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Abstract: Herein we present, an exhaustive docking analysis considering the case of autotaxin (ATX).
HA155, a small molecule inhibitor of ATX, is co-crystallized. In order to further extract conclusions
on the nature of the bond formed between the ligands and the amino acid residues of the active site,
density functional theory (DFT) calculations were undertaken. However, docking does not provide
reproducible results when screening boronic acid derivatives and their binding orientations to protein
drug targets. Based on natural bond orbital (NBO) calculations, the formed bond between Ser/Thr
residues is characterized more accurately as a polar covalent bond instead of a simple nonpolar
covalent one. The presented results are acceptable and could be used in screening as an active negative
filter for boron compounds. The hydroxyl groups of amino acids are bonded with the inhibitor’s
boron atom, converting its hybridization to sp3.
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1. Introduction

Boronic acid is considered as a bioisostere for carboxylic acids bearing lower acidity [1]. It emerged
as a pharmacophore group after the clinical approval of the drug bortezomib [2] in 2003 as an anticancer
agent. Boron is located before carbon in the periodic table of elements. Both elements present similarities
in behavior when participating in organic molecules [3]. In nature, boron-containing compounds can
be found in plants, algae, microorganisms [4], and in certain natural products derived from bacteria [5].
Boron contains an empty p orbital in its sp2 hybridization state, presenting a trigonal planar geometry.
Upon covalent bond formation, sp3 hybridization takes place, leading to a tetrahedral geometry [6].

Several recent reviews pointed to the significance of boron-containing compounds and to
their medicinal interest. Boron derivatives were found to present various biological activities:
Neuroprotection [7], antifungal [8], anti-inflammatory [9–14], anti-oxidant [15], anti-trypanosomial [16],
antidiabetic [17], anticancer [2,9–12,18], antibacterial [19,20] and/or antiviral [21]. Recently, a second
boron compound, tavaborole [8], gained approval as a topical antifungal agent. Thus, boronic acid
derivatives continuously attract researchers’ attention for medicinal applicability as novel “lead
compounds”. However, their biological mechanism of action and their mutagenic activity in mammals
are still under study and are not well defined. Thus, several researchers have tested various boronic
acid derivatives as mutagenic risk factors using the Ames assay as a reference protocol of mutagenicity.
Bortezomib and the tested compounds were registered as Ames-negative [22].

Based on our previous 2D-QSAR and 3D in silico studies on boronic acid derivatives [23,24],
we present herein a docking analysis in order to define the typical steps and variables that are
important to incorporate in a library’s virtual screening when organoboron derivatives are included.
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The enzyme autotaxin (ATX) was used as a biological target in our investigation. The enzyme is
located extracellularly and participates in lipid metabolism, converting lysophosphatidylcholine (LPC)
to lysophosphatidic acid (LPA). Its active site is located within its catalytic phosphodiesterase (PDE)
domain with known recorded XRD data (PDB entry 2XRG) in the presence of a small molecule
inhibitor HA155 [25], presenting a threonine-mediated covalent bond between the enzyme and the
inhibitor. Moreover, we performed DFT calculations in order to explore the nature of the covalent
bond formed between the inhibitor HA155 and two residues similar like Ser/Thr. Additionally, boron
compounds are known to form covalent bonds with His [26] and/or Asp [18] residues. The use of
covalent “warhead” groups in Medicinal Chemistry are an emerging strategy to achieve irreversible
protein inhibition [27,28]. Hence, designed molecules bearing a covalent warhead can be used in
targeting shallow pockets or clefts at the surface of proteins to selectively disrupt protein–protein
interactions (PPIs) [29] in vivo and in other contexts.

2. Results and Discussion

The usage of typical constraints in the screening of boronic acid derivative libraries could lead
to a false negative presentation with regard to binding poses and scoring function values, failing to
replicate possible covalent bonds among boron and the amino acids Ser/Thr existing in the active site.
Thus, alternate steps must be taken into account when we are dealing with hit compounds bearing
boron in their structures producing plausible bindng poses. In particular, using standard hydrogen
bond (HB) or contact constraints for Thr209 provided HA155 solutions with 100% off poses based
only on the inhibitor’s shape score with minimum HB network scores. Alternatively, the introduction
of custom constraints incorporating a smart pattern-like option is needed in order to better simulate
the original HA155 query in our training sets (see Scheme 1). Additionally, smart patterns I and II
reproduce a number of binding modes with other neighboring residues bearing an oxygen atom, such
as Asp171/Tyr306 (and excepting Thr209). The statistics for our study groups are presented in Table 1.
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Scheme 1. General smart pattern representation structures (I, II, III, IV) used for the performed
constrained docking simulations.

Table 1. Summary statistics for our study groups.

Best Poses General Score (%) HBs Formed (%) Chemgauss4 Score
# Training set_1 68–93 87–95 −5.64
Training set_2 40–46 82–90 −9.48
Training set_3 20 94 −8.67
Training set_4 77–82 92–98 −9.35
Training set_5 82–85 71–95 −9.21
Training set_6 66–92 92–93 −9.05

* Training set_7 7–30 55–80 −12.18 (off position)
# Smart pattern constraint I; * no active constraints. HB: hydrogen bond.

Training set_1 used custom constraint I and provided the worst results. On the other hand,
Training set_7 (with no active constraints) resulted in impressively high scoring functions, but entirely
lacked the correct binding mode. Training set_3 had as active constraint patterns I, II, and III, and
provided improved results. For the study of the remaining cases, all of the above-mentioned constraints
(I–IV) were used (differentiated on the included distance). The distance was presented as a sphere with
descending radius centered on the Thr209 hydroxyl group varying from preset 3.5 to 1.25 Angstroms
(Å). The presented results were acceptable and could be used in screening as an active negative filter
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for boron compounds. Among Training sets_2, _4, _5, and _6 (based on their statistics), the most
enriched proved to be Training set_4, with a cut-off radius of 2.5 Å. Figure 1 provides a detailed 2D
map analysis of the ATX active site.
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The optimized geometries of serine and threonine amino acids are the global minima (as shown
in Figure 3). Two hydrogen bonds are observed in serine. The first is located between the carboxylic
hydrogen and the nitrogen of the backbone amine (1.929 Å), and the second HB is between the
carboxylic oxygen and the residual hydroxyl group (2.040 Å). In threonine, the HBs can be observed
between the carboxylic hydrogen and the amine group (1.899 Å).
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The optimized geometries of the bonded serine and threonine with boronic acid (HA155) are
presented in Figure 5. In both structures, the hydroxyl groups of the amino acids are bonded with
the inhibitor’s boron atom, converting its hybridization to sp3. The geometric parameters are shown
in Table 2. The highest occupied molecular orbitals (HOMO) of the two complexes are shown in
Figure 6, depicting the electron density concentrated between the boron atom of compound HA155
and the amino acids. The natural bond orbital (NBO) calculations—both in HA155-Ser and HA155-Thr
complexes—showed that the bond between boron and oxygen (B-O3, Figure 5) more correctly refers to
a polar covalent bond. Based on these calculations, it seems that the occupation number in oxygen
is approximately 1.65 electrons, and in boron 0.40 electrons, respectively. Accordingly, the degree
of polarity for our models was calculated as 1.770 for HA155-Thr and 1.821 for HA155-Ser, with a
threshold of 1.700 for the covalent bond.
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Table 2. Geometrical parameters of the HA155-Ser and HA155-Thr. The bonds are given in Å and the
angles in degrees.

HA155-Ser HA155-Thr

Bonds *

B-O1 1.460 1.465
B-O2 1.484 1.496
B-O3 1.521 1.495

Angles

B-O3-C1 119.6 122.8

Intermolecular Hydrogen Bond

H1 . . . O3 1.568 -
H2 . . . O4 2.210 -
H1 . . . O2 - 1.955

* The atom numbering follows the same format as represented in Figure 4.
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The binding energies of the HA155-Ser complex were calculated both in the gas phase as well as in
water solution, providing 311.18 and 300.13 kcal/mol, respectively, whereas the energies for HA155-Thr
were 326.49 and 309.52 kcal/mol. The high binding energies found here support the formation of a weak
covalent bond between compound HA155 and both Ser/Thr residues. These results provided extra
evidence of the reversible nature of this bond, as it was also previously experimentally documented [13,15].

3. Computational Details

Docking studies. The target enzyme ATX (PDB entry 2XRG) co-crystallized with the small molecule
inhibitor HA155 was used in our study [25]. All simulations were reproduced on a typical desktop
PC running a Windows 7 64-bit operating system (Dual Core Intel Pentium 3.2 GHz CPU processors,
RAM 8 GB), using OEDocking suite v. 3.0.1 programs (OpenEye Scientific Software, Inc., Santa Fe, NM,
USA; www.eyesopen.com) [31–33] using Exhaustive Search Algorithm. Visualization of the docking
solutions was performed with PyMol v. 1.4.1 software [30].

The PDB data were used to evaluate our results, and the HA155 molecule was represented in
smile format compiled in a simple *.txt file, where with the use of Open Babel [34] we transformed it
to the respective *.smi file. Consequently, we acquired its conformer library file with the use of Omega
v.2.5.1.4 software (OpenEye Scientific Software, Inc., Santa Fe, NM, USA; www.eyesopen.com) [35,36] in
*.oeb.gz format. Preparation of the respective *.pdb-formatted protein was done using the OEDocking
v. 3.0.1 suite program MAKE RECEPTOR (OpenEye Scientific Software, Inc., Santa Fe, NM, USA;
www.eyesopen.com) [31–33]. All water molecules were removed. The docking box was centered on
the protein active site which included the co-crystallized HA155 molecule implementing a balanced
site-shape potential by an outer contour docking space. No residue modifications were presented
unless otherwise specified. Several different constraint options were utilized for residue Thr209 in an
effort to better reproduce the original data, and the protein was then saved as a *.oeb-formatted file for
further use. Command line-based docking was then performed, specifying the above prepared files as
input for the OEDocking v. 3.0.1 suite software (OpenEye Scientific Software, Inc., Santa Fe, NM, USA;
www.eyesopen.com) [31–33], generating 60 final poses for each model. All of the results were further
refined by the use of OEDocking suite program FRED rescore v. 3.0.1 (OpenEye Scientific Software,
Inc., Santa Fe, NM, USA; www.eyesopen.com) [31–33], providing the sorting of poses using default
parameters. Scoring functions were based on Chemgauss4 values, and the solutions were saved as
*.sdf files, offering the possibility of being used further for visualization purposes.

Density Functional Theory (DFT) calculations. All geometry optimization calculations were carried
out on a typical desktop PC running a Windows 7 64-bit operating system (Intel i7 2.9 GHz CPU
processors, RAM 4 GB), in gas phase, using the G09W [37] software package. The hybrid DFT method
with Becke’s [38] three-parameter functional and the nonlocal correlation provided by the Lee, Yang,
and Parr expression [39] (B3LYP) was used for optimization, employing the 6-31+G(d,p) basis set [40–42].
Frequency calculations for all optimized geometries ensured that the calculated structures were the
global minima of the potential energy surface of the molecules. Single point calculations starting from
the optimized geometry of all structures were also carried out in water solvent using the PCM [43–45]
model as implemented in G09W software. Natural bond orbital analysis was performed using NBO
3.1 software package as implemented in the G09W package [37], in order to evaluate the covalent
bond nature between the studied compounds.

4. Conclusions

Virtual screening of large libraries of boronic acid derivatives fail to dock in a natural mode, since
they commonly form covalent bonds with Ser and/or Thr residues when they are presented in the
protein active site. Hence, they are left out as false negatives both in regard to their binding poses and
their scoring function values. This issue demands programs that can incorporate custom constraints
such as smart pattern options or pinpoint selection.
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Based on NBO calculations (performed originally herein), the formed bond between Ser/Thr
residues is characterized more accurately as a polar covalent bond instead of a simple nonpolar
covalent one. The presented results are acceptable, and could be used in screening as an active negative
filter for boron compounds. The hydroxyl groups of amino acids are bonded with the inhibitor’s boron
atom, converting its hybridization to sp3. Furthermore, the extremely high binding energies of the
HA155-Ser/Thr complexes revealed that this reaction is not spontaneous. These theoretical data are
also in accordance with the experimentally witnessed reversible binding of the inhibitor HA155 inside
the ATX catalytic domain active site.

The findings described above highlight general options that need to be considered when large
libraries of boron compounds are virtually screened to identify novel hits in drug design.
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Abbreviations

The following abbreviations are used in this manuscripts

2D two-dimensional
3D three-dimensional
ATX autotaxin
B3LYP Becke three-parameter Lee-Yang-Par
CPU central processing unit
DFT density functional theory
HB hydrogen bond
HOMO highest occupied molecular orbital
HTS high-throughput screening
LPA lysophosphatidic acid
LPC lysophosphatidylcholine
NBO natural bond orbital
PDB protein data bank
PDE phosphodiesterase
PPI protein-protein interaction
RAM random access memory
QSAR quantitative structure-activity relationship
XRD X-ray diffraction
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