
ORIGINAL RESEARCH
published: 16 October 2017

doi: 10.3389/fnins.2017.00575

Frontiers in Neuroscience | www.frontiersin.org 1 October 2017 | Volume 11 | Article 575

Edited by:

Sung Chan Jun,

Gwangju Institute of Science and

Technology, South Korea

Reviewed by:

Chang-Hwan Im,

Hanyang University, South Korea

Jens Haueisen,

Technische Universität Ilmenau,

Germany

*Correspondence:

Christoph Reichert

christoph.reichert@lin-magdeburg.de

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 31 July 2017

Accepted: 02 October 2017

Published: 16 October 2017

Citation:

Reichert C, Dürschmid S, Heinze H-J

and Hinrichs H (2017) A Comparative

Study on the Detection of Covert

Attention in Event-Related EEG and

MEG Signals to Control a BCI.

Front. Neurosci. 11:575.

doi: 10.3389/fnins.2017.00575

A Comparative Study on the
Detection of Covert Attention in
Event-Related EEG and MEG Signals
to Control a BCI
Christoph Reichert 1*, Stefan Dürschmid 1, 2, Hans-Jochen Heinze 1, 2, 3, 4 and

Hermann Hinrichs 1, 2, 3, 4

1Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany, 2Department of Neurology,

Otto-von-Guericke University, Magdeburg, Germany, 3German Center for Neurodegenerative Diseases (DZNE), Magdeburg,

Germany, 4Center for Behavioral Brain Sciences, Magdeburg, Germany

In brain-computer interface (BCI) applications the detection of neural processing as

revealed by event-related potentials (ERPs) is a frequently used approach to regain

communication for people unable to interact through any peripheral muscle control.

However, the commonly used electroencephalography (EEG) provides signals of low

signal-to-noise ratio, making the systems slow and inaccurate. As an alternative

noninvasive recording technique, the magnetoencephalography (MEG) could provide

more advantageous electrophysiological signals due to a higher number of sensors

and the magnetic fields not being influenced by volume conduction. We investigated

whether MEG provides higher accuracy in detecting event-related fields (ERFs)

compared to detecting ERPs in simultaneously recorded EEG, both evoked by a

covert attention task, and whether a combination of the modalities is advantageous.

In our approach, a detection algorithm based on spatial filtering is used to identify

ERP/ERF components in a data-driven manner. We found that MEG achieves higher

decoding accuracy (DA) compared to EEG and that the combination of both further

improves the performance significantly. However, MEG data showed poor performance

in cross-subject classification, indicating that the algorithm’s ability for transfer learning

across subjects is better in EEG. Here we show that BCI control by covert attention

is feasible with EEG and MEG using a data-driven spatial filter approach with a clear

advantage of the MEG regarding DA but with a better transfer learning in EEG.

Keywords: multi-modal control, brain-computer interface, spatial filter, CCA, ERP

INTRODUCTION

In recent years high effort has beenmade in the development of brain-computer interfaces (BCI). A
BCI is intended to recognize voluntary modulated brain signals in order to regain communication
and motor control in severely paralyzed patients. The three main types of brain signals applied
for BCI control are the P300 potential, often used in so called matrix spellers (Farwell and
Donchin, 1988), the µ-rhythm, an oscillation which is suppressed during motor execution and
motor imagery (MI) (Wolpaw et al., 1991), and the steady-state visual evoked potential (SSVEP),
which reflects oscillatory activity of the visual cortex driven by steady-state visual stimulation
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(Middendorf et al., 2000). Invasive techniques such as
electrocorticography (ECoG) and local field potentials (LFP)
provide superior signal quality compared to noninvasive
techniques but bear critical shortcomings concerning long-term
use and health risks (Schalk and Leuthardt, 2011). Consequently,
as a noninvasive technique, electroencephalography (EEG)
is commonly used in BCI applications. In contrast, the
magnetoencephalography (MEG) as another noninvasive
technique has a better spatiotemporal resolution (Hämäläinen
et al., 1993) but bears practical limitations for BCI use. It is
considered an orthogonal complement of EEG, which provides
additional value. Specifically, in the field of brain imaging MEG
has been shown to provide better spatial resolution in source
reconstruction compared to concurrent EEG (Leahy et al., 1998)
and to be superior in detecting deep coherent sources during
voluntary movements (Muthuraman et al., 2014). In contrast,
others claim that there is no difference in the accuracy of both
methods (Liu et al., 2002; Baumgartner, 2004). However, in
a recently published review article (Baillet, 2017) the authors
emphasize the strength of MEG over EEG.

Despite the obvious advantages of MEG, it has rarely been
used for BCI development, certainly due to its limited practical
applicability. Nevertheless, the capabilities of MEG should be
exploited for BCI algorithm development and as potential
application for rehabilitation and patient training. So far, several
attempts have been made in the field of MEG based BCIs.
For example, Buch et al. (2008) have trained stroke patients
in multiple sessions to control a BCI by MI. Spüler et al.
(2014a) have found coherence discriminating mental tasks in
an MEG BCI. Furthermore, Florin et al. (2014) demonstrated
real-time MEG application in the source space by neurofeedback
targeting to increase the theta-to-alpha ratio. While these
studies demonstrate the suitability of MEG for BCIs, the
direct comparison with EEG based BCIs has not been drawn
thoroughly. One such approach has been made by Mellinger
et al. (2007), who compared the performance distribution of
six subjects performing an MI task with an MEG BCI with the
performance distribution of a similar EEG study involving 96
subjects (Guger et al., 2003). However, the authors found no
significant difference. In Bianchi et al.’s (2010) study data of 2
participants in MEG and another 4 participants in EEG have
been compared at a single channel level regarding discrimination
ability, revealing a more focused discriminative signal in MEG.
The effect of spatial filtering has been investigated by Hill
et al. (2006) who have found that MEG (6 subjects) does not
perform better in MI classification compared to EEG (9 subjects),
with EEG benefitting from spatial filtering but MEG not. The
drawback of the previously mentioned studies is that they all
compared different samples of brain activity. A more reliable
approach would be the simultaneous EEG/MEG recording. One
study which addresses this approach (Ahn et al., 2013) has shown
that MI classification in MEG using the common spatial pattern
(CSP) method as spatial filter is not significantly different from
EEG. The authors argue that, according to Hill et al. (2006), the
high number of channels overfit the spatial filter. In contrast,
another spatial filter method based on beamforming performed
better compared to features extracted from the sensor space in

discriminating motor ERD (Battapady et al., 2009). However, a
comparison to EEG has not been provided.

While BCI-related studies which compare EEG and MEG
performance usually have investigated MI activity, occasionally
combined with CSP, the detection of event-related potentials
(ERP) and event-related fields (ERF) has rarely been targeted
using simultaneous EEG/MEG. To our knowledge, just one study
exists in this field, classifying single finger movements, with the
finding that MEG is superior to EEG (Quandt et al., 2012).

In previous work, we have demonstrated BCI control based
on ERF detection following a covert attention task (Reichert
et al., 2013). Later we have shown that optimal spatial filtering
considerably improves the accuracy in ERF detection (Reichert
et al., 2015). Based on this approach, we developed an MEG
based BCI, capable of discriminating 12 spatial locations on
which covert attention has been shifted to by the users.
The simultaneous recording of EEG and MEG permits a
direct comparison between ERP and ERF signals regarding
discriminability of temporally distinct sequences.

MATERIALS AND METHODS

Subjects
Nineteen subjects (ten female, mean age: 27.6 years SD = 4.1
years) participated in the study. All participants gave their written
informed consent and had normal or corrected-to-normal vision.
The study was approved by the ethics committee of the Medical
Faculty of the Otto-von-Guericke University of Magdeburg.

Recordings and Task
The subjects were seated in a magnetically shielded room where
MEG and EEG were simultaneously recorded while the subjects
performed the experiment. The MEG data were streamed to a
separate workstation to instantaneously process the data and
provide feedback. BothMEG and EEGwere sampled at 508.63Hz
with pass band from DC to 200Hz and an amplitude resolution
of 26.2 fT/bit and 118.51 nV/bit, respectively. MEG was recorded
using a 248 channel magnetometer system (4D Neuroimaging
Magnes 3600 WH) providing 23 additional reference sensors
to capture environmental noise. The EEG was recorded at 29
standard positions (Fp1, Fp2, Fz, F3, F4, F7, F8, FC1, FC2, Cz, C3,
C4, T7, T8, CP1, CP3, Pz, P3, P4, P7, P8, PO3, PO4, PO7, PO8,
Oz, O9, O10, Iz) and referenced against the right mastoid. The
impedance of the electrodes was kept below 5 k�. Furthermore,
we monitored eye movements by recording the horizontal and
vertical electrooculogram (EOG). EEG and EOG was recorded
using a Sensorium EPA-6 amplifier.

In a virtual scenario 12 colored and numbered (clockwise)
spherical objects were presented throughout the whole
experiment at equidistant places around a fixation cross
(radius of 4.15◦ visual angle; see Figure 1). Each trial consisted
of three phases. First, within 2 s subjects had to covertly choose
one item as a target before each trial (I-covert decision phase).
They were asked to select the items in an unpredictable order
but try to balance the number of selections per item by selecting
each object once per run. Second, to select an object, visual
stimuli were provided while attention was directed to the target
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FIGURE 1 | Depiction of the three phases of a trial. In phase I subjects made their decision, in phase II subjects selected their chosen target by attending the

respective stimuli (the scene shows the moment when the 4th object was highlighted) and in phase III feedback was presented and the truly selected object was

requested.

object (II-attentional selection phase). Subjects were asked to
maintain gaze directed to the fixation cross but attend their
chosen target covertly and ignore stimuli at all remaining
locations. The stimulus at the attended target object could
be considered an oddball, which elicits a characteristic brain
response compared to the ignored stimuli (oddball paradigm).
A decoding algorithm predicted which object location subjects
directed their attention at. Each selection trial lasted 10 s while
each object was highlighted with a temporally unique sequence
of visual stimuli. More precisely, each of the 12 objects was
highlighted (single flash of a white disk behind the object for
100ms) five times in a pseudo-random order, resulting in 60
flashes in total with a stimulus onset asynchrony (SOA) of
167ms. Minimum SOA between two successive stimuli of
the same object was 500ms, i.e., stimuli of any target object
were separated by at least two non-target stimuli. In phase
III, subjects were presented with the predicted object location
and had to confirm or reject the choice of the computer (III-
feedback/response phase). The object decoded by the detection
algorithm was marked by a gray ring. The subjects had to
respond whether or not the object was correctly recognized by
pressing the thumb key for correct and the index finger key for
incorrect feedback on a key pad. The feedback presentation in
phase III was repeated until the correct item was found, where
the item order was determined by the correlation measure
generated by the detection algorithm using the MEG recordings
of phase II.

In 40% of all trials we provided an incorrect feedback to evoke
error potentials (Chavarriaga et al., 2014), which are typically
measured when a subject perceives feedback different from
his/her intention. In such cases, we did not present the object at
rank 1 but we presented the second ranked object first. However,
the analysis of error potentials is not part of the current paper.
The duration of phase III depended on the number of incorrect
feedback, and the time the subjects needed to respond (subjects
were asked to respond clearly after the feedback presentation).
The experiment was performed in runs of 12 trials each. The
number of runs depended on the performance of subjects (10.7
runs on average).

Data Processing
Preprocessing
To decode the covert object selection in a single trial, we extracted
a data segment ranging from the first stimulus onset in the
sequence of visual stimuli to 800ms after the last stimulus
(total length of 10.63 s), adding 100ms buffers for filtering and
removing these samples afterwards. The MEG reference sensors
were used to cancel environmental noise from MEG channels as
proposed by Robinson (1989). We excluded three MEG sensors
from the analysis due to malfunction. To reduce the amount
of data and decrease calculation time, we applied a low-pass
FIR filter at the target Nyquist frequency and down-sampled the
data segment by factor 10, resulting in a sampling frequency of
50.863Hz.

Modeling Reference Functions
Our algorithm for detecting ERPs/ERFs is based on the idea of
matching the brain signals with a set of reference signals which
model the time course of the brain response to the target stimuli.
Commonly, those template-matching approaches are applied to
single channels, using a hypothetically defined template signal
(Fabiani et al., 1987; Smulders et al., 1994). Here, we make no
assumptions on the location or the time course of the signal.
Instead, we determine a set of optimal template signals by means
of statistical learning theory from multichannel brain signals,
which we callmatched filters.

The pre-processed brain signals of one trial represent a data
matrix X ∈ R

n×c consisting of n sampling points by c channels.
According to our stimulation scheme, within the 10 s of the trial
60 flashes were presented with 5 flashes at each of the 12 locations.
For example, the object at one location was highlighted with flash
no. (12, 20, 27, 38, 59) while the object at another location was
highlighted with flash no. (2, 19, 30, 37, 56). Hence, each location
is defined by a unique temporal signature of flashes, i.e., a unique
stimulus sequence.

Depending on a trial’s stimulus sequences, we modeled a set
of reference functions for each of the m locations. Similar to
the method in Reichert et al. (2015) the reference functions
were defined as a set of d impulse functions for each stimulus
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sequence specific to an object location e = 1 . . .m, where the
jth sample point after stimulus onset (j = 1 . . . d) is set to
1, and 0 otherwise. More precisely, we define sets of reference
functions Ye ∈ R

n×d, where one element in Ye (at sample point i
and reference function j) is defined as

ye
(

i,j
)

=

{

1 | i=j+ t, ∀t ∈te.
0 otherwise

(1)

The parameter t constitutes the sample point at which one of the
stimulus onsets in te of object location e occurred. In this study,
we used d = 41 sample points, which corresponds to a time
window of 0.8 s. Note that this kind of function set can be seen as
a matrix which maps an arbitrary matched filter s ∈ R

d×1 into a
sequence of repetitive copies of s, starting at onsets te, by ordinary
matrix multiplication:

ve = Yes. (2)

We assume that all target events elicit comparable brain
responses but no systematic activity at non-target stimuli. Then,
ve can be considered a kind of event-related signal component
that models the evolution of s following each target stimulus. See
Figure 2 for a visualization of these relationships.

The use of one impulse function for each time point in s

enables us to estimate the matched filter as an arbitrary signal
time course with a minimum of orthogonal functions, which is in
contrast to the approach introduced by Spüler et al. (2014b) who
applied the average signals of each channel as reference signals.
Next we explain how we determined the matched filters s, which
are assumed to optimally represent the measured brain signals.

CCA Spatial Filtering
A method capable of solving this problem is the canonical
correlation analysis (CCA), which maximizes the correlation
between linear combinations of two sets of variables. Applied to
the present problem, CCA determines a set of spatial filters that
linearly weight channels of recorded brain signals to enhance the

FIGURE 2 | Reference functions which copy intervals of short signals

according to a sequence of event onsets. For demonstration purposes only

three event onsets, a time interval of five sample points and two sample

signals are shown. Matrices are depicted transposed.

signal strength and simultaneously determines a set of matched
filters that weight the signal at time points after target event
onset such that the correlation ρk(uk, vk) of the kth component
is maximal, where

uk = Xwk (3)

and

vk = Ysk. (4)

Consequently, CCA reveals a vector wk of channel weights,
which we call spatial filter, transforming brain signals X into
the canonical variate uk, which can be seen as surrogate
channel. Simultaneously, CCA reveals a vector sk of weights,
representing a signal template following target events, termed
matched filter. The canonical variate vk can be considered
a surrogate time course reflecting the potential event-related
components of a stimulation sequence. Similar to the principal
component analysis (PCA), the optimization criterion decreases
with increasing k, rendering the first components most relevant.
In Figure 3 we provide an overview of our optimal spatial filter
concept.

We performed the estimation of the linear weightings,
applying CCA, by using a set of training trials which we
concatenated along the time domain to a common matrix
X and a common matrix Y . Since the correlation decreases
with increasing k, we obtain the surrogate channels sorted by
significance in descending order. To reduce the number of
surrogate channels for further processing, we removed canonical
variates providing canonical correlations ρk(uk, vk) below 0.1 or
providing a zero correlation probability value below 0.05, which
was obtained from a χ2 statistic for the null hypothesis that all
canonical correlations ρi (ui, vi) , ∀i ≥ k are zero.

Decoding Algorithm
Using brain activity, the decoding algorithmmakes predictions to
which position the subjects shift attention, based on identifying
the event sequence specific to the object location. After the
optimal filters were estimated by CCA from a set of training

FIGURE 3 | Concept of the optimal spatial filtering approach. While the CCA is

only applied to training data (dashed lines), for the filtering of new data (solid

lines) ordinary matrix multiplication is sufficient.
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data, they can be used to transform new data to surrogate
channels, representing a canonical subspace. For each trial the
stimulus sequence for each object e is assigned in Ye. The
surrogate channels uk are calculated with Equation (3) and
surrogate time courses vk,e are calculated for each object location
with Equation (4). Afterwards, for each object the correlation
ρk,e(uk, vk,e) is calculated. Subsequently, the correlations are
transformed applying the inverse hyperbolic tangent and
averaged across components. This reveals a vector of m average
correlations, serving as a ranking measure for the probability that
an object was attended by the subject, the highest correlation
denoting the most probable object.

Validation
The previously described decoding approach was applied during
the experiment, providing the participants a feedback, attention
to which of the items the decoder recognized from their brain
activity. In the first trial, the spatial filter w was initialized with
wi = 1, i = 1 . . . c, resulting in an average filter across
all channels and s was initialized as hat function (triangular
function), constituting a simplified ERP signal. This enabled us
to make a prediction even in the first trial. Subsequently, wk and
sk were determined using the CCAmethod involving all available
training data, i.e., from previous trials. In the initial two runs the
filter estimation was performed after each trial, afterwards after
each run.

We report the decoding accuracy (DA) as the ratio of correctly
decoded target objects and total number of trials. Despite having
serious limitations, the information transfer rate (ITR) according
to Wolpaw et al. (1998) is commonly used to compare BCI
performance, taking DA, trial length and number of selectable
items into account. Here we report practical ITRs, i.e., an interval
for feedback presentation and preparation for the next trial is
included, which we assume to be 2.5 s, in addition to the stimulus
duration.

Post-analyses
Suitability of MEG and EEG for Decoding ERPs
Given the low amount of individual training data, we applied
a leave-one-run-out cross-validation framework to compare the
MEG data with the EEG data using the same algorithms and
data acquired during the same trials for training and testing,
respectively.

Although the proposed method is suitable to be applied to full
channel sets, we additionally investigated subsets of channels to
compare EEG andMEGwith a matched number of channels. We
selected the channels of a subset according to their contribution
to canonical variates of brain signals. Therefore, we first applied
CCA to the whole channel array and then repeated CCA with the
channel subset of size N, selected by the highest weightings in w

from the initial CCA. Note that finding the N most contributing
channels reveals the potential power of either modality.

The spatial filter we used here is a data-driven method, which
makes no assumptions as to the location or scaling of a channel.
Furthermore, because electrical and magnetic fluctuations are
perfectly synchronized, an appropriate combination of the
channels of either modality might complement each other to a

more representative signal component. Therefore, we combined
both signal modalities by providing the algorithm with MEG
and EEG channel data in parallel and rely on the data-driven
spatial filter approach to find the most predictive event-related
component. We also tested the influence of stimulation duration
on the DA in order to investigate the performance of faster BCI
control. To achieve this, we truncated the analysis intervals to
lengths of 2, 4, 6, and 8s, which corresponds to 1, 2, 3, and 4
stimuli per item.

Transfer Learning
With the aim to reduce training time, we investigated the
ability of transfer learning with either modality (MEG/EEG) by
performing a leave-one-subject-out cross-validation, i.e., each
trial is decoded by a classifier that was trained on all available data
of subjects except the individual.

Furthermore, we investigated the dependence of DA on
the amount of training data by using a maximum number
of chronologically recorded trials to construct the decoder.
Moreover, we entered data from other subjects and used this pool
of data as an initial training set to provide a classifier for the
actual subject, which subsequently is incrementally substituted
by individual data. As initial data pool we used 100 trials of group
recordings, providing the highest canonical correlation revealed
in the spatial filter construction using all available trials but not
those from the current individual, assuming that these are the
most reliable trials for generalization. Here we used only a subset
of the available trials to enable the decoder construction in a time
suitable for BCI application on the one hand, and to be able to
completely replace the group trials by individual trials on the
other hand.

Statistical Evaluation
To make sure that the decoding procedure reveals reasonable
results, we determined the guessing level of the classifier by
performing a permutation test. For this purpose we randomly
reassigned the labels of the object-specific sequences and
performed the cross-validation approach for each subject. This
implies the assumption that subjects directed their attention to
a randomly selected object which they actually not attended.
We repeated the permutation test 500 times for each subject
providing a joint distribution of decoding accuracies. The
guessing level is calculated by the mean value of this distribution
and confidence intervals are given by determining the 95%
percentile, respectively.

For comparison of DA between any kinds of two methods we
applied paired, two-sidedWilcoxon signed rank tests.We applied
non-parametric test statistics due to the low number of samples
(one observation per subject). A paired signed test was chosen,
because we were interested in the individual change of a relatively
wide distributed performance measure.

Different combinations of training data, like combining EEG
and MEG compared to EEG or MEG only could reveal different
filters. In order to investigate the robustness of the spatial filter
approach, we compared its outcome by calculating Pearson’s
correlation coefficients r between the obtained components.
Since r values are not a metric parameter, individual r values were
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transformed by applying the inverse hyperbolic tangent before
statistical analyses.

RESULTS

Control for Eye Movements
We monitored eye movements sporadically during the
experiment on a video screen and systematically offline by
means of EOG recording. The EOG data showed no evidence
that subjects moved their eyes to different locations. Eye blinks
occurred mainly outside the attentional selection phase. We
performed a cross validation applying the proposed algorithm
but using the two EOG channels instead of EEG or MEG. The
EOG activity was not sensitive as to the target stimuli (average
DA was 19.3%; SD: 6.4%) as EEG or MEG activity (see below).

Validation of Decoding Accuracy
Subjects freely selected the objects starting with the first trial, i.e.,
without a cue-based training phase. They followed the instruction
to select targets equally often with only small deviations (average
standard error for selecting each object once per run, i.e., 10.7
times, was 0.18). After each trial they responded with a button
press whether or not the feedback indicated the correct selection.
This notification provided the information needed to update the
spatial filter and the decoder, respectively. Using only MEG data
in this closed-loop BCI, the average DA across subjects was 91.1%
(SD: 7.6%). This corresponds to a practical ITR of 13.9 bit/min
(SD: 2.3 bit/min), assuming a trial length of 12.5 s.

In order to compare the decoding method for the use with
MEG signals and the use with EEG signals, we performed cross-
validations, leaving one run out (12 trials) as a testing set in
each cycle. This approach provides a constantly high number of
training samples to the learning algorithm, contrary to predicting
in an online fashion, where only past data are considered. Hence,
the cross validation approach revealed an average DA of 95.8%
(SD: 4.2%) using the full MEG sensor array. In contrast, average
DA achieved with the simultaneously recorded EEG signals was
88.2% (SD: 9.7%) indicating a significantly higher DA with
MEG (p < 0.05). However, because MEG has the advantage of
providing a higher number of spatial locations where signals
are measured, the decoding approach might benefit from a
higher information content. Therefore, we tested both modalities
depending on the number of channels involved, where only
the N channels (N = 4, 8, 12, 16, 20, 24, 29) revealing the
highest spatial filter weightings, obtained by CCA on the full
channel array, were selected within each cross-validation cycle.
We found that DA increased as a function of the number of
channels (see Figure 4). MEG benefits from the higher number
of sensors, since DA was significantly different using 29 MEG
sensors (90.3%, SD: 6.7%) compared to using all available sensors
(p< 0.05). However, compared to EEG, the MEG recordings also
permitted higher DA keeping the number of involved channels
equal for both modalities (p< 0.05 withN = 12, 20, 24, 29). Also,
an analysis of variance (ANOVA) using factors modality [F(6, 252)
= 4.74, p < 0.05] and number of channels [F(6, 252) = 26.68, p <

0.05] revealed statistically significant differences. Note that in this

FIGURE 4 | Average DA achieved in a cross-validation procedure using EEG

and MEG involving different numbers of channels. The maximum number of

EEG channels was 29, the maximum number of MEG channels was 245. Error

bars indicate standard error of the mean, asterisks indicate p < 0.05. The solid

black line indicates the guessing level determined as mean DA in a

permutation test, where the dashed lines mark the 95% confidence interval.

analyses the selection of channels inMEGmight be beneficial due
to the higher number of candidates.

The spatial filter approach we used is unspecific to the location
of channels, suggesting that it is also possible to merge EEG
and MEG signals. Because it is assumed that EEG and MEG
provide mutually complementing signals (Hämäläinen et al.,
1993), we tested whether EEG provides additional information.
Hence, we merged the EEG and MEG channels into one data
set, assuming each of the channels include some subcomponent
of the underlying brain processes. We found a statistically
significant increase of the DA to 97.0% (SD: 3.2%; p < 0.05).
Because this result is quite close to perfect prediction, one
might argue that there is few potential for improvements.
Thus, we truncated the stimuli sequences which induces a
decrease of decoding performance but would permit a higher
communication speed (see Figure 5). The shortest sequence is
composed of one stimulus per item and trial which would
result in a stimulus duration of 2 s. In each of the sequence
lengths (2, 4, . . . , 10 s) the MEG permits a higher DA than
EEG and combined EEG/MEG is even higher. An ANOVA
with factors modality and number of stimuli proved statistically
significant difference between modalities [F(8, 270) = 36.6, p <

0.05] and stimulation time [F(8, 270) = 102.2, p < 0.05] but no
interaction effect. Although the gain with combined modalities is
significant (p < 0.05), the numerical difference is relatively low.
However, the relative decrease of MEG performance with shorter
trials is significantly lower compared to the relative decrease in
EEG performance using 2 and 3 stimuli per item (p < 0.05).
Importantly, the results reveal that 3 stimuli per item (6 s of
stimulation) are sufficient to decode the attended item with more
than 90% accuracy using MEG or combined EEG/MEG. Thus,
assuming a trial length of 8.5 for 3 repetitions per item, an average
ITR of 19.6 bit/min could be achieved. In contrast, EEG shows an
average accuracy of 79.1% (SD: 13.5%) implying 15.0 bit/min.
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FIGURE 5 | Average DA achieved in a cross-validation using EEG, MEG and

combined EEG and MEG involving different numbers of stimuli per item. Error

bars indicate standard error of the mean, asterisks indicate p < 0.05. The solid

black line indicates the guessing level determined as mean DA in a

permutation test, where the dashed lines mark the 95% confidence interval.

Transfer Learning
In this experiment we predicted attended objects using individual
spatial filters which were updated during the course of the
experiment, where accuracy increased with the number of trials.
Hence, a critical drawback in all BCI applications is the amount
of training needed to achieve reliable performance of the system.
In this regard a critical question is whether information of
other users can help to accelerate or even avoid the training
process. First, we investigated the development of DA in subjects
individually, by iteratively increasing the set of training trials.
This gives a DA for each set of 1 to N trials. The DA dependence
on the amount of individual training is shown in Figure 6. Our
first observation is that the initial spatial filter, which generates
the mean signal over all sensors only from the very first trial,
achieves poor performance in EEG as well as in MEG. However,
in contrast to MEG the performance of the initial spatial filter in
EEG is above guessing level and higher than applying a trained
spatial filter using only one training trial (indicated by the trough
in Figure 6A). The figure also reveals a continuous increase of
DA with increasing number of training samples both in EEG and
MEG. We determined the number of trials that are sufficient to
achieve a DA not significantly different from using 100 training
trials, where DA was 81.9% (SD: 11.6%) with EEG and 90.5%
(SD: 8.2%) with MEG, indicated by p < 0.05. As a result, 62
training trials for EEG and 94 forMEGwere found using a signed
rank test. Note that the cross-validation results reported in the
previous section provide higher accuracies because each trial is
tested with a well-trained spatial filter estimated from up to 120
trials (each involving 5 target stimuli). In the current validation
scheme, simulating an online prediction, only past data are used
and hence, early trials are decoded from a sparsely trained spatial
filter. This kind of simulation permits the validation of EEG for
using our approach online. The average accuracy achieved after
100 trials accords to a practical ITR of 11.2 bit/min (SD: 3.0
bit/min) when assuming a trial length of 12.5 s.

FIGURE 6 | Average DA as a function of the number of training trials used to

estimate the spatial filter. The performance rapidly increases with the first 20

trials using only the individual EEG (A) and MEG (B) recordings. Involvement of

cross-subject trials (black lines) permits high performance with the first trial in

EEG but not in MEG. Shaded areas indicate standard error of the mean.

In a second analysis we tested the ability of transfer learning
by initially using a pool of 100 training trials from different
subjects and iteratively replacing trials with individual subject
data until the training set consisted of pure individual data. The
result of this analysis is shown with the black lines in Figure 6.
The selection of trials from different subjects revealed an initial
accuracy of 68.9% (SD: 13.6%) for EEG and 34.9% (SD: 16.0%) for
MEG, where no data of the current subject were required. With
successive inclusion of individual subject data for the spatial filter
estimation the DA increases, approaching the level of individual
subject performance. This approach reveals a higher benefit of
EEG with the cross-subject approach, specifically for the first
trials. An ANOVA revealed significant differences between DA
in individual decoder training and transfer learning for the first 9
trials in EEG and for the first 2 trials in MEG (p < 0.05).

Moreover, transfer learning across subjects was tested here
in a leave-one-subject out cross validation, using all available
trials from different subjects. This yielded a general spatial filter
which we used to predict the attended item of the left-out
subject. The approach provides a performance estimate for the
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case that a new subject would use the BCI without any training.
Here we found a statistically significant better performance on
EEG (mean DA 71.0%, SD: 13.9%) compared to MEG data
(55.0%, SD: 16.0%; p < 0.05). This suggests that EEG data
provide better generalization across subjects compared to MEG.
However, the successful application of a generalized spatial filter
depends on the subject, which is implied by strongly varying
decoding accuracies achieved with single subjects, ranging from
36.2 to 94.7% using EEG signals. The performance of subjects in
within-subject cross-validation and in the across-subject analysis
is strongly correlated (r = 0.9).

Evaluation of Extracted Brain Signals
Thematched filters as revealed by CCA denote optimal templates
of the brain responses to attended stimuli. Here we evaluated
the first matched filter s1 across subjects indicating the most
significant event-related component in relation to the average
signal (Figure 7). The figure also shows the topographic maps at
the peak signal of the difference waves, which were calculated as
the difference between themean signals acquired during attended
events and ignored events. The diagrams indicate the event-
related brain signal at the channel showing the highest peak in
the difference wave. Here, the average signal of both conditions
“attended” and “ignored” are shown as well as their difference
and the highest ranked matched filter. The first observation is
that in the “ignored” condition, as well as in the “attended”
condition the signal is modulated by an oscillation around 6Hz.
This common signal fluctuation corresponds to the stimulation
frequency (every 167ms one of the items is highlighted) and is
canceled in the difference wave but also present in the matched
filter. Thus, this oscillation most likely reflects brain activity,
which is evoked after each of the visual stimuli, implicated
by brain processes following a visual stimulus. Also, because
the stimulation frequency is approximately at 0.5 times the
alpha frequency, resonance phenomena could be involved in
this effect (Salchow et al., 2016). However, because these visually
evoked ERPs are present in both target and non-target trials,
they have no impact on the detection of the target. The first
matched filter s1 in EEG data reveals a component showing
a positive peak around 400ms, where the maximum signal is
located at Cz, concordant with the signals measured in oddball
paradigms, where it is established as the P300 response. While
the signal course of the first matched filter in MEG is similar, but
showing the peak earlier (around 340ms) than EEG, the channels
which show the maximum signal are located bilaterally over left-
central and right-central regions. The patterns reflect the typical
orthogonality of effects measured with EEG and MEG. In both
modalities the estimated matched filter appears to be delayed
by 40–60ms compared to the difference waves of the channels
showing the highest peak.

Note that the spatial filters and matched filters found in single
subjects differ in spatial distribution, shape and ranking. Given
that the first component provides the highest contribution to
the detection of the target event, we restricted the single subject
evaluation to this component. Thus, we compared the matched
filters obtained in single subjects with the first matched filter
of the whole dataset by determining the correlation coefficient

FIGURE 7 | Subject group average of brain signals. The diagrams show

average signal courses of the sensor (marked in the topographic maps)

showing the highest difference between signals following attended and

ignored stimuli. Black lines represent averaged signals over intervals following

ignored stimuli (thin line) and attended stimuli (thick line). The difference wave

indicates the attentional component which shows a characteristic P300. The

peak of this difference waves defines the time point (vertical dashed line) which

is shown with the topographic maps. The first matched filter (blue line) shows

a time course similar to the averaged signal of the channel peaking in the

“attended” condition. Due to scaling, units are arbitrary.

and selecting the filter with highest similarity but a correlation
of at least ρ̄ > 0.5. For the EEG data in 14 subjects the first
matched filter of the individual was highest correlated with the
first matched filter of the group and in four subjects the secondly
ranked component of the individual was highest correlated with
the first group component (ρ̄ = 0.837). For the MEG data, the
first matched filter was equally ranked for all subjects where the
average correlation was ρ̄ = 0.909.

Finally, we evaluated the first matched filter extracted in
single subject analysis with EEG data, MEG data, and combined
EEG/MEG data. The first matched filter obtained with combined
EEG/MEG correlated using only EEG signals with ρ̄ = 0.932.
When using only MEG data the correlation was ρ̄ = 0.989,
suggesting a higher impact of MEG data in the combined data
set. Also, comparing the spatial filter vectors w1, the average
correlation is high for the spatial filter in the EEG data set and
the channel weights corresponding to EEG in the combined data
set (ρ̄ = 0.902). Again, for MEG channels this correlation is even
higher (ρ̄ = 0.975).

DISCUSSION

We implemented a BCI system based on the decoding of event-
related magnetic fields evoked by covert attention. Simultaneous
EEG recordings were analyzed with the same data-driven
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decoding algorithm to compare the performance of ERP and ERF
decoding. We found that ERFs can be more accurately decoded
than ERPs using single subject cross validation. However, the
transfer of learned brain patterns between subjects was better
with EEG. The method used here proved to be a suitable
algorithm to extract informative subcomponents from sensor
data that permit a reliable prediction of spatial attention.

We applied a data-driven spatial filter that learned optimal
linear combination of channels from a set of training data.
Correlation of the linearly combined channels with the estimated
optimal reference signal indicated the degree of similarity of
brain responses to different stimulus sequences. With this
approach we could predict the covertly attended object with
high accuracy. The circular arrangement of objects guaranteed
an equidistant location of all objects around the fixation cross.
Furthermore, the classifier decoded sequences of events that
were unspecific to locations. Thus, it is unlikely that brain
responses evoked in the visual system, focally or peripherally
stimulated, contribute to ERP/ERF decoding. Previous work
has revealed that visual brain activity biases the prediction in
matrix spellers when subjects focus on stimuli (Brunner et al.,
2010), but the potential users of such a system might not be
able to shift their gaze. The number of studies considering this
requirement in their communication systems is small compared
to the amount of gaze-dependent BCI studies. In a review article
(Riccio et al., 2012) 34 papers dealing with gaze independent
BCIs were reviewed. The average ITR of the reported studies
was in auditory BCIs 3.5 bit/min (SD: 2.8 bit/min), in tactile
BCIs 2.6 bit/min (SD: 1.4 bit/min) and in independent visual
BCIs 6.1 bit/min (SD: 2.8 bit/min). Promising transfer rates
were reported from offline analyses investigating independent
BCIs achieving theoretical rates of 10.5 bit/min (Acqualagna
and Blankertz, 2013). Recently, it has been shown that colored
facial expression stimuli can induce an average online ITR of
13.9 bit/min (Chen et al., 2016). Another study reported an
average ITR of 10.77 bit/min using a bimodal auditory-tactile
BCI (Yin et al., 2016). The online ITR of 13.9 bit/min achieved
in our study is comparable or even exceeds the-ITR of other
approaches targeting gaze independence. This shows that the
decoding approach is well-suited for detecting sequences of ERFs
elicited after an attended target was highlighted. Additionally,
in offline analyses we showed that the ERP decoding with our
method also revealed an ITR above 11 bit/min.

A key feature of our approach is the data-driven estimation
of spatial filters, which permits the application of the algorithm
to EEG and MEG data and a combination of both, without
hypothetically determining relevant channels. Comparing EEG
with MEG showed that decoding ERFs reveals superior accuracy
as compared to ERP decoding. This supports the findings of
Quandt et al. (2012), who could discriminate individual finger
movements on one hand significantly better with MEG. Given
that motor potentials are elicited in a small region during finger
movement execution, this result is most likely due to a higher
spatial resolution of MEG. The advantageous spatial resolution
of MEG results from the absence of distortions of magnetic fields
by tissues, which is in contrast to EEG where the electrical field
is spread by volume conduction (Wheless et al., 2004). However,

the spatial resolution of MEG also relies on the higher number
of channels as shown by the higher accuracy achieved using the
full sensor array compared to a sensor set reduced to the number
of EEG electrodes. Nevertheless, when we used equal numbers
of channels in both modalities, MEG proved to be significantly
better than EEG. In contrast, the blurring effect caused by volume
conduction in EEG, most likely rules out an improved DA with
only a higher number of electrodes. The question whether or not
high density EEG improves DA should be addressed in future
investigations.

While our results contribute to clarify the controversies on
methodological advantages of MEG, we are aware that this
technique implicates limitations for BCI use. The lack of mobility
and the sensitivity to magnetic fields induced by electrical
currents and ferromagnetic material is a limitation especially for
controlling robotic devices. Despite the superior DA, MEG is
associated with more practical cost and might be considered less
feasible, although upcoming newMEG technologies (Alem et al.,
2017) may allow for better practicability. Nevertheless, a use for
occasional communication sessions in severely paralyzed persons
is conceivable. Also, the rehabilitation of stroke patients could be
a field of application (Silvoni et al., 2011).

A further statistically significant increase of DA could be
observed when we provided combined EEG/MEG to the spatial
filter algorithm. This supports the notion that EEG and MEG are
complementary methods because EEG mainly measures radially
oriented currents while MEG can only measure tangentially
oriented currents (Hämäläinen et al., 1993). The advantage of
combined bioelectric and biomagnetic data has also been shown
in reconstructing source dipoles (Fuchs et al., 1998; Baillet et al.,
1999; Sharon et al., 2007) and coherence-based network analysis
(Muthuraman et al., 2014). When we used the two modalities
combined in our study, MEG determined more strongly the
time course of the components obtained by the spatial filter.
Furthermore, thematched filter inMEG correlated higher than in
EEG with the filter obtained from combined data, corroborating
the superiority of MEG.

We also investigated whether the advantage of MEG and
combined EEG/MEG is higher with shorter trial lengths. As
expected, the DA decreased with shorter trial lengths but the
relative decrease was lower in MEG (compared to EEG using
40% less stimuli), still achieving more than 90% accuracy on
average and permitting a higher ITR compared to the initial trial
length. The results suggest that MEG and combined EEG/MEG
is suitable for a fast and accurate selection of one out of 12
items within 6 s. The gain of DA in combined EEG/MEG is
significant but presumably too low for the effort of additional
EEG measurements.

A known issue in BCI control is the requirement of training
and calibration for a new user and in most cases even for every
session. Therefore, algorithms and techniques permitting transfer
learning from group data applicable to individual subjects are of
high interest. We found that a relatively high DA can be achieved
with EEG, where some subjects match the group pattern much
better than others. In contrast, the transferability of an MEG
based decoder is much worse where accuracy is insufficient for
communication. One reason for the limited transfer performance
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of MEG could be that the subject’s head is individually positioned
under the sensor array while EEG channels have standardized
positions. Thus, channel weightings of narrow local activity can
easily be shifted to other channels between subjects in MEG.
Another reason could be the higher diversity of MEG patterns,
which are sensitive to the individual location and orientation
of dipoles induced by intracellular currents as opposed to the
EEG patterns generated by volume currents. Potentially, a source
reconstruction could reveal better transfer learning results when
classifying MEG data. Importantly, the successful application of
group data to predict covert attention in a new subject as in our
study is an important aspect to reduce calibration time and hence
to improve the usage of BCIs.

Further validations revealed that when updating the cross-
subject decoder with individual data, accuracy increased to
converge with results of pure individual data. Certainly, adding
individual data for decoder training requires the true label of
a trial which is only available in a user training mode but this
analysis gives an estimate of the accuracy achievable with a
specific amount of training. The time required for training with
our approach is quite short compared to other approaches and
could even be omitted using EEG as suggested by the cross-
subject analysis.

The strength of our approach is that spatial filters and
matched filters are estimated simultaneously without any
hypothesis about time course and location of the signals. A
comparable approach aiming at reducing MEG channel signals
representing an experimental effect in a single time course
was introduced in Schurger et al. (2013). However, while in
this approach average signals are projected in each time step,
a simultaneous optimization of spatial and temporal filters is
not provided. A method strongly related to spatial filtering
and often used to estimate dipole locations is beamforming.
Related to our approach it is important to note that in contrast
to beamforming, the weights we obtain are independent of
any spatial information. This implies that sources cannot be
localized and that the components still might be composed of
different superimposed sources. Rather, the linear combinations
maximize the correlation with a model of the target signal,
being most relevant for the detection of ERPs/ERFs. A data-
driven beamforming approach, which similarly to our approach

is not able to localize sources but is intended to detect single-
trial ERPs, was already introduced by Treder et al. (2016).
The advantage of spatial filtering using CCA for ERP detection
has been demonstrated using EEG (Spüler et al., 2014b) where
trial averages were used as reference functions. Here we used
an approach similar to Reichert et al. (2015), estimating the
reference signal from the brain signals. The most prominent
signal component showed a time course which is typical for
oddball paradigms producing the P300 response. Also, the
variability among individual brain patterns reveals further signal
components which vary among subjects in shape and rank
of their canonical correlation. Nevertheless, the components
extracted in single subjects were highly correlated, demonstrating
the plausibility of the approach. The reliability of CCA for
extracting task-related signal components we also demonstrated
by the similarity of components and spatial filters obtained from
EEG, MEG and combined EEG/MEG signals.

An investigation of P300 components using spatial PCA has
been published by Spencer et al. (2001). The methods used in this
study have much in common with the CCA spatial filter. While
the authors of this study evaluate the decomposition of virtual
ERPs, they make no use of the extracted components to decode
attended and ignored events. In this regard, to our knowledge
this is the first study which performs single trial detection of
ERFs by applying sophisticated signal processing and compares
the result with concurrently evoked ERPs as well as with a multi-
modal approach which combines both, highlighting an advantage
of MEG over EEG.
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