification of bona fide TFH cells, CXCR5
expression is only essential for their enrichment in the light zone,
not GC entry (14). Whilst down-regulation of CCR7 is essential
for TFH cell egress from the T-zone and oxysterol signaling is
important in spreading along the T-B border (14, 31, 32),
CXCR5-deficient T cells still localize to GCs following
immunization (14). Similarly, CXCR5-deficient TFR cells are
also capable of localizing to the GC (33). Therefore, additional
migratory axes must contribute to the migration of follicular T
Frontiers in Immunology | www.frontiersin.org 2
cell subsets to the appropriate niches throughout the antibody
response. Unlike TFH cells, the localisation of TFR cells during
each phase of the humoral response is less well characterized.
Given that TFR cells display the same differentiation kinetics as
TFH cells and also express CXCR5, it has been assumed that TFR

cells colocalize with TFH cells throughout the GC response.
However, a recent study with human tonsils identified TFR

cells were located predominantly outside the GC (34),
supporting common observations of scarce Foxp3+ cells
localized within the GC (25–27, 33, 35). Therefore, the
migratory signals that control the localisation of TFR cells
remain incompletely understood and we set out to address this
gap in knowledge in the current study.
METHODS AND MATERIALS

Mice and Bone Marrow Reconstitutions
C57Bl/6J and Ly5.1 (B6.SJL.Ptprca) mice, purchased from the
Animal Resource Centre (WA, Australia), and Ccr6-/- mice,
previously described (36), were maintained at Laboratory
Animal Services, University of Adelaide, under specific
pathogen-free conditions. Bone marrow chimeric mice were
generated by reconstituting lethally irradiated Ly5.1 mice (1000
Rads) with 5x106 total bone marrow cells from strains described
in text. Chimeric mice were immunized following 8 weeks rest.
All experiments received approval from the University of
Adelaide Animal Ethics Committee.

Immunization Strategies
Mice were immunized i.p. with 2x109 sheep red blood cells
(SRBCs, Applied Biological Products) in endotoxin-free PBS, or
50µg 4-hydroxy-3-nitrophenylacetyl keyhole limpet hemocyanin
(NP-KLH)/Alum (Biosearch Technologies), and analyzed at the
time points described in text.

Flow Cytometry and Cell Sorting
Spleens were mashed through 70µm filters and red blood cells
were lysed with red blood cell lysis buffer. Splenocytes were
counted, stained with LIVE/DEAD dye (Molecular Probes
L10119) or Fixable Viability Stain 780 (BD 565388) for dead
cell exclusion, then Fc-receptors were blocked with mouse
gammaglobulin (Rockland). Surface antibody staining was
performed in FACS buffer (PBS/1% BSA/0.04% sodium azide).
For CXCR5 staining, splenocytes were incubated with
unconjugated anti-CXCR5 (BD 551961), then anti-rat IgG-
AF647 (Molecular Probes, A21247) or anti-rat IgG-AF488
(Molecular Probes, A11006), and blocked with rat
gammaglobulin (Rockland) before subsequent staining with
antibody cocktails. The same process was followed for CCR6
staining with anti-CCR6 (R&D MAB590), and CXCR5 was
detected in these samples with biotinylated anti-CXCR5 (BD
551960). The following conjugated antibodies were used: anti-
B220 (552771, 562922 and 563103), anti-CD4 (557681, 563106,
563727, 552775, and 557308), anti-CD44 (553133), anti-CD45.2
(560697), anti-CD95 (557653), anti-CD138 (553714 and 558626)
June 2022 | Volume 13 | Article 873586
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and anti-T- and B-cell activation factor (GL7, 562080) from BD;
anti-CD3ϵ (25-0031-82), anti-CD38 (17-0381-82), anti-CD44
(12-0441), anti-CD45.2 (45-0454-82), anti-IgD (17-5993-82
and 46-5993-82), anti-Foxp3 (11-5773 and 45-5773), anti-
PD-1 (25-9985 and 12-9985), and anti-TCRb (12-5961) from
eBioscience; and anti-B220 (103248), anti-IgD (405725), and
anti-neuropillin-1 (145209) from BioLegend. Biotinylated
antibodies were detected with streptavidin-BV421 (BD
563259). Intranuclear staining was performed with the Foxp3/
Transcription factor staining buffer set (eBioscience). Samples
were acquired on a BD LSRII or BD FACSAriaIIIµ, and cell
sorting was performed on a BD FACSAriaIIIµ.

In Vitro Chemotaxis
Splenocytes from immunized mice were rested in complete
RPMI for 3 hours at 37°C, 5% CO2, then harvested and
resuspended to 2x107 cells/mL in pre-warmed chemotaxis
buffer (RPMI, 0.5% BSA, 25mM HEPES). Synthetic murine
CCL20 protein (kindly provided by the late Professor Ian
Clark-Lewis) was diluted to concentrations described in text
with pre-warmed chemotaxis buffer, then 600mL was loaded into
the lower chambers of 24-well HTS Transwell plates (Corning).
100mL of rested splenocytes were loaded into upper permeable
supports (5.0mm pore size) and incubated for 3 hours at 37°C, 5%
CO2. Cells were subsequently harvested for flow cytometric
staining and the number of migrated cells was determined with
CountBright beads (ThermoFisher). Migration index was
calculated from the number of migrated cells for in a given
condition/number of migrated cells in no chemokine controls.

Chemokine Quantitation via ELISA
Spleens were mashed in PBS with protease inhibitor cocktail
(Roche) and supernatants were stored at -80°C until analysis.
CCL20 was quantified from supernatants by ELISA with
standard curves using polyclonal rabbit anti-CCL20 generated
in-house, as previously described (37).

Antibody Quantitation via ELISA
High-binding EIA/RIA 96-well plates (Costar) were coated
overnight with 10µg/mL BSA-NP32 or BSA-NP5 (Biosearch
Technologies Inc) diluted in ELISA coating buffer (28.6mM
Na2Co3, 11.9mM NaHCO3, pH 9.6), or 2µg/mL anti-mouse
IgE (BD 553413) diluted in PBS. Wells were subsequently
washed four times with 0.05% Tween20/PBS, then blocked
with 3% BSA/PBS for 2 hours at room temperature. After
washing, sera was serially diluted in 1% BSA/PBS, added to
wells and incubated for 2 hours at room temperature. Wells were
washed and incubated with anti-mouse IgG-HRP (1030-05),
anti-mouse IgM-HRP (1021-05), anti-mouse IgA-HRP (1040-
05) from Southern Biotech, or anti-mouse IgE-biotin (BD
553419) diluted in 1% BSA/PBS for 2 hours at room
temperature. Biotinylated antibodies were further incubated
with streptavidin-HRP (Rockland) for 40 minutes at room
temperature. After washing, HRP was detected with 1X TMB
ELISA Substrate Solution (eBioscience) and color development
was stopped with 1M orthophosphoric acid. Plates were analyzed
at 450nm with a Biotrak II plate reader.
Frontiers in Immunology | www.frontiersin.org 3
Immunofluorescent Staining
Spleen segments were embedded in O.C.T. compound (Sakura),
cut in 12µm thick sections and mounted on polysine coated
slides (Thermo Scientific). Sections were fixed in ice-cold 4%
PFA for 20 minutes at 4°C, washed, then permeabilized in ice-
cold acetone for 10 minutes. After air drying, samples were
rehydrated in PBS, blocked with 2% normal mouse and rat
serum in staining buffer (PBS with 1% BSA) then stained with
anti-CD4 (BD 560468), anti-Foxp3 (eBioscience 13-5773-80)
and anti-IgD (eBioscience 17-5993) in staining buffer overnight
at 4°C in a humid chamber. Sections were washed and biotin was
detected with streptavidin-AF546 (Molecular Probes S-11225).
After a final wash, sections were mounted with a coverslip and
Vectashield antifade mounting medium (Vector Laboratories),
then stored at 4°C in the dark until required for imaging.

Confocal Microscopy and Image Analysis
Images were acquired on a Leica TCS SP5 confocal microscope
with a 20x harmonically corrected plan-apochromat with NA 0.7
water objective using Leica Application Suite: Advance
Fluorescence (LAS: AF) software and sequential scanning
between frames. Images were processed with FIJI (Image J,
National Institutes of Health) for analysis, and Adobe Photoshop
CS6 Version 13.0 (Adobe) for presentation, with brightness and
contrast adjustments applied equally across images. To enumerate
Foxp3+ cells, multiple images from the same spleen section were
first stitched together in FIJI with the “MosaicJ” plugin. Then
regions-of-interest (ROIs) for the periarteriolar lymphatic sheath
(PALS) and B cell follicles were manually drawn based on CD4 and
IgD staining, respectively. GCs were identified by the lack of IgD
staining in areas surrounded by IgD+ follicular mantles. The T-B
border was defined as the area of the PALS ≤50mm from an
adjacent follicle or GC perimeter (17), and this distance was
calculated in FIJI with the “Distance Map” function. The T-zone
was then defined as the area of the PALS minus the T-B border.
Foxp3+ cells were identified in FIJI with the “Analyse Particles”
function, and larger cell aggregates were manually excluded from
analysis. The number of Foxp3+ cells in each ROI and the area of
each zone were subsequently calculated in FIJI for analyses.

Statistical Analysis
All data were presented and analyzed in GraphPad Prism 7 with
statistical tests performed as described in figure legends. In all
cases, p values of <0.05 were considered significant.

Data Availability
All data from the study are included in the article and/or
supporting information.
RESULTS

Chemokine Receptor Profiling of Follicular
T Cells
To comprehensively investigate expression of chemokine
receptors by follicular T cells, CXCR5+PD-1+ T-helper cells
were sorted five days post SRBC immunization (Figure 1A),
June 2022 | Volume 13 | Article 873586
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and the relative expression of key follicular T cell genes and
chemotactic receptors was determined by qPCR. As anticipated,
follicular T cells had greater expression of Bcl6, encoding the
master regulator of follicular T cell differentiation in comparison
to sorted splenic naïve CD4 T cells (CD4+CD44-CD62L+;
Figure 1B). Similarly, follicular T cells had greater expression
of transcripts for the follicle/GC-tropic chemokine receptors
CXCR5 and CXCR4, and had downregulated Ccr7 transcript
relative to naïve T cells (Figure 1C). Having validated the
expression of chemokine receptors known to be involved in
the follicular T cell program, the relative expression of all other
known chemokine receptors was determined. Here, the limited
chemokine receptor repertoire of naïve T-helper cells provided a
useful biological comparison to evaluate whether follicular T cells
had upregulated/downregulated chemokine receptors upon
differentiation. Compared to naïve T cells, follicular T cells
expressed significantly higher levels of Ccr2, Ccr6, and Cxcr3
transcripts (Figure 1D). Whilst Ccr4 appeared upregulated and
Ccr9 downregulated compared to naïve CD4 T cells, these
differences were not statistically significant (Figure 1D).

CCR6 is Differentially Expressed by
TFH and TFR cells
Of the chemokine receptor transcripts significantly upregulated
in follicular T cells relative to naïve T cells, an interesting avenue
of investigation was determining the role of CCR6 as it is of
poorly characterized function with regard to T cell function in
the GC and CCR6 expression has been identified in early
antigen-engaged B cells (38–41), yet its function in early events
underpinning antibody responses is unknown. Furthermore,
CCR6 is known to be expressed and utilized by regulatory T
cells (42–44), which raised the possibility that TFR cells, which
Frontiers in Immunology | www.frontiersin.org 4
differentiate from nTregs, may express and utilize CCR6.
Therefore, the expression and function of CCR6 on TFH and
TFR cells was investigated. To interrogate CCR6 expression by
follicular T cells, CCR6 was analyzed via flow cytometry on TFH

c e l l s ( C X C R 5 h i P D - 1 h i F o x p 3 - ) a n d T F R c e l l s
(CXCR5hiPD-1hiFoxp3+; Figure 2A), and respective precursor
naïve CD4 T cells and nTregs (Figure 2B) following SRBC
immunization. Here, nTregs were distinguished from
peripheral Tregs by high neuropillin-1 expression (45, 46).
Interestingly, CCR6 expression differed significantly between
TFH and TFR cell populations by both measures of CCR6
geometric mean fluorescence intensity (gMFI; Figure 2C) and
proportion of CCR6-positive cells (Figure 2D), approximately
15% compared to >50%, respectively. Within precursor
populations, few naïve CD4 T cells expressed CCR6, whilst
over 25% of nTregs were CCR6-positive (Figure 2D), despite
the differences in gMFI of CCR6 between these subsets not
reaching statistical significance (Figure 2C). Collectively, both
gMFI and proportion measures of CCR6 expression significantly
increased from the precursor nTreg population to effector TFR

population (Figures 2C, D), potentially implying a role for CCR6
in TFR biology.

Co-expression of additional chemotactic receptors with
CXCR5 is known to regulate fine anatomical niche localisation
of GC populations during the humoral response (32, 47).
Additionally, the ratio of TFH to TFR cells is critical for the
correct regulation of antibody responses, and when perturbed,
can result in abnormal GC kinetics, affinity maturation and
antibody isotype switching, which may drive autoantibody
generation (3–6). As different proportions of TFH and TFR cells
expressed CCR6, it was determined whether the ratio of TFH to
TFR cells was significantly altered when further distinguishing
B C

D

A

FIGURE 1 | Chemokine receptor gene expression by follicular T cells. (A) Representative gating strategy for sorting follicular T cells (CD4+TCRb+CXCR5hiPD-1hi)
from day 5 SRBC i.p. immunized mice. Expression of (B) follicular T cell master transcription factor Bcl6, (C) known follicular T cell-tropic chemokine receptors, and
(D) all other known classical chemokine receptors, between in naïve CD4 T cells (CD4+CD44-CD62L+) and follicular T cells, relative to Gapdh. (B–D) Data pooled
from two independent experiments with 3 mice pooled per time point ± SEM, two-tailed unpaired Student’s t test. *p < 0.05, **p < 0.01.
June 2022 | Volume 13 | Article 873586
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these populations by CCR6 expression. This was investigated by
gating CCR6-positive and -negative cells within the follicular T
cell gate (CD4+B220-CXCR5hiPD-1hi), then delineating TFH and
TFR cells by Foxp3 expression (Figure 2E). Without any CCR6
pre-gating, the ratio of TFH : TFR cells was approximately 5:1
(Figure 2F), as previously reported (26, 35). Interestingly, the
TFH : TFR cell ratio significantly differed when segregated by
CCR6 expression, from approximately 1:1 within CCR6+

populations, to approximately 9:1 within CCR6- populations
(Figure 2F). This posed a question whether CCR6-driven
migratory cues establish finer cellular niches that differentially
support or suppress local cell activation through altering the ratio
of TFH to TFR cells in that niche. Distinct CCR6 expression
patterns between TFH and TFR were not a product of the SRBC
immunization strategy, as similar proportions of TFH and TFR

cells (15% and 50% respectively) expressed CCR6 following NP-
KLH/Alum immunization (Figure 2G). Throughout the
propagation of the GC response to NP-KLH/Alum, the
Frontiers in Immunology | www.frontiersin.org 5
proportion of CCR6-expressing TFH and TFR cells was steady,
with only a slight but significant increase in CCR6-expressing
TFR cells from 48% to 54% on days 7 to 10 post immunization
(Figure 2G). Together, CCR6 protein expression in follicular T
cells was confirmed by flow cytometry and differential expression
of CCR6 was apparent between TFH and TFR cell subsets.

CCR6 Expression Facilitates Follicular
T Cell Chemotaxis In Vitro
Given the robust expression of CCR6 by TFR cells, the expression
of the sole CCR6 chemokine ligand, CCL20, in the spleen during
the response to SRBC immunization was determined. At the
peak of the SRBC response, there was an approximately 4-fold
increase in extracellular splenic CCL20 protein as determined by
ELISA of spleen leach out supernatants (Supplementary
Figure 1A). Subsequently, it was investigated whether CCR6
expression by TFH and TFR cells facilitated migration to CCL20 in
vitro using transwell chemotaxis assays of splenocytes from day 6
B

C

D

E F G

A

FIGURE 2 | CCR6 expression is highest in TFR cells amongst follicular T cell populations. (A, B) Representative gating strategy for CCR6+ TFH cells (CD4+B220-

CXCR5hiPD-1hiFoxp3-), TFR cells (CD4+B220-CXCR5hiPD-1hiFoxp3+), naïve CD4 T cells (CD4+B220-CD44loFoxp3-) and natural T-regulatory cells (nTreg: CD4+B220-

CD44midFoxp3+Nrp-1+) 6 days after SRBC immunization. (C) Geometrical mean fluorescence intensity (gMFI) of CCR6 and, (D) percentage of CCR6+ cells within
populations from (A) and (B). (E) Representative gating strategy for TFH (Foxp3-) and TFR cells (Foxp3+) within CCR6+ follicular T cells (CD4+B220-CXCR5hiPD-
1hiCCR6+). (F) Ratio of TFH : TFR cells within gating strategies from (A, E). (G) Frequency of CCR6+ TFH and TFR cells at indicated time points after i.p. NP-KLH/Alum
immunization. (A–C, E, F) Data representative of two independent experiments, n=4 mice ± SEM, one-way ANOVA with Tukey’s multiple comparisons test, (G) n=4-
5 mice per time-point ± SEM, two-way ANOVA with Sidak’s multiple comparison test. NS, Not significant, *p < 0.05, ***p < 0.001, ****p < 0.0001.
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SRBC-immunized mice. Splenocytes from day 6 SRBC-
immunized Ccr6-/- mice were included as a control. Naïve CD4
T cells, which expressed minimal Ccr6 mRNA (Figure 1D) and
minimal surface CCR6 protein (Figures 2B–D) did not migrate
to CCL20 (Figure 3A). Conversely B cells, known to express
CCR6 and included as a positive-control (41), demonstrated
migration to CCL20 in a CCR6- and dose-dependent manner
(Figure 3B). nTreg cells, approximately a quarter of which
express CCR6 (Figures 2B, D), demonstrated CCR6-
dependent migration towards CCL20 (Figure 3C). Both TFH

cells (Figure 3D) and TFR cells (Figure 3E) migrated to CCL20
in a CCR6-dependent manner, demonstrating functional CCR6
expression by these subsets.

CCR6-Deficient Mice Do Not Display
Gross Follicular T Cell Abnormalities
or Differences in Splenic Foxp3+

Cell Localisation
To investigate the overall contribution of CCR6 on the GC
reaction, wildtype and Ccr6-/- mice were immunized with
SRBCs and GC populations analyzed at early (day 4) and peak
(day 6) time-points. Importantly, CCR6-deficiency does not
affect steady-state trafficking of splenic B cells, naïve T cells or
Tregs (48–50). At both 4 and 6 days post-immunization there
were no significant differences in the proportion or number of
Frontiers in Immunology | www.frontiersin.org 6
naïve CD4 T cells (Supplementary Figures 2A, B) or nTregs
(Supplementary Figures 2A, C) between wildtype and Ccr6-/-

mice. There were no significant difference in the proportion or
number of TFH (Figures 4A, B) and TFR (Figures 4A, C) cells
between wildtype and Ccr6-/- mice at either time-point analyzed.
Consequently, there was no difference between the ratios of TFH :
TFR cells between wildtype and Ccr6-/- mice (Figure 4D). In line
with previous studies (41, 51), CCR6-deficiency had no effect on
the number of splenic B cells or primary GCB cells
(Supplementary Figures 3A–C). However, there was a
significant reduction in the proportion of EFPBs during the
peak of the response in Ccr6-/- mice (Supplementary
Figure 3D). Thus, the data indicated that CCR6 was
dispensable for the generation of both TFH and TFR cells.

CCR6-deficiency has been previously reported to alter
antibody production in the intestinal immune system (52, 53),
thus the effect of CCR6-deficiency on splenic antibody production,
class switching and affinity maturation was studied following NP-
KLH/Alum immunization. Strikingly, Ccr6-/- mice displayed
enhanced antibody kinetics as NP-specific IgM titres were
significantly elevated in Ccr6-/- mice 7 days post immunization
before wildtype IgM titres reached parity on day 14
(Supplementary Figure 4A). Similarly, NP-specific IgG titres of
both broad-affinity (NP32) and high-affinity (NP5) were
significantly greater in Ccr6-/- mice compared to wildtype mice
B C

D E

A

FIGURE 3 | Follicular T cell populations migrate ex vivo to CCL20. (A–E) Transwell migration of splenocytes from day 6 SRBC immunized WT or Ccr6-/- mice to
increasing concentrations of CCL20. Cell populations were identified within total migrated splenocytes by flow cytometry and migration index was calculated relative
to controls without chemokine. (A) Naïve CD4 T cells: CD4+B220-CXCR5-CD44loFoxp3-, (B) B cells: CD4-B220+, (C) nTregs: CD4+B220-CXCR5-

CD44midFoxp3+Nrp-1+, (D) TFH cells: CD4+B220-CXCR5hiPD-1hiCD44hiFoxp3-, and (E) TFR cells: CD4+B220-CXCR5hiPD-1hiCD44hiFoxp3+. Data pooled from two
independent experiments, n=3-5 mice/strain ± SEM, two-tailed unpaired Student’s t test between strains at each concentration. *p < 0.05, **p < 0.01.
June 2022 | Volume 13 | Article 873586
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throughout the response, with a notable 4-fold increase in titres 7
days post-immunization (Supplementary Figures 4B, C).
Contrary to previous studies (40, 48), affinity maturation was
intact in Ccr6-/- mice by measure of NP5:NP32 ratio, with a small
but significant increase in anti-NP IgG affinity during the late
stages of the response (Supplementary Figure 4D). There were no
differences in NP-specific IgA (Supplementary Figure 4E), but a
trend towards reduced antigen-specific IgE was observed in Ccr6-/-

mice 28 days post-immunization (Supplementary Figure 4F).
Given the importance of TFR cells in restricting the outgrowth of
off-target and autoreactive IgE antibodies (29, 30), total IgE titres
were measured in immunized wildtype and Ccr6-/- mice. A
significant increase in total IgE after immunization was detected
in wildtype mice, but not in Ccr6-/- mice (Supplementary
Figure 4G). Together, these data demonstrated that antibody
titres and kinetics in response to NP-KLH were augmented in
Ccr6-/- mice, however normal affinity maturation and restricted
IgE antibody titres in the absence of CCR6 suggested that TFR cell
function did not rely on this chemokine receptor.

The microanatomical location of TFR cells during the antibody
response facilitates interactions with other immune cells and is
essential for their regulatory function. Whilst CCR6-deficiency had
no effect on the proportion or number of TFR cells, altered
positioning of these cells may underpin the heightened antigen-
specific antibody responses observed in Ccr6-/- mice. To interrogate
Frontiers in Immunology | www.frontiersin.org 7
the effect of CCR6-deficiency on TFR cell localisation,
immunofluorescence microscopy was performed on spleen
sections from wildtype and Ccr6-/- mice at the peak of the GC
response to SRBC immunization. Utilizing a core stain of antibodies
against CD4, IgD and Foxp3, total Foxp3+ cells were visualized in
spleen sections, and the PALS, T-B border, follicles and GCs were
defined (Figure 5A). Subsequently, Foxp3+ cells residing in each of
these areas were identified and enumerated (Figure 5B). There was
no statistically significant difference in the size (mm2) of each
compartment between wildtype and Ccr6-/- mice (Figure 5C).
CCR6-deficiency had no significant effect on Foxp3+ cell location
within each splenic compartment when quantified as the percentage
of total Foxp3+ cells in each image (Figure 5D), or density (number/
mm2; Figure 5E). Together, the analysis of the GC reactions to
SRBC immunization inCcr6-/- mice revealed no gross defects in TFH

or TFR cell biology dependent on CCR6, and suggested that CCR6
deficiency did not affect the microanatomy of splenic niches, nor the
gross localisation of splenic Foxp3+ cell subsets during a
humoral response.

Cell-Intrinsic CCR6 Expression Is
Dispensable for TFH and TFR Differentiation
The data described above do not support a role for CCR6 in TFH

or TFR cell differentiation and localisation during the GC
response. However, extensive cell-cell interactions underpin the
B C D

A

FIGURE 4 | CCR6-deficient mice mount normal TFH and TFR cell responses. (A) Representative gating strategy of TFH cells (CD4+B220-CXCR5hiPD-
1hiCD44hiFoxp3-) and TFR cells (CD4+B220-CXCR5hiPD-1hiCD44hiFoxp3+) in WT and Ccr6-/- mice four- and six-days post SRBC immunization. Frequency and
number of (B) TFH and (C) TFR cells from (A). (D) Ratio of TFH : TFR cells four- and six-days post SRBC immunization in WT and Ccr6-/- mice. (A–D) Data
representative of 3 independent experiments, n=6-7 mice/time point ± SEM, two-tailed unpaired Student’s t test between strains at each time point.
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B

C D E

A

FIGURE 5 | CCR6-deficiency does not affect splenic Foxp3+ cell distribution during the peak of SRBC immunization. (A) Localisation of Foxp3+ cells in PFA and
acetone fixed/permeabilized spleen sections from day 6 i.p. SRBC immunized WT and Ccr6-/- mice. Sections were stained with antibodies against CD4 (red), IgD
(blue) and Foxp3 (green). Based on CD4 and IgD staining, the following areas are outlined: follicles (blue), GCs (green), T-B border (magenta), and T-zone (red). Scale
bar: 200µm. (B) Identification of Foxp3+ cells from (A), colour-coded based on localisation within the T-zone (red), T-B border (magenta), follicle (blue), or GC (green).
(C) Average area (mm2) of delineated splenic compartments from (A). (D) Percentage and (E) number/mm2 of Foxp3+ cells within each splenic niche, quantified from
Figure 5.B. (A, B) Images representative of n=5 mice/strain, 2-6 images/mouse. (C–E) Each dot represents the average of technical replicates per biological
replicate, n=5 mice/strain ± SEM. Two-tailed unpaired Student’s t test.
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differentiation of both follicular T and GCB cell populations.
Thus, to eliminate possible CCR6-dependent cell-extrinsic effects
that impact on follicular T cell differentiation resultant of global
CCR6-deficiency, mixed bone marrow chimeras were generated.
Here, irradiated Ly5.1 hosts were reconstituted with 50% Ly5.1
bone marrow (CD45.1+), and 50% bone marrow from either WT
or Ccr6-/- donor mice (both CD45.2+). Resulting chimeric mice
contained a WT CD45.1+ immune cell compartment present
throughout the GC reaction to support the differentiation of
CD45.2+ WT or CD45.2+Ccr6-/- GC subsets. Therefore, the
intrinsic role of CCR6 on the development of GC populations
could be determined as knock-on defects resultant of CCR6-
deficiency would be eliminated by supporting wildtype CD45.1+

cells. Chimeric mice were immunized with SRBC and analyzed
by flow cytometry at the peak of the response 6 days later. At this
time point, the percentage of CD45.2+ naïve CD4 and nTreg
precursor populations (Figure 6A) were determined in chimeras
reconstituted with WT or Ccr6-/- bone marrow. Despite bone
marrow reconstitution with 1:1 mix of CD45.1 and CD45.2 bone
marrow (WT or Ccr6-/-) in irradiated Ly5.1 hosts, there was a
disadvantage for CD45.2 bone marrow to differentiate into T
cells as <50% of CD4 T cells were CD45.2+ (Figure 6A).
However, as both WT and Ccr6-/- bone marrow were on the
CD45.2 genetic background, this disadvantage was controlled for
in comparisons between WT and Ccr6-/- GC populations. Thus,
the percentage of CD45.2+ TFH and TFR cells was determined in
WT and Ccr6-/- mixed chimeras (Figure 6B) and the ratio of
CD45.2+ effector population:CD45.2+ precursor population was
calculated to normalize for any differences in the reconstitution
efficiency of CD45.2+ bone marrow between individual chimeric
mice. As there was no change in the ratio of precursors (naïve or
nTreg) to effector cells (TFH or TFR cells) betweenWT and Ccr6-/-

chimeras, this demonstrated that there was no cell intrinsic
requirement for CCR6 in the development of TFH cells
(Figure 6C) or TFR cells (Figure 6D). Naïve B cells, GCB cells
and EFPBs were also identified in mixed chimeras to discern
whether intrinsic CCR6 function regulated GCB cell and EFPB
differentiation in primary, polyclonal antibody responses
(Supplementary Figures 5A–D). There was no selective
advantage of CCR6-deficient GCB cells over WT GCB cells
(Supplementary Figure 5B), however, there was a modest cell-
intrinsic involvement of CCR6 in the development of EFPBs
(Supplementary Figure 5D). Thus, despite its high level of
expression, this study could find no role for CCR6 in TFR cell
differentiation, function or localisation during T-cell dependent
antibody responses in the spleen.
DISCUSSION

A dominant role for CXCR5 in follicular T cell biology has
been well-established but there are likely other chemotactic
signals that govern their location. This study identified
multiple additional chemokine receptors expressed by
follicular T cells. CCR6 was shown to be expressed and
functional in follicular T cell subsets but appeared to have a
Frontiers in Immunology | www.frontiersin.org 9
redundant in vivo role in the biology of these cells. Whilst
CCR6 expression has previously been visualized in follicular T
cells (54, 55), here we show substantially increased CCR6
expression by TFR cells compared to TFH cells. Yet, despite
robust CCR6 expression in TFR cells, we did not observe any
differences in the composition or organization of primary GC
reactions within the spleen of CCR6-deficient mice. Previous
studies investigating the effect of TFR cell depletion at different
timepoints during the GC response have highlighted roles for
TFR cells in regulating TFH and GCB cell abundance prior to
GC formation, whilst regulation of these populations by TFR

cells wanes following the establishment of GCs (4). Thus
together, our work suggests that CCR6 may not play a role
facilitating organization or interactions between T- and B-cell
populations to regulate the early stages of the immune
response. This is supported by our observation that CCR6-
deficiency does not imbue an intrinsic advantage to TFH cells
or GCB cells in mixed chimeras. These data are in line with
previous studies investigating the role of B cell CCR6
expression in primary immune responses where no
differences in GCB cell proportions were observed between
WT and Ccr6-/- mice (41, 51), nor between WT and CCR6-
deficient transgenic hen egg lysozyme-specific B cells (56).

In this study, CCR6-deficiency resulted in a significant
increase in the kinetics and titres of antigen-specific IgM and
IgG. Increased antigen-specific IgM titres in Ccr6-/- mice have
previously been described following subcutaneous KLH
immunisation (53), however our data here demonstrate the
transient nature of this increase. Similarly, Ccr6-/- mice
displayed rapid and robust production of IgG early in the
antibody response against NP-KLH/Alum and significantly
greater titres were maintained throughout the GC response
with affinity maturation remaining intact. Despite these results,
the effect of CCR6-deficiency on IgG responses remains unclear.
Previous studies have identified increased IgG1 titres in CCR6-
deficient mice at the expense of affinity maturation (40, 48),
whilst others have identified no differences in the primary
antibody response (41, 51) or defects in IgG3 responses (53).
As class switch recombination occurs prior to activated B cell fate
trifurcation at the T:B border (57), the cellular source of
increased antigen-specific IgG observed here remains an open
question. Future work should consolidate immunization
strategies to identify whether B cell CCR6 activity functions in
a context-specific setting to enhance antibody kinetics, titres,
isotype switching and affinity maturation. In line with previous
allergy models in the eye and lungs (58–60), CCR6-deficiency
impaired total IgE responses upon intraperitoneal NP-KLH/
Alum immunization. In models of pulmonary allergy, T-cell
CCR6 function was implicated in the production of IgE (60).
Similarly, a population of CCR6+IL-10+ memory T cells distinct
from regulatory and follicular T cell subsets was recently
identified with the ability to trigger IgE switching in B-cells
(61). As we also observe impaired IgE titres in Ccr6-/- mice,
collectively these studies implicate the CCR6-CCL20 axis in
necessary differentiation and/or survival signals for IgE-
switched antibody secreting cells. Furthermore, given the
June 2022 | Volume 13 | Article 873586
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described roles of TFR cells in supporting the production of
antigen-specific IgE and suppressing the production of non-
specific IgE clones (29, 30), CCR6+ TFR cells may function within
such a niche to regulate the balance of antigen-specific:off-target
Frontiers in Immunology | www.frontiersin.org 10
IgE antibody clones. Together our data highlights a role for
CCR6+ cells in the induction of IgE and warrants further
investigation into the precise identity and localisation of CCR6+
cells during antibody responses and IgE-mediated pathologies.
B

C D

A

FIGURE 6 | Cell-intrinsic CCR6 function is not required for the formation of TFH and TFR cell populations. Representative gating strategies of (A) naïve CD4 T cells
and nTregs, and (B) TFH and TFR cells from day 6 SRBC immunized irradiated Ly5.1 hosts reconstituted with a 1:1 ratio of Ly5.1:CD45.2+Ccr6+/+ (WT, top row) or
CD45.2+Ccr6-/- (bottom row) bone marrow. (C) Ratio of CD45.2+ TFH cells:CD45.2+ naïve CD4 T cells in Ly5.1:WT and Ly5.1:Ccr6-/- chimeras. (D) Ratio of CD45.2+

TFR cells:CD45.2+ nTregs in Ly5.1:WT and Ly5.1:Ccr6-/- chimeras. (A–D) n=6/chimera group, ± SEM, two-tailed unpaired Student’s t test.
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One caveat to the present study is that a relatively modest
induction of CCL20 was observed in the spleen following the
immunization strategies utilized. It is possible that a role for CCR6
may be apparent in other scenarios that more strongly induce
CCL20 expression in secondary lymphoid tissue. Other
inflammatory models could potentially be utilized which have
been described to induce more pronounced splenic CCL20
induction. Notably, robust CCL20 induction has been identified
in the spleen following immunization with synthetic
peptidoglycan compounds (48). In this setting, CCL20
expression was induced in radio-resistant cells downstream of
TNFa signaling, which has been demonstrated to induce CCL20
expression in a variety of different cell types (62–64). The
immunization strategies utilized in this study, SRBC and NP-
KLH/Alum, may not sufficiently induce splenic CCL20 expression
to reveal CCR6-dependent migratory events as alum does not
induce nor act through TNFa (65, 66), and SRBC immunization
initiates antibody responses directly through missing-self CD47
and SIRPa interactions between xenogeneic red blood cells and
splenic dendritic cells, respectively (67). Whether splenic follicular
T cell CCR6 function would be apparent in more inflammatory
settings such as bacterial infection remains an open avenue
for investigation.

Another possibility is that CCR6 function on follicular T cells
is required in different secondary lymphoid microenvironments
not present in the spleen. Steady-state CCL20 expression has
been identified in the sub-epithelial dome (SED) of Peyer’s
patches (53, 68, 69), and is further upregulated by ingested
bacterial products from Salmonella species and Listeria
monocytogenes (70). Here, CCR6 mediates the migration of B
cells and dendritic cells in to the SED and facilitates crucial
interactions between these cells necessary for class-switch
recombination (52), exemplified by diminished IgA responses
to gut microbes in Ccr6-/- mice (53). In the Peyer’s patches, TFR

cells are crucial in diversifying IgA against gut microbiota and
establishing a regulatory loop whereby the healthy microbiome
established by TFR cells supports Foxp3+ cells and IgA
production (71). Therefore, it is conceivable that TFR cells may
also utilize CCR6 to migrate to the SED and influence the
diversification of IgA antibodies and microbiota through
interactions with dendritic cells and B cells in this niche.

Steady-state CCL20 expression has also been identified in the
lymph node subcapsular sinus (SCS) (72, 73) and is further
upregulated following SIV infection (73) or LPS administration
(74). At the SCS, CCL20 attracts innate-like lymphocytes (72),
and it is hypothesized that high CCR6 expression by memory B
cells may contribute to their peri-subcapsular localisation in
lymph nodes during the steady-state (75). Upon secondary
antigen exposure, memory B cells in the peri-subcapsular space
interact with memory TFH cells, proliferate, and differentiate into
plasma cells (32, 75). CCR6-deficiency results in diminished
memory B cell responses characterized by reduced plasma cell
differentiation and antibody titres upon secondary challenge (48,
51). Additionally, early-activated B cells upregulate CCR6 and
accumulate at the SCS/follicle interface to proliferate during the
early phases of the immune response prior to the formation of
Frontiers in Immunology | www.frontiersin.org 11
the GC (17). The importance of localisation adjacent to the SCS
for rapid B cell expansion prior to seeding the GC is incompletely
understood, as is early CCR6 upregulation by antigen-activated B
cells. However, B cells that accumulate at the SCS do not express
Bcl6 and upregulate intracellular immunoglobulin light chain
expression, consistent with EFPB differentiation (17). Together,
given that TFR cells restrict the emergence of autoantibodies
following immune challenge (3–6), CCR6 may facilitate the
recruitment of TFR cells to subcapsular niches to regulate
crucial proliferation and differentiation events that underpin
plasma cell differentiation. As the lymph node subcapsular
niche is utilized by both early-activated and memory B cells,
TFR cells may colocalize to this niche to regulate both primary
and memory antibody responses and/or limit autoantibody
emergence. This may explain why TFR cells in human tonsils
were predominantly identified outside of the GC (34).

An open question remains as to potential roles of other
chemokine receptors in contributing to follicular T cell homing
in addition to CXCR5. This study revealed higher expression of
Ccr2 and Cxcr3 relative to naïve CD4 T cells, and there was a
strong trend towards greater expression of Ccr4 in follicular T
cells. Indeed, a recent study by Liu et al. identified CCR4
expression by TFH and TFR cells was necessary to facilitate
interactions between high-affinity GCB cells and GC TFH cells
(76). A recent study also identified Ccr2 expression in neonatal
GC T cells (77), however its function in GC biology remains
unknown. In Tregs, CCR2 has been demonstrated to regulate
CD25 expression and thus sensitivity to IL-2 signalling (78).
Given that IL-2 signaling is detrimental to the stability of the
follicular T cell transcriptome (3, 79, 80) and TFR cells
downregulate CD25 (3, 79), CCR2 expression in follicular T
cells may further fine-tune IL-2 signaling. Multiple studies have
identified CXCR3 expression by TFH cells during antibody
responses to viral infection (81–83). Conversely, scarce CXCR3
expression by TFR cells was identified on during initial
characterization of this subset (25). CXCR3 ligand CXCL9 is
induced in the interfollicular/outer-follicle areas of the lymph
node and spleen upon inflammation (84), both of which are key
niches in the early development of humoral responses (17, 85).
Indeed, dysregulated CXCR3 expression in TFH cells relocated
GC TFH cells into the follicle (47). Whether CXCR3 expression
by TFH cells plays key roles during the initiation of GCs remains
an open avenue of investigation. Together, these observations
justify future investigation into the role of additional chemokine
axes in follicular T cell biology.
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