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This paper presents an automatic lesion segmentationmethod based on similarities betweenmultichannel patches. A patch database
is built using training images for which the label maps are known. For each patch in the testing image, 𝑘 similar patches are
retrieved from the database. The matching labels for these 𝑘 patches are then combined to produce an initial segmentation map
for the test case. Finally an iterative patch-based label refinement process based on the initial segmentation map is performed to
ensure the spatial consistency of the detected lesions. The method was evaluated in experiments on multiple sclerosis (MS) lesion
segmentation in magnetic resonance images (MRI) of the brain. An evaluation was done for each image in the MICCAI 2008
MS lesion segmentation challenge. Results are shown to compete with the state of the art in the challenge. We conclude that the
proposed algorithm for segmentation of lesions provides a promising new approach for local segmentation and global detection in
medical images.

1. Introduction

Patch-based methods have been shown to be an effective
approach for labeling brain structures (and other body
structures), as shown, for example, in [1, 2]. In general, these
approaches label each voxel of a target image by comparing
the image patch, centered on the voxel with patches from
an atlas library, and assigning the most probable label
according to the closest matches. Often, a localized search
window centered around the target voxel is used. Various
patch-based label fusion procedures have been proposed and
were shown to produce accurate and robust segmentation.
Using affine registration, comparable results to works that
use nonrigid registration have been reported. Patch-based
techniques have recently demonstrated high performance in
various computer vision tasks, including texture synthesis
[3], inpainting [4], and super resolution [5]. Nonlocal means
denoising [6] has helped advance the field and has led to the
development of various patch-based segmentation tools for
medical imaging applications methods [1, 2, 7, 8].

The focus of segmentation tasks in existing works is on
regions of interest which are substantial in size and/or are

anatomically localized (e.g., brain tumors, knee, brain tissues,
the hippocampus, cortical parcellation, and brain structures).
In these cases the anatomical context provides labeling
support and a good approximate alignment of the image to
an atlas (expert priors) is needed and is a key component.
For example, in the hippocampus or the knee, the algorithm
is designed to differentiate between the surrounding tissues
and the convex target region; thus the inner voxels are easy
to label. Similarly, in the case of brain tissues, anatomical
constraints facilitate labeling most of the voxels, and the
errors are mainly in the border voxels.

In the current work, we focus on developing a patch-
based segmentation for small nonlocalized regions. The
regions of interest examined here, such as lesions, do not
entail anatomical constraints, and hence the location of
these lesions is subject to inconsistency in terms of both
neighboring tissues and the absolute position. These regions
are not contained within other regions, as is the case for
brain tumor or the knee. We aim to overcome the lack of
spatial constraints and anatomical context by a novel spatial
consistency step, as discussed in Section 2.6. We deal with
MS lesion detection and segmentation in MR images of
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Figure 1: Three axial slices of MS lesions on MRI: FLAIR, T1w, T2w, and the associated ground truth lesion map.

the brain which involve a number of challenges; in particular
MS lesions are very small, they can appear anywhere in the
brain image, and they are relatively similar to other brain
tissues. Examples of MS lesions are presented in Figures 1, 2,
and 3.

MS is the most common nontraumatic neurological
disease in young adults. It is an inflammatory demyelinating
disease that is primarily associated with axonal loss and
formation of lesions in the central nervous system, which
are characterized by demyelination, axonal injury, and axonal
conduction block. These classically described white matter
(WM) lesions are visible in conventional magnetic resonance
imaging (MRI), appearing as hyperintense in T2-weighted
(T2w) images and as hypointense in T1-weighted (T1w)
images (see Figure 1). Fluid attenuated inversion recovery
(FLAIR) images have been shown to be the most sensitive
to WM lesions but can also present other hyperintensity
artifacts [9].

MRI is currently used to diagnose of MS, assess disease
progression, and evaluate the efficiency of drug therapy
[10]. The most common quantitative parameter is the lesion
load of the disease, expressed in terms of the number and
volume of brain lesions. The MRI measured lesion load is
highly correlated with clinical findings [11, 12]. An accurate
segmentation at the voxels level is a necessary step to calculate
the lesion load or any other measure.

Manual segmentation ofWMlesions is a time-consuming
process. Furthermore, the 3D data of an MRI scan requires
multislice segmentation which makes the manual segmen-
tation a laborious task [13]. Fully automated algorithms for
MS lesion detection and segmentation have been the focus
of research for many years. Algorithms to date have failed to
respond to the complexity of the task and new approaches
have recently been introduced [14–17].

Pattern recognition and machine learning techniques
have been widely investigated to identify the patterns of MS
lesions by making use of the neuroimaging data [18–21].
These segmentation methods can be classified as supervised
or unsupervised as a function of themathematical algorithms
they implement.

Unsupervised methods [23, 24] are designed to solve
the segmentation task without needing labeled training data.
These methods attempt to formalize the definition of a
lesion and differentiate lesions from other tissues on the
basis of anatomical knowledge. For example, in [21] the MS

Figure 2: ROI (blue) on a FLAIR image.

Figure 3: Candidate lesion regionsmask (blue) and the lesions (red)
on a FLAIR image.

lesions were identified as outlier from a constrained Gaussian
mixture model (CGMM). Likewise, in [16], the lesions are
identified as outliers using dictionary learning and sparse
coding. Some works [15, 25] use an anatomical atlas as the
prior anatomical knowledge, but since these works required
accurate 3D registration step, this step may be misdirected in
the presence of lesions.
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Supervised methods are a useful way to recognize a
pattern in a new test sample based on information learned
from the training samples. Typically the source of the training
labels is manual segmentation. Typically studies use one of
themany available supervised learningmethods, for example,
𝑘-nearest neighbor (𝑘-NN) [19], support vector machine
(SVM) [26, 27], cellular neural networks (CNN) [28], or
a Bayesian framework [29]. For example, one of the out-
standing works [14] used a discriminative random decision
forest to provide a voxel-wise probabilistic classification of the
volume.

Since the detection of white matter lesions (WML) is a
challenging task, extraction of discriminative features plays
an important role in lesion segmentation. Voxel-related fea-
tures, such as the probabilities of different tissues (graymatter
(GM), white matter (WM), and cerebrospinal fluid (CSF))
and the multichannel intensity (i.e., T1, T2, and FLAIR),
play an important role in neuroimaging studies. Crucially,
although some authors use only one sequence (T1 or FLAIR)
[15, 30], the lesion should be confirmed in other sequences
to avoid false positives (FPs) [13]. Nevertheless, voxel-related
features are not sufficient for good segmentation, since other
tissues have a similar appearance, and therefore, spatial infor-
mation is necessary [13]. Specifically, the spatial information
is usually included in the local mean, using the neighborhood
information as in many imaging applications [1, 2, 5, 19].
The local spatial information reduces the impact of noise and
improves coherence of the results. To use the spatial infor-
mation, mathematical techniques as Markov random fields
(MRF), graph cut, and kernel features are employed [31].

In this study we propose a patch-based method for
detection and segmentation of MS lesions in brain MRI by
utilizing multimodal spatial information. The segmentation
is first obtained based on intensity patch similarity and then
further iteratively refined with the spatial label information.
The proposed framework segments the MS image without
requiring registration or an atlas. This makes the framework
robust to registration errors which are likely to occur if there
is a high degree of anatomical variability.

The main contributions of this paper can be summarized
as follows:

(1) Adding a spatial consistency refinement step to the
patch-based approach using a novel label propagation
based metric.

(2) Creating a patch database for the MS task. In MS,
the lesion anatomical positions differ significantly
between subjects. We therefore cannot use the same
anatomical volumes of interest as in classic patch-
based segmentation.

(3) Providing a framework for segmentation of MS
lesions that does not require registration, with no
need for an atlas.

The rest of this paper is organized as follows. The
proposed method is described in the next section. Then, in
Section 3, extensive experiments and comparisons with other
segmentation methods on the MICCAI08 grand challenge
datasets are presented to demonstrate the segmentation

accuracy of the proposed method. Finally, in Section 4, we
discuss parameters influences on the proposed framework
and possible future directions.

2. Patch-Based Segmentation and
Label Refinement

2.1. System Overview. Our method is based on labeling the
test image voxels (as lesion or nonlesion) by finding similar
patches in a database ofmanually labeled images.The training
step involves constructing a patch database using expert-
marked lesion regions which provide voxel-level labeling.
Given a test image, we first detect candidate lesion regions for
further analysis. For all candidate voxels we find the 𝑘-nearest
neighbor patches from the patch database. Labels of the
selected patches are used to determine the current patch label,
using a voting scheme, thus generating the test image label
map. Finally, to enforce spatial consistency, we iteratively
incorporate a label decision from the neighboring voxels
obtained during the previous iteration, by adding them to the
𝑘-NN metric. Before we applied our method preprocessing
steps, subject selection step and candidate region detection
are done. In the following subsections we provide a detailed
description of the algorithm.

2.2. Preprocessing. Before starting the segmentation process
(in the training phase as well as for a new test image), a few
preprocessing steps are taken. During these steps, variability
caused by image formation is minimized by inhomogene-
ity correction and intersubject intensity normalization. The
brain is extracted to avoid nonrelevant tissues (i.e., the skull
and scalp).

2.2.1. Subsampling. We subsample the images so that they all
are the same size 169 × 129 × 130 and the same isotropic
resolution 1 × 1 × 1mm3. The subsampling is designed to
reduce the computational time and the background as much
as possible. From this step on, voxels outside the brain mask
are ignored.

2.2.2. Normalization. The most crucial step in the prepro-
cessing is the normalization of the intensities in the image.
This is mandatory to ensure that all brain tissues in different
subjects have the same contrast and luminance. We use the
normalization procedure of Nyúl et al. [32] to make patch
matching between different subjects possible. Some authors
use normalization to zero mean and unit standard deviation.
In the datasets we experimented with we found that using
the intensity as is provided better results. Note that for the
analysis we need very good intensity normalizations across
brains. In order to support the normalization procedure we
add an additional step of subject selection (Section 2.3.3) to
select the most similar brains in the training set.

2.2.3. Inhomogeneity Correction. To ensure that each tissue
type has the same intensity within a single image, the well-
known N4ITK intensity nonuniformity correction in [33] is
used on all three channels.
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2.2.4. Brain Extraction and Tissue Classification. A brain
mask was created using the BrainSuite13 toolbox [34] as
described in [35]. Classification to WM, GM, and CSF
was also applied using [36]. In this classification process,
voxels in an intensity-normalized image are classified using
a maximum a posteriori (MAP) classifier. This classifier
combines the partial volume tissue measurement model with
a Gibbs prior that models the spatial properties of the brain.

2.3. Creation of a Labeled Patch Database. Recent patch-
based segmentation works are based on the nonlocal means
(NLM) idea [6, 37], where similar patches are searched in
a cubic region around the location under study. A patch-
to-patch similarity in specific anatomical regions is assumed
to hold true and the segmentation tasks are considered to
have spatial consistency (e.g., the hippocampus in different
brains appears in the same region). MS lesions, however,
can be found in different brain regions and local region
patch matching cannot be implemented. To overcome this
shortcoming, we suggest a labeled patch database creation
step.

2.3.1. Patch Sources. In the training step, we extract regions-
of-interest (ROIs) around allmanuallymarked lesions. AROI
is defined as the bounding box of the lesion (see Figure 2).
Note that we expand the borders of the bounding box by a
few voxels (three) in order to capture the surrounding tissue
as well. ROIs therefore represent the lesion and nonlesion
around the lesions in a roughly balanced way. To better
represent the entire brain we add randomly selected patches
from all brain regions. This way we represent all brain tissues
but give special attention to complex lesion regions and the
“normal appearing white matter.” From each ROI, and for
each input channel, we then extract 3 × 3 × 3 patches as in
[16, 38].

2.3.2. Augmented Patch. Patches are concatenated across
the input channels (in our case: T1, T2, and FLAIR) to
form augmented patches 𝑃 ∈ 𝑅

81 (referred to hereafter as
concatenated patches). This set of patches forms the training
patch database D. We further examine the use of different
weights for the three modalities using multiplication by three
constants; see Section 2.5.3 for details.

2.3.3. Subject Selection and Patch Selection. In many seg-
mentations tasks, multiple training subjects (or atlases) are
used and a process of label fusion is needed to combine the
different segmentations. A subject selection step is needed
in order to ensure fusion of information from most similar
sources. For example, in [1, 39, 40], the nearest subjects are
selected for each region that requires labeling, by comparing
the Euclidean distance between corresponding regions. In
contrast, in our method, we do not use the concept of
similar anatomical regions for patch retrieval; rather we
use the labeled patch database originating from multibrain
regions. We define a global subject selection step, to facilitate
a selection of similar brains, to increase the accuracy of
similarity comparisons between patches. Given a set of 𝑀
training images {𝑇

𝑛
| 𝑛 = 1, . . . ,𝑀} we select a subset of 𝑁

training images {𝑇
𝑛
| 𝑛 = 1, . . . , 𝑁} whose Kullback-Leibler

(KL) divergence [41] from the test image is minimal. Let 𝑅
and 𝑄 be the multimodal histograms (i.e., three histograms,
one for each modality, concatenated) of the given test image
and a train image, respectively. The KL divergence is defined
to be

𝐷KL (𝑅 ‖ 𝑄) = ∑

𝑖

𝑅
𝑖
⋅ log

𝑅
𝑖

𝑄
𝑖

. (1)

The subject selection leads to a labeled patch subset 𝐷
𝐼
⊂ 𝐷

denoted by 𝐷
𝐼
= {𝑃

𝐷
∈ 𝑇
𝑛

| 𝑛 = 1, . . . , 𝑁}. For the
training images the label maps {𝐿

𝑛
| 𝑛 = 1, . . . , 𝑁} are

known. Following the subject selection step we select a subset
of patches𝐷󸀠

𝐼
, out of𝐷

𝐼
, by subsampling in fixed increments,

such that the number of lesion and nonlesion patches is equal
and the total number of patches reaches a fixed number. The
subsampling is done using the index numbers of the extracted
patches. Thus the subsampling is in a sense in space; recall
that patches from the same ROI have close indexes. From our
empirical experimentation we found an appropriate number
to be between 100 and 150 thousand patches.

2.4. Detection of Candidate Lesion Regions. Next, we focus on
automatically detecting candidate lesion regions in a given
test image. The detection is based on two clinical rules:

(i) The lesions appear as hyperintense in FLAIR images;
thus they can be roughly identified using threshold-
ing. It is well known that the FLAIR input channel
is a good source for analyzing MS lesions [13].
Using a global threshold (TH) on a FLAIR image
provides high sensitivity in the detection. Since such
a threshold results in poor specificity, we can use the
FLAIR input to provide an initial rough delineation
of candidate lesion regions (see [26] for a detailed
description).

(ii) The lesions are characterized by demyelination; thus
they are part of the WM tissue. Lesions tend to be
found in the WM or on the border between WM and
GM. We classify the brain tissues using a maximum
a posteriori probability classifier (MAP) [34] (see
preprocessing, Section 2.2.4) and extracted the WM
region (dilated) as a second mask. The dilation step
is done in order to guarantee that lesions surrounded
by WM, WM boundaries, and peripheral lesions will
be in the mask. The structure element used is a “ball”
with 10 pixels radius.

The final set of lesion candidate regions consists of all the
voxels above the FLAIR TH intensity which are in the WM
dilated region, as follows:

LesionMask (𝑥) =
{{{

{{{

{

1 FLAIR (𝑥) > TH ∩ 𝑥 ∈ WM

0 otherwise,
(2)
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where 𝑥 is a voxel in the test image and TH is defined similar
to [26]

TH = 𝜇GM + 𝜆 ⋅ 𝜎GM. (3)

𝜇GM and 𝜎GM are themean and standard deviation of the GM
tissue in the FLAIR test image, respectively. The parameter 𝜆
is an empirical parameter, selected experimentally as 0.5. The
extracted LesionMask, which includes the set of candidate
lesion regions, contains around 20% of the brain voxels, but
more than 95% of the lesions.This stage significantly reduces
the number of voxels that need to be further analyzed for
lesions. It was found in [26] to decrease false positives (FPs),
almost without any degradation of the true positives (TPs),
that is, less than 5% loss. The parameter 𝜆 was chosen as
the maximum value that maintains 95% of the lesions in
the candidate lesion regions. We optimized this parameter
between 0 and 1 with increments of 0.1. Note that for 𝜆 = 0

(i.e., TH = 𝜇GM) the results were almost identical.

2.5. Generation of an Initial Label Map. After the procedure
described above, the voxels marked by the mask are further
analyzed as lesion or nonlesion using a patch-based decision
method. This patch-based segmentation strategy is based on
the NLM estimator [6] that has been tested on a variety of
tasks [1, 2, 26]. Likewise, in our work, given an augmented
patch from a test image (combining several MR channels in
the patch definition), similar patches are found in the labeled
database described above.

Given input image 𝐼 and the selected patch database
𝐷
󸀠

𝐼
, the similar patch labels are combined to yield a lesion

segmentation map, as follows.

2.5.1. Patch Matching. For each voxel 𝑥 in the test image,
we extract a corresponding patch 𝑃

𝑥
centered at 𝑥. We then

retrieve 𝑘 similar patches 𝑃𝐷
𝑖
(𝑥), 𝑖 = {1, . . . , 𝑘}, from the

database𝐷󸀠
𝐼
. Each selected patch is weighted as follows:

𝑤(𝑥, 𝑃
𝐷

𝑖
) = exp(−

𝑑 (𝑃
𝑥
, 𝑃
𝐷

𝑖
(𝑥))

𝜎2
) , (4)

where 𝑑(⋅, ⋅) is the square Euclidean distance and 𝜎
2 is the

maximum distance measure obtained for all the voxels 𝑥 and
for all the patches in the database 𝐷

󸀠

𝐼
. Equations (6) and

(7) below are alternative metric definitions for modalities
balancing and spatial refinement, respectively.

2.5.2. Vote Aggregation. To obtain a label for a test voxel 𝑥, a
vote aggregation method is defined using all labeled patches
extracted via the 𝑘-nearest neighbors (NN) patch matching
procedure.The voxel 𝑥 appears in 𝑙 = 27 test patches centered
on 𝑥 and its neighboring voxels. For each test patch 𝑃

𝑥
we

extract 𝑘-nearest neighbor labeled patches 𝑃𝐷
𝑖
(𝑥) | 𝑖 =

1, . . . , 𝑘 from the dataset 𝐷󸀠
𝐼
. Each retrieved similar patch,

along with its labels {𝑙𝐷
𝑖
(𝑥) | 𝑖 = 1, . . . , 𝑘} and its weight,

contributes a vote. Thus, for a given voxel 𝑥 we have 𝑙 ⋅ 𝑘

votes that are averaged. The aggregation of votes results in a
probabilistic lesion decision, as follows:

𝑝 (lesion | 𝑥) =
∑
𝑦∈𝑃
𝑥

∑
𝑘

𝑖=1
𝑤(𝑦, 𝑃

𝐷

𝑖
(𝑦)) ⋅ 𝑙

𝐷

𝑖
(𝑦, 𝑥)

∑
𝑦∈𝑃
𝑥

∑
𝑘

𝑖=1
𝑤 (𝑦, 𝑃𝐷

𝑖
(𝑦))

, (5)

where 𝑦 goes over the 27 neighboring voxels of 𝑥 and 𝑙𝐷
𝑖
(𝑦, 𝑥)

is the label that the training patch 𝑃
𝐷

𝑖
(𝑦) (which is similar

to the patch centered at 𝑦) assigns to 𝑥. The final lesion label,
𝐿(𝑥), for each voxel 𝑥, is defined as 1 if 𝑝(lesion | 𝑥) > 0.5 and
0 otherwise.This content-based segmentation process results
in an initial label map.

2.5.3. Modalities Balancing. We examined the use of different
weights for the three modalities,𝑀 = {T1,T2, FLAIR}, using
multiplication by three constants, 𝐶

𝑀
= {𝐶T1, 𝐶T2, 𝐶FLAIR}.

This can be achieved by reformulation of the metric for the
patch-based voting aggregation algorithm described above.
The augmented patch (𝑃

𝑥
) is a concatenation of the T1 patch

(𝑃T1
𝑥
), the T2 patch (𝑃T2

𝑥
), and the FLAIR patch (𝑃FLAIR

𝑥
); thus

the balanced metric between a test patch 𝑃
𝑥
and a training

patch 𝑃
𝐷
is defined as follows:

𝑑
𝐼
(𝑃
𝑥
, 𝑃
𝐷
) = ∑

𝑀

𝐶
𝑀
⋅ 𝑑 (𝑃
𝑀

𝑥
, 𝑃
𝑀

𝐷
) . (6)

Thebalancedmetric has the opportunity to treat each channel
of the MRI acquisition differently and, hence, give more
weight to the more incriminating channel. This metric also
enables examination of the patch source, that is, using one,
two, or three modalities. For example, by using 𝐶

𝑀
= {𝐶T1 =

1, 𝐶T2 = 0, 𝐶FLAIR = 1} T2 is ignored.

2.6. Patch-Based Label Refinement. The above procedure
treats each voxel independently and ignores spatial consis-
tency constraints. For example, it may be the case that a single
voxel is labeled as nonlesion even though all its neighboring
voxels are labeled as lesions (see, e.g., the segmentation
results shown in Figure 4(c)). In the following, we focus on
incorporating spatial consistency into the lesion map result.
As noted in [13], a segmentation method that relies solely
on voxel intensity is unlikely to produce sufficient results. As
such, many attempts have been made to incorporate spatial
or anatomical information within the segmentation process
[8, 42]. In other patch-based segmentation algorithms [1, 2]
a search volume is defined around the voxel under study.
However, this cannot be applied in a MS lesion task given
the lack of clear anatomical location, in addition to the
potential weakness of reliance on good affine registration in
the presence of lesions.

In Wang et al. (2013) [40] an alternative framework that
combines the use of 𝑘-NN ball trees and a spatial weight label
fusion scheme to search for patches in large regional areaswas
suggested. This Spatially Aware Patch-Based Segmentation
(SAPS) is designed to overcome the problem of limited
search windows and combine spatial information by using
the anatomical location of the patch. Similarly, in Wang
et al. (2014) [42] an iterative refinement step using a sparse
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(a) (b) (c) (d) (e) (f)

Figure 4: Two segmentation examples (top: UNC06, bottom: UNC02): (a) FLAIR image; (b) first iteration; (c–e) iterations 2, 3, and 5; (f)
ground truth. Proposed method in blue; reference segmentation in red.

representation was implemented to correct the anatomical
errors introduced in the segmentation. Our goal is to use the
label information to enforce a consistency of the decision.The
term spatial consistency is adapted from Freeman et al. [5]
where the authors proposed a Markov random field solution
for spatial consistency.They introduced a one-pass algorithm
that used the neighbors relation in a similar way to the one
reflected in the MRF pixel grid.

In our method we enforce spatial consistency using a
newmetric for the patch-based voting aggregation algorithm
described above.Thenewmetric uses the current labelmap in
addition to the intensity information. Aweighting parameter,
𝛼, is used to determine the relative importance of the intensity
similarity and the spatial consistency constraint. This new
metric is used in the patch matching step and in the vote
weighing step. The metric between a test patch 𝑃

𝑥
and a

training patch 𝑃
𝐷
is defined as follows:

𝑑 (𝑃
𝑥
, 𝑃
𝐷
) = 𝑑
𝐼
(𝑃
𝑥
, 𝑃
𝐷
) + 𝛼 ⋅ 𝑑

𝐿
(𝑃
𝑥
, 𝑃
𝐷
) , (7)

where 𝑑
𝐼
(⋅, ⋅) is the intensity-based metric described above

and 𝑑
𝐿
(𝑃
𝑥
, 𝑃
𝐷
) is the square Euclidean distance between the

current labels of the patch 𝑃
𝑥
and the labels of training patch

𝑃
𝐷
. A larger weight parameter 𝛼 tends to favor the current

labeling decision of the algorithm. We use the following
definition for the weight:

𝛼
𝑡
= 𝛼
0
∗ (𝑡 − 1) (8)

with constant 𝛼
0
ensuring that the intensity metric and label

metric are on the same scale and 𝑡 is the iteration number.
In the first iteration, 𝛼 = 0; thus we start with the patch-
based method as described in Section 2.3. As 𝛼 is increased
fromone iteration to the next, it givesmore weight to labels of
the nearest-neighbor training patches in making the current

label decision. A large 𝛼 ensures that the labels of the nearest-
neighbor training patches coincide with the current label
decision and therefore the algorithm converges. We have
found that in practice there is no need for more than 4-5
iterations until convergence.

Our method imposes a global consistency constraint
between the labels of neighboring voxels in an efficient way.
For each patch we find themost similar patch based on inten-
sity while also taking into account spatial compatibility with
the neighboring voxels.The initial patch-based segmentation
results are sensitive to small hyperintense regions that are
caused by noise and inhomogeneities. These regions contain
patches that are similar to lesion patches. The majority
of these voxels are correctly labeled as nonlesions during
the refinement stage. Algorithm 1 summarizes the proposed
segmentation algorithm.

2.7. Implementation Details. The proposed method was
implemented in MATLAB 8.0 using C/MEX code and the
experiments were conducted using an Intel Core i7-3770
processor at 3.4GHz with 8GB RAM. The preprocessing
steps were carried out with using BrainSuite13 [34], 3DSlicer
[43], and MATLAB. The average overall runtime for a single
image is less than 4 minutes.

3. Results

This section reports on the segmentation results and com-
pares the patch-based approach to other top-rankedmethods
[14–16].

3.1. Datasets. We evaluated our framework using clinical
public data provided by theMS lesion segmentation challenge
which was introduced at the MICCAI MS lesion segmenta-
tion workshop 2008 [22]. This is the largest dataset publicly
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Input: An MR brain image.
Determine a subset of training brains that are most similar to the given test.
for 𝑡 = 1, . . . , 𝑇 do

(i) Set 𝛼
𝑡
= 𝛼
0
∗ (𝑡 − 1).

(ii) For each patch 𝑃
𝑥
centered at pixel 𝑥 in the test brain image, find 𝑘 similar patches {𝑃𝐷

𝑖
(𝑥)} in the training set using

the distance measure defined in (7).
(iii) Compute the weight of each selected patched using (4) and compute the weighted average lesion label decision using (5).

end for
Output: A voxel-labeled lesion map of the brain image.

Algorithm 1: The lesion detection and segmentation algorithm.

available, andmost recent works in the field use this dataset as
it provides a benchmark for algorithm comparisons. The MS
lesion grand challenge offers two datasets: a labeled dataset
(originally designed for training) and an unlabeled dataset
(used for testing). We will hereon term them the public set
and private set, respectively.The public set (train set) contains
20 cases, 10 from theUniversity ofNorthCarolina (UNC) and
10 from the Children’s Hospital Boston (CHB) datasets. The
private dataset (testing set) contains 15 cases from CHB and
10 from UNC. For the private dataset two lesion markings
are available, segmented by UNC and CHB rater. The dataset
shows high variability in intensity contrast, image noise, and
bias field. The dataset contains highly heterogeneous cases
and can thus be considered as a realistic test case. In all cases,
the data resolution is 0.5mm3 isotropic in three different
modalities (T1w, T2w, and FLAIR). All data were rigidly reg-
istered to a common reference frame and resliced to isotropic
voxel spacing using b-spline based interpolation by the
challenge organizers. Full documentation is available in [22].

3.2. Evaluation

3.2.1. MICCAI2008 Public Dataset (Training Set). Our pro-
cedure was evaluated in a leave-one-out framework for each
medical center (CHB andUNC).We computed true positives
(TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs) and used the following validation measures:
True Positive Rate (TPR) defined as TP/(TP + FN), Positive
Predictive Value (PPV) defined as TP/(TP + FP), and Dice
Similarity Coefficient (DSC) defined as (2TP)/(FP + FN +
2TP). The measures were computed using the expert label
map provided in the dataset. The scores appear in Table 1
along with a comparison to three state-of-the-art works using
the same dataset. The three selected works are Souplet et al.
[15], the winner of the MICCAI MS lesion grand challenge
[22]; Weiss et al. [16], the latest work published using this
database; and Geremia et al. [14], one of the outstanding
supervisedmethods published. Note that DSCmeasures were
not provided by the authors in the first two methods.

The proposed method achieved a mean TPR of 40%, a
mean PPV of 29%, and a mean DSC of 31%. These results
are comparable with the other state-of-the-art algorithms
using the same data. Two successful segmentation examples
are shown in Figure 4. The input image is presented in
Figure 4(a) and the final segmentation map is shown in

Figure 4(e). The similarity to the reference segmentation,
shown in Figure 4(f), is evident. There was a substantial
decrease in FPs, as part of the algorithm iterative refinement
procedure, in both cases. The reduction in FPs is more
significant in the second iteration. In addition, observe an
increased number of border voxels being classified as lesions
in iterations 3 to 5. Thus overall there was a significant
decrease in the quantity of the FPs and an increase in all the
measured indices. The result analysis in this section is based
on the public dataset.

3.2.2. MICCAI2008 Private Dataset (Testing Set). Quantita-
tive evaluation was also carried out on the private dataset
using a set of known metrics defined in [22]. In order
to allow quantitative comparison between methods and to
human export the organizers define average score. Each
metric is related to the result that could be expected if
an independent human observer would perform the seg-
mentation manually. Thus 100 points mean a perfect result
(the best value that could be obtained for a metric) and a
predefined amount (see [22] for details) of 90 for a score
that is typical for an independent human observer. The
algorithm results on the MICCAI2008 private dataset, as
provided by the MS-lesion challenge organizers, are available
in the challenge website (http://www.ia.unc.edu/MSseg).The
proposed method achieved an average score of 72%, where
the average scores on UNC and CHB databases were 68%
and 74%, respectively. Generally, a significant difference is
reflected when comparing the method results on the UNC
(68%) and CHB (74%) datasets. It is hard to understand the
specific reason for that difference in the absence of the GT.
We believe that this difference could be explained by changes
in the MRI acquisition parameters which the normalization
steps failed to bridge.

3.3. Computational Time. Due to the high dimension of
the search space, finding the absolute best match would
be computationally prohibitive. Instead, we used FLANN
(Fast Library for Approximate Nearest Neighbors) [44, 45].
FLANN is a library for performing fast approximate nearest
neighbor searches in high dimensional spaces. It contains
a collection of algorithms found to work best for nearest
neighbor searches and a system for automatically choosing
the best algorithm and optimum parameters depending on
the dataset. Using FLANN, each NN iteration takes less than
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Table 1: Comparison of current method to three state-of-the-art methods on clinical brain image data from the public part of MICCAI 08
challenge [22]. TPR, PPV, and DSC are in %, where 100 is perfect segmentation.

Patient Souplet et al. [15] Geremia et al. [14] Weiss et al. [16] Current method
TPR PPV TPR PPV TPR PPV DSC TPR PPV DSC

UNC01 1 1 2 1 33 29 31 0 0 0
UNC02 37 39 48 36 54 51 53 67 34 45
UNC03 12 16 24 35 64 27 38 57 25 35
UNC04 38 54 54 38 40 51 45 65 17 27
UNC05 38 8 56 19 25 10 16 36 9 14
UNC06 57 9 15 8 13 55 20 37 69 48
UNC07 27 18 76 16 44 23 30 51 48 49
UNC08 27 20 52 32 43 13 20 24 11 15
UNC09 16 43 67 36 69 6 11 29 35 32
UNC10 22 28 53 34 43 23 30 44 45 45
Average 28 24 45 26 43 29 29 41 29 31
CHB01 22 41 49 64 60 58 59 40 33 36
CHB02 18 29 44 63 27 45 34 41 11 17
CHB03 17 21 22 57 24 56 34 47 19 27
CHB04 12 55 31 78 27 66 38 37 7 12
CHB05 22 42 40 52 29 33 31 58 25 35
CHB06 13 46 32 52 10 36 16 43 38 41
CHB07 13 39 40 54 14 48 22 34 50 41
CHB08 13 55 46 65 21 73 32 48 52 50
CHB09 3 18 23 28 5 22 8 31 23 26
CHB10 5 18 23 39 15 12 13 13 28 18
Average 14 36 35 55 23 45 29 39 29 30

1 minute (≈40 sec) and results in a total time of less than
4 minutes. Note that when we compared the approximated
result to an accurate result achieved by brute force NN
implementation, the results were similar, without a significant
disparity. Computational times in other methods were not
specified in a way that enables comparison. In Souplet et al.
[15], an example of execution time on one case was given, and
the computational time reported (without the preprocessing)
was 34min. Weiss et al. [16] reported 5min, which is similar
to the patch-based method. Geremia et al. [14] did not report
the computational time for a single test case, but rather a
significant training time of 8 hours to train the random forest
classifier they used. All frameworks use similar preprocessing
steps; thus the comparison of preprocessing time is irrelevant.

3.4. Visualization of the Lesion Data in Intensity Space. The
driving force behind the patch-based approach is the intensity
similarity between the patches. We compared the mean
intensity of the lesions detected by the algorithm, to those
marked by the expert. Figure 5 shows the mean intensity of
the lesion across the multimodal images. Generally, the fit
between the lesion dots is high, suggesting that the intensity
range of our method is compatible with the ground truth.
Each sample in Figure 5 represents one lesion; some of the
lesions in the ground truth (the full blue dots) appear to
be significant outliers, for example, the two lesions with
the lowest FLAIR and T1 intensities and the highest T2-
intensity (FLAIR(T1) graph: upper left corner, T2(T1) graph:

bottom left corner). The sources of these lesions are patients
UNC01 and CHB05. Furthermore, this figure emphasizes the
importance of the subject selection step for outlier handling.

3.5. Influence of the Patch Database Definition. One of the
greatest challenges in the system is defining the patch
database. It is clear that if the database characterization
contains too few patches or represents the brain tissue and the
lesions poorly this can lead to misclassification. FP errors are
instances of retrieved patches which are similar to lesions but
originate from healthy tissue, and therefore their labels lead
to misclassification. We also tried to use only the patches in
the ROI marked as example in Figure 2 (Section 2.3) and the
results were slightly worse. Furthermore, the WM segmenta-
tionmaskmay contain classification errors or adjacent tissues
which may cause the need to decide whether patches from
other tissues are lesion or not.

In classical machine learning systems, the training data
and the testing data are usually identical in terms of their
properties. That is, to classify all the brain voxels, it makes
sense to train all of them. However, creating a huge database,
containing millions of patches would cause the classifier to
favor the healthy class. Therefore, we chose to build the
database with patches extracted from the lesion regions. The
parameter that determines the amount of patches that are
proximal to the lesions is the size of the bounding box around
the lesion. As the bounding box is larger it will contain
more healthy patches and the database size will increase.
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Figure 5: Gray level feature space for the lesions in all images. (a) FLAIR and T1 feature space; (b) T2 and T1 feature space. The blue dots
represent the mean intensity of the lesions as marked by the expert. The red dots represent the mean intensity of the lesions as detected by
the algorithm.
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Figure 6: (a) DSC (%) as function of the number of voxels expansion per ROI. Recall that we expand the borders of a lesion bounding box
by a few voxels in order to capture the surrounding tissue as well. The 𝑥-axis represents the number of voxels in this expansion. (b) DSC (%)
as function of the number of patches in the database, which was obtained from the ROI expansion size.

Figure 6 shows the influence of this parameter on the results
(DSC). The results in Figure 6(a) support our selection of a
bounding box expansion of 3 voxels. From Figure 6(b) we see
that the best DSC result was obtained for a patch number
between 100,000 and 150,000 patches.

3.6. Influence of Number of Nearest Patches (𝑘) and Subject
Selection (𝑁). Figure 7 depicts performance change as a
function of the number of nearest patches 𝑘 and for different
number of selected subject 𝑁. It shows that TPR increases
and PPV decreases as 𝑘 increases, which causes the DSC
to remain almost unchanged. We chose an optimal working
point, where the PPV and TPR are similar; that is, 𝑘 = 30.

Figure 7 shows that the optimal 𝑘 value is similar for
different 𝑁 values. A slight improvement was observed for
𝑁 = 5. When the number of training images is very large,
images that are not very similar (large KL divergence in the
subject selection stage) are also used, and thus the patch

matching is biased. Conversely, for𝑁 = 1 the patch selection
is too small, and thus for some of the patches similar patches
are not found.

Generally, we found that the True Positive Rate increases
as 𝑘 increases; this could be explained by the fact that in (4)
we calculate the weights for each patch vote. For dissimilar
patches this weight is practically zero; thus for 𝑘 > 100

the results are with small change. In practice we selected
𝑘 = 30 because when using more patches, the algorithm
tends to classify the patches as lesions. This can be explained
by the balanced labeled database we used. As explained in
Section 2.3.1, the selection of the patches represented the
lesion and nonlesion in a roughly balanced way; thus when
𝑘 > 30 the algorithm finds patches that are quite similar to
the target patch with high probability to be lesion. Moreover,
we found that the patches retrieved after the 30th patch are
different one from the other mainly in the noise level; this
causes the classification probability to be as in the database,
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Figure 7: DSC (%) for a range of number of nearest patches 𝑘 with
different number of selected subjects𝑁.

roughly balanced, and thus decreases the overall performance
(while the TPR is increasing).

3.7. Influence of the Spatial Refinement. Figure 8 shows the
effect of the iterative refinement step. An increase is seen in
the DSC from one iteration to the next. This increase was
observed consistently for all subjects. A mean DSC value of
21% was achieved before the patch-based label refinement
process; a meanDSC of 25%was obtained after two iterations
and in the last iterationwe achieved ameanDSCof 31%which
shows a substantial improvement.

The weighting for the spatial information is determined
by 𝛼
0
. Specifically, we selected a value of 20, which results

in parameter 𝛼 to range between 0 and 80 (from the initial
iteration to the fifth). The value of 𝛼 in the fifth iteration
is similar to the average intensity of a lesion (across all MR
channels).

3.8. Influence of Modality Combinations. In this work, aug-
mented patches are used; that is, we concatenate the patches
across the different MRI modalities. Using the augmented
patches in this way ensures that all three modalities are
approximately equally treated. Using the Euclidean distance,
which is sensitive to the intensity of the patch, may in
fact result in the fact that the brightest modality (FLAIR)
has the greatest effect. Still, the effect of the differences
in intensity is relatively random, making it legitimate to
assume that the overall effect on patch matching is negligible.
The segmentation performance was evaluated for various
combinations of modalities. Figure 9 shows DSC, TPR, and
PPV values for three single-modality, three double-modality,
and one multimodal patch sources. When using a single
modality, T2 resulted in the best performance. Combining
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Figure 8: TPR/PPV/DSC (%) with respect to iteration (IT) number
(using 𝑘 = 30 and𝑁 = 5). The first iteration is the initialization step
and the remainder are label refinement steps.
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Figure 9: Segmentation performance with different modality com-
binations (using 𝑘 = 30 and 𝑁 = 5). The results reported in
Section 3.2 and Table 1 are with all three modalities.

across several modalities reduced the FPs and increased
the TPs. On the entire dataset, the combination T1w +
T2w + FLAIR performed statistically better than all other
combinations (aside from T1w + T2w in the TPR measure).

Figure 10 shows DSC, TPR, and PPV values for five
different modality weights 𝐶

𝑀
= {𝐶T1, 𝐶T2, 𝐶FLAIR}. In this

experiment, we did not perform an accurate optimization of
the three weight parameters. Our goal was to identify the
influence of the parameter set and its possible future use in
patch-based segmentation approaches. Slightly better results
were achieved using 𝐶T2 = 2 and 𝐶FLAIR = 2. This result is
compatible with the fact that themain characteristic of aWM
lesion is that its intensity is brighter than its surroundings on
T2w and FLAIR.

4. Discussion and Conclusion

In this paper, we proposed a novel patch-based method for
detection and segmentation of MS lesions in brain MRI by
utilizing multimodal spatial information. The segmentation
is first obtained based on intensity patch similarity and then
further iteratively refined with the spatial label information.
The proposed framework segments the MS image without



International Journal of Biomedical Imaging 11

DSC TPR PPV

112

121

211

122

212

221

111

0

10

20

30

40

50

60

70

(%
)

Figure 10: Segmentation performance with different modality
weights (using 𝑘 = 30 and 𝑁 = 5). The numbers in the legend
from left to right are themodalityweights𝐶T1, 𝐶T2, and𝐶FLAIR in the
metric, respectively. (The results reported in Section 3.2 and Table 1
are with 𝐶T1 = 𝐶T2 = 𝐶FLAIR = 1.)

requiring registration or an atlas. This makes the framework
robust to registration errors which are likely to occur if there
is a high degree of anatomical variability.

The relationships between patches can be modeled as
a Markov Network (or random field) [46]. We let the test
brain image patches be observation nodes and selected the
𝑘 closest examples to each input patch as the different
states of the hidden nodes that we sought to estimate. In
[5] a good approximate solution for this relationship was
obtained by running a belief propagation. These authors
also introduced a new one-pass algorithm that computes
the patch compatibilities for previously selected neighboring
patches. In our algorithmwe use this idea in order to take the
relationships between the labels of neighboring patches into
account.

A few main characteristics of the presented approach
include the following: (1) The patch-based segmentation
method is nonparametric. We do not assume any intensity
models and rely only on intensity information. In other
parametric models the amount of lesion load needs to be
determined a priori. (2) We integrate the spatial information
through the patch-based metric by incorporating the label
term. The spatial refinement step adds both the neighbor-
hood relations and introduces spatial consistency. (3) The
proposed framework is supervised and thus aims to represent
the lesion and nonlesion tissues using labeled data. In other
unsupervised methods, finding outliers in the model is the
guiding principle.

In this paper, we compared the proposed method against
three othermethods. In Souplet et al. [15], the authors showed
that a global threshold on the FLAIR MR sequence, inferred
using EM brain tissue classification, suffices to detect most
MS lesions. The final segmentation is then constrained to
appear in the white matter by applying morphological oper-
ations. The method reported here achieves better accuracy
than the Souplet et al. method. In Geremia et al. [14], the
authors proposed a discriminative random decision forest
framework to provide a voxel-wise probabilistic classification
of the volume.Themethod usesmultichannelMR intensities,

knowledge about tissue classes, and long-range spatial con-
text to discriminate lesions from background. A symmetry
feature is introduced to account for the fact that some MS
lesions tend to develop in an asymmetric way.

When compared to this method, our findings are mixed.
This may be due to the fact that in the current work we are
using intensity only features. This representation is sensitive
to normalization. In their work Geremia et al. indicated
that sophisticated features such as context-rich and symmet-
ric features reduce the strong normalization preprocessing
requirements. We therefore believe that combining some of
the context-rich and symmetry features may enable us to
reach better results. In Weiss et al. [16], an unsupervised
approach addressing the problem with dictionary learning
and sparse coding was used. This method is the most recent
published work addressing the MS lesion segmentation task
using the MICCAI08 datasets.

It is interesting to note the low results for subject UNC01,
for both our algorithm and Souplet et al. [15] and Geremia
et al. [14] algorithm. This specific case contains two lesions,
where the first is relatively small and the second is very similar
to theCSF tissue and touches it (Figure 5 shows the significant
intensity outlier). In addition, when comparing the average
intensity of the second lesion in all three channels, it appears
as a significant outlier.

One of themajor drawbacks ofMRI is the lack of standard
and quantifiable interpretation of image intensities. Unlike
other modalities, such as X-ray computerized tomography,
MR images of the same patient taken on the same scanner
at different times may appear different from each other due
to a variety of scanner-dependent variations and therefore
the absolute intensity values do not have a fixed mean-
ing [32]. The key step in overcoming this drawback is a
normalization step during preprocessing (Section 2.2); this
enables intensity-based patch comparisons. We use state-of-
the-art intensity normalization schemes. Still, we have found
high sensitivity to any intensity differences. For this reason
we added a subject selection stage. Only the more similar
subjects have a patch-comparison conducted. Out of the 20
subject MR images in the datasets, a few of them (e.g., CHB2
and CHB5) differ markedly. The impact was considerable on
these subject’s segmentation results and in fact went from
total segmentation failure to reasonable results. In the patch
selection stage (Section 2.3) a fixed number of patches were
selected (150K). In our experimentations we have found that
this fixed number of patches is satisfactory for any training
data size, as long as the patch database formed contains
sufficient diversity. The fixed number of patches selected
provides invariance to data size and any scalability concerns.

In future research we plan to explore various additional
representations for the patches, such as using the Histogram
of Oriented Gradients (HoG [47]). One possible explanation
for the lower results we achieved on the private dataset is the
difficulty of the subject selection step to find sufficiently good
matches for the test cases. In other words the advantage of
comparing patches from a variety of brains and tissues caused
misclassification of lesions. Evidence for that is the relative
high score on the volume difference as compared with the
FPR and TPR scores.
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This framework could be coupled with dictionary learn-
ing, as well as additional pre- and postprocessing to improve
performance. In future work we aim to improve the results
using better database characterization and advanced metric
learning. Evaluation of our algorithm on larger datasets from
varying input sources will allow us to test the robustness
of the algorithm to noise and other variance. We are now
working on a system for screening of highly noisy patches,
or patches which are extracted from fundamentally different
brains. We believe that better learning of the database will
lead to a considerable improvement in the results.

To conclude, we presented a novel framework for patch-
based segmentation that integrates intensity information
with a patch-based label refinement.Themethoddoes not call
for nonlinear alignment of the training images onto the space
of the testing image. Many other works use this step, which is
amajor source of error and is computationally expensive.The
database concept, as the novel refinement step, can be easily
applied in variety of patch-based segmentation frameworks.
Although the patch-based algorithm is based on a 𝑘-NN
search, a good approximation for the search was found to
result in less than 5min. The total segmentation time (not
including preprocessing) makes themethod one of the fastest
proposed for the MS lesion task. The method proposed is a
general one and as we believe can be generalized to other
small lesion tasks such as liver metastasis and chest X-ray
pathologies.
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