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Abstract: The 1,3-butadiene motif is widely found in many natural products and drug candidates
with relevant biological activities. Moreover, dienes are important targets for synthetic chemists,
due to their ability to give access to a wide range of functional group transformations, including a
broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes
have attracted much attention over the past decades, and the search for new synthetic protocols
continues unabated. The aim of this review is to give an overview of the diverse methodologies that
have emerged in the last decade, with a focus on the synthetic processes that meet the requirements
of efficiency and sustainability of modern organic chemistry.
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1. Introduction
1.1. Natural and Non-Natural 1,3-Dienes

The 1,3-diene structural moiety represents the key framework of many natural [1–4]
and non-natural [5] products displaying a broad spectrum of biological activities [6].
Representative examples of natural products containing the 1,3-diene motif are the vita-
min D2 precursor ergosterol (ergosta-5,7,22-trien-3-β-ol) [7], the potent cytotoxic agent
zampanolide [8] and the macrolide antibiotic tiacumicin B [9,10] (Figure 1). Apart from
natural dienes, synthetic ones have also aroused great pharmacological interest. For
instance, 3-styrylacrylonitrile I exhibited high inhibitory potency against myeloid cell
leukemia sequence 1 (Mcl-1) [11], diene dimer II is a potent antimalarial [12] and 5,5-
diarylpentadienamide III is a transient receptor potential vanilloid antagonist I (TRPVI), of
interest for the treatment of neuropathic pain [13] (Figure 1).

1.2. Applications of 1,3-Dienes

The 1,3-diene moiety have proved its usefulness and versatility in modern organic syn-
thesis, serving as building block for the construction of important target molecules [14,15].
The reactivity of 1,3-dienes has been extensively studied, including transformations such
as polymerization reactions [16–18], conjugate additions [19], asymmetric hydrofunctional-
izations [20–23], difunctionalizations [24–27], C−H functionalizations [28–31], cycloaddi-
tions [32–34] and cross coupling reactions [35,36].

1,3-Dienes are also important industrially. Buta-1,3-diene, produced from steam
crackers on a scale of more than 10 million tons per year worldwide, is a monomer in the
production of synthetic rubber. [37] Other 1,3-dienes, such as isoprene and myrcene, are
also produced on a multi-ton scale and used for their conversion of into more complex and
useful molecules, mainly in the polymer industry [38] (Figure 2).
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1.3. Stereoselective Synthesis of 1,3-Dienes

In view of the important biological roles of 1,3-dienes and their relevance as synthetic
intermediates, it is not surprising that their synthesis have been at the forefront of Organic
Synthesis practically from its inception [39].

The stereochemistry of dienes not only influence the outcome of further chemical
transformations but also determine the physical and biological properties. Therefore, it
is essential that any synthesis of substituted dienes be stereoselective. The stereoselective
construction of the 1,3-dienes moiety have been typically achieved by transition-metal-
catalysed cross-coupling reactions between pre-fuctionalized alkenyl cross-coupling part-
ners of predefined stereochemistry [40]. Alternatively, well-known olefination methods
for the stereoselective synthesis of alkenes have been extended to the synthesis of dienes.
Additional approaches include olefin metathesis and rearrangements of enynes, alkynes or
allenes, for example.

1.4. Aim of the Review

In the last ten years, the way of understanding organic chemistry has shifted dramati-
cally. In modern organic synthesis, there is a greater focus on economic and environmental
factors, such as the use of affordable and environmentally safe reagents and solvents, the re-
cyclability of materials or the employment of unconventional more efficient energy sources.
As the literature published in the last ten years attest, the preparation of 1,3-dienes is not an
exception and nowadays atom economy and sustainability are aspects of central concern
in most of the synthetic protocols developed. Notwithstanding this synthetic interest, no
comprehensive reviews dealing with the synthesis of 1,3-dienes have appeared in the past



Molecules 2021, 26, 249 3 of 40

few years and the most recent one just covers the period 2005–2010 [41]. A review on the
synthesis of 1,3-dienes has been published recently, but is restricted to the synthesis of
(E,Z)-1,3-dienes and its application in natural product synthesis [42].

The aim of this review is to describe the most relevant progress that has been made
for the preparation of 1,3-dienes from 2010 up to the present, with a focus on the applica-
tion of flourishing synthetic methodologies as, among others, C-H activation, photoredox
catalysis and domino and multicomponent reactions. The synthetic routes have been
grouped according to the way the 1,3-diene scaffold has been assembled. Thus, syntheses
of 1,3-dienes occurring via cross-coupling reactions, both transition-metal-catalysed and
metal-free, are discussed in Sections 2 and 3, respectively. Methodologies for 1,3-diene
preparation centred on aldehyde dienylation are covered in Section 4, while examples of
olefin methathesis-based approaches are detailed in Section 5. Section 6 is dedicated to re-
arrangement/isomerization reactions and, finally, Section 7 contains several miscellaneous
protocols.

The present review is not intended to be an exhaustive compendium of all the recent
literature in diene chemistry, but a rational and systematic presentation the most significant
developments in the stereoselective synthesis of 1,3-dienes published after 2010. The
examples presented in each section correspond to the selection made by the authors in an
attempt to provide representative cases of interesting recent methodologies.

2. Transition Metal-Catalysed Cross-Coupling Reactions

During the past 50 years, transition-metal-catalysed cross-couplings have revolution-
ized chemical science, exemplifying one of the most powerful and popular method for the
formation of carbon–carbon bonds and playing a central role in the synthesis of bioactive
products and synthetic building blocks. On account of the remarkable benefits for society,
the 2010 Nobel Prize in Chemistry was awarded jointly to Heck, Negishi and Suzuki “for
palladium-catalysed cross couplings in organic synthesis” [43].

This section is devoted to the critical analysis of the most relevant recent strategies for
the construction of the 1,3-diene moiety based in transition metal-catalysed cross-coupling
reactions. For this purpose, the methodologies will be broadly divided in two groups:
those based on the reaction of two sp2 carbons (Cvinyl–Cvinyl cross couplings) and those
resulting from the reaction of a sp carbon and a sp3 carbon (Calkynyl–Calkyl cross couplings).

2.1. Carbon(sp2)−Carbon(sp2) Cross-Coupling

Transition-metal-catalysed alkenyl–alkenyl coupling is one of the most widely used
methods for the synthesis of dienes and polyenes. The classical methods usually in-
volve either the coupling of two activated vinylic carbons (generally a vinyl halide and
a organometallic halide, in Suzuki or Negishi type processes) or the coupling of just one
activated vinylic carbon and an alkene in a Heck-type process. More recently, the transition-
metal-catalysed cross-coupling with substitution of a C-H bond, rather than a halide (so
called “C-H activation”) has emerged as a highly desirable alternative, since such pro-
cesses usually generate less waste and the starting materials are often easily available and
inexpensive.

2.1.1. Cross-Coupling of Two Activated Vinylic Carbons

Among all the variants of the transition-metal-catalysed alkenyl–alkenyl coupling, the
Pd-catalysed Suzuki-Miyaura coupling of stereodefined vinyl halides and vinylboranes
reagents has long been regarded as a convenient method for the stereoselective construction
of 1,3-dienes. However, stereo scrambling have been observed for several substrates. A rep-
resentative example is the synthesis of dienoic esters; under Suzuki standard conditions,
stereo scrambling to varying extents (≥5%) had been previously reported for the coupling
of vinylboranes and 3-haloacrylates [44]. Negishi’s group found that the use of CsF as a
base can suppress stereoisomerization, affording dienoic esters in good yield and excellent
stereoisomeric ratio, as depicted in Scheme 1 [45].
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Several recent reports describe modified Suzuki coupling procedures for the highly
stereoselective synthesis 1,3-dienes. In 2015, Kurosawa and co-workers described a useful
synthetic sequence for the stereoselective synthesis of diverse olefin derivatives, including
1,3-dienes, based on a (Z)-selective vinyl-triflation of α-alkoxyacetoaldehydes, followed by
Suzuki cross-coupling (Scheme 2) [46].
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CH2Cl2, rt, 15 min

84%

DBU: 1,8-Diazabicyclo[5.4.0]undec-7-ene
BBN: Borabicyclo[3.3.1]nonane

Scheme 1. Highly selective synthesis of all four possible stereosiomers of 2,4-dienoic esters by
fluoride promoted Suzuki alkenylation.
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Scheme 2. Synthesis of (Z)-dienes via Suzuki cross-coupling reaction.

The classical Suzuki approach for the synthesis of dienes, however, requires the
hydroboration of an alkyne using air and moisture sensitive boranes to generate the
corresponding vinylborane, which cannot be stored for prolonged times. A recent Suzuki-
based methodology which avoids the pre-formation of unstable boranes was reported in
2016 [47]. The protocol involves a palladium-mediated, base-free, Suzuki−Miyaura cou-
pling of propargyl alcohols and boronic acids to generate the intermediate allenes, which
were then converted in situ into the corresponding 1,3-dienes by means of a hydropalla-
dation/dehydropalladation process promoted by the formation of boric acid within the
base-free Suzuki−Miyaura reaction conditions (Scheme 3).
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In the past few years there have been a growing interest in the use of allenic elec-
trophiles as alternative coupling partners in Suzuki−Miyaura cross-couplings; upon reac-
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tion with a suitable boron nucleophile, coupling occurred exclusively at the central allenic
carbon generating 2-substituted 1,3-dienes [48,49]. Not only this methodology give access
to functionalized dienes in good yields with excellent group tolerance [50], but also have
great relevance from environmental and economic points of view. For example, Liu’s group
developed new routes to phosphinoyl 1,3-butadienes based on the palladium-catalysed
Suzuki-Miyaura couplings of arylboronic acids with phosphinoyl-α-allenic derivatives [51]
and also demonstrated that the process could be performed “on water” without surfactants
or additives to afford phosphinoyl 1,3-butadienes in good yields and stereoselectivities
(Scheme 4) [52].
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Scheme 4. Palladium-catalysed couplings of substituted phosphinoyl-α-allenic alcohols with various
arylboronic acids.

As the field of green chemistry continues to expand, a number of new technologies for
improving the sustainability of transition metal-catalysed processes are becoming more and
more popular. In particular, switching from an organic to an aqueous micellar medium is rec-
ognized as one of the most relevant new strategies in metal-catalysis [53,54]. Following this
new trend, Lipshutz and co-workers reported an environmentally responsible methodology
for the preparation of substituted 1,3-butadienes based on the palladium-catalysed cross-
coupling of allenes and arylboronic acids under micellar reaction conditions (Scheme 5) [55].
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Despite its potential for the construction of complex dienes and polyenes, due to the
strong reducing power of boranes, Suzuki reaction is subjected to severe functional group
limitations. The protection with N-methyliminodiacetic acid (MIDA) ligand is a recently
developed strategy for harnessing the reactivity of boronic acids in iterative cross-coupling
(ICC) reactions aimed at the preparation of complex polyenes [56]. However, this strategy
has the important drawback of the additional protection-deprotection steps.

As an alternative to the Suzuki cross-coupling, Negishi developed a series of strategies
for the alkyne elementometalation/Pd-catalysed alkenyl–alkenyl cross-coupling tandem
processes. For example, all four stereoisomers of ethyl 2,4-undecadienoate can be pre-
pared in high selectivity by the Negishi alkenyl–alkenyl coupling (Scheme 6) [57]. On the
one hand, Negishi coupling of (E) and (Z) isomers of ethyl 3-bromoacrylate with in situ
generated (E)-1-octenylzirconocene chloride afforded (2E,4E)- and (2Z,4E)-dienes in good
yields and excellent diastereoisomeric ratio. On the other hand, carbocupration of 1-octyne
followed by Negishi coupling of the resulting (Z)-1-octenyl iodide with both (E) and (Z)
isomers of ethyl 3-bromoacrylate provided isomerically pure (2E,4Z)- and (2Z,4Z)-isomers
in good yields.



Molecules 2021, 26, 249 6 of 40

Fiorito et al. described two nickel(II) precatalysts which enable the Kumada cross-
coupling between vinyl magnesium bromide and vinyl phosphates, providing 2-substituted
1,3-dienes in good yields and with high levels of stereocontrol [58]. The cross-coupling reac-
tion between phenyl vinylphosphate and vinyl magnesium bromide in the presence of com-
mercial precatalyst [(dppe)NiCl2] afforded 2-phenyl-1,3-diene in good yield (Scheme 7).
For difficult substrates such as p-fluorophenyl vinylphosphate, complex [(dmpe)NiCl2]
was used as a satisfactory alternative.
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Scheme 7. Ni-catalysed cross-coupling between vinyl phosphates and vinyl magnesium reagents.

Although effective, both the Negishi and Kumada processes suffer from similar
problems to the Suzuki-based methodologies, as they require air and moisture sensitive
conditions and in situ preparation of the vinyl intermediate. The Hiyama coupling is not
subjected to these limitations, as vinylsilanes are non-toxic, stable and readily accessible.
However, the classical version of the Hiyama coupling was severely limited by the require-
ment of a strong activator for the transmetallation step. Chatterjee et al. circumvented this
issue utilizing metal nanoparticles as efficient catalysts in the presence of a mild activator
such as tetrabutylammonium fluoride (TBAF) [59]. In a typical experimental procedure,
styryl bromide was coupled with triethoxyvinylsilane in the presence of palladium(II)
chloride and TBAF to produce the corresponding (E)-1,3-diene in good yields and total
stereoselection (Scheme 8). The use of TBAF has a double function, as it stabilizes the Pd
nanoparticles and also activates the siloxane.
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Analogously to the Suzuki, Kumada and Negishi reactions, dienes can also be prepared
from alkynes by the means of a hydrosilylation–Hiyama sequence. McAdam and co-workers
developed an hydrosilylation methodology to form vinylsilanes from propargylic alcohols
using commercially available benzyldimethylsilane; the resulting vinylsilanes are very stable
and can undergo simple activation with TBAF under Trost-type conditions [60,61]. Subse-
quently, these authors developed a methodology for the formation of highly functionalised
1,3-dienes based on the hydrosilylation–Hiyama protocol (Scheme 9) [62]. Thus, hydrosilyla-
tion of 1-ethynylcyclohexan-1-ol afforded the corresponding vinylsilane in excellent yield and
total E selectivity. Subsequent Hiyama coupling with iodostyrene afforded the corresponding
(E,E)-diene in good yields and with total selectivity.
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Scheme 9. Alkyne hydrosilylation–Hiyama coupling.

1-Boron-1,3-dienes are important building blocks in the synthesis of a broad range of
bioactive natural products and organic intermediates. In 2018, Fañanás-Mastral reported
notable contribution to the stereoselective synthesis of syn-borylated 1,3-dienes by Cu/Pd-
catalysed alkenylboration of alkynes with alkenyl bromides and bis(pinacolato)diboron [63].
This methodology involved a Cu-catalysed carboboration of alkynes to provide β-boryl-
substituted alkenylcopper intermediates, which on subsequent stereoretentive Pd-catalysed
cross-coupling with alkenyl halides afforded the desired syn-borylated 1,3-dienes (Scheme 10).
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Scheme 10. Cu/Pd-catalysed alkenylboration of alkynes.

As seen throughout this section, organozinc, organotin, and organoboron compounds
that are employed in vinyl-vinyl cross-coupling reactions, are frequently prepared from
the corresponding organolithium compounds by transmetalation. Notwithstanding the
evident synthetic interest, the direct cross-coupling of organolithium reagents remained
virtually unexplored until very recently, due to limitations such as high reactivity and
low selectivity. This has changed with Feringa’s studies on the palladium-catalysed cross-
coupling of organolithium nucleophiles and organic halides [64–67]. In order to take
advantage of this interesting protocol for the synthesis of 1,3-dienes, the direct cross-coupling
of alkenyllithium reagents with alkenyl halides was also described (Scheme 11) [68].
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Following Feringa’s pioneering work on palladium-catalysed cross-coupling of alkenyl-
lithium reagents, Liu and co-workers reported in 2018 a ligand-free iron-catalysed cross-
coupling reaction of alkenyllithium compounds and vinyl iodides to form conjugated
(E,E)-diene in good yields with full retention of stereochemistry (Scheme 12) [69].
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Scheme 12. Iron-catalysed cross-coupling of (E)-aryl vinyl iodides with (E)-propenyllithium.

Even if the use of lithium organometallics is advantageous, it is obvious that the best
alternative would be to avoid completely the use vinylic organometallic reagents as starting
materials. In this regard, Olivares and Weix described the synthesis of 1,3-dienes by the
means pf Ni/Pd cooperative catalysis in the presence of zinc as reductant to afford tetra-
and penta-substituted 1,3-dienes in good yields (Scheme 13) [70].
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Scheme 13. Selective cross electrophile 1,3-diene synthesis.

Yet another cross-coupling strategy for the synthesis of dienes is the dehydrogenative
homocoupling of haloalkenes. A recent contribution to this field is the stereoselective
synthesis of (E)-dienes through the dehalogenative homocoupling of alkenyl bromides on
the Cu(110) surface reported by Sun et al. (Scheme 14) [71,72]. Despite the good yields and
stereoselectivities and the mild conditions, this methodology is of limited interest, as it is
restricted to the synthesis of symmetric dienes.
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Scheme 14. Formation of (E)-dienes by dehalogenative homocoupling of alkenyl bromides on
Cu(110).

As stated before, 1,3-dienes are typically constructed by linkage of two C=C units.
However, direct attachment of the 1,3-diene moiety would allow for a more convergent
and efficient strategy. Notwithstanding the evident advantages, the development of this
methodology has been hampered by the lack of stable and readily available dienylation
reagents. Dienylboronic acids have been explored for dienylation, but they are unstable
and difficult to prepare [73]. In the search for more effective dienylation agents, Nguyen
and co-workers developed a simple and practical, regio- and stereoselective dienylation
employing readily available sulfolenes (Scheme 15). The regio- and stereo- selectivity are
determined by the substitution pattern in the starting sulfolenes. Thus, the reaction is
E-selective for 3,4-dimethyl sulfolene, whereas the Z-selective dienylation is observed for
2-cyclohexyl-4-methyl sulfolene.
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Scheme 15. Dienylation of aromatic compounds with substituted sulfolenes.

Silva and co-corkers have recently developed an environmentally benign, economi-
cally friendly, and sustainable Suzuki–Miyaura reaction of halo and dihalo dienyl deriva-
tives and boronic acids employing Pd(II) immobilized in a silica-supported ionic liquid
in water using ohmic heating (ΩH) [74]. Ohmic heating is and advanced thermal tech-
nology recently developed for organic synthesis [75,76] which leads activation on several
reactions, including transition-metal catalysed cross-couplings [77]. The combination of
ohmic heating with supported ionic liquid phase catalysis (SILPC) in water offers sig-
nificant advantages, as the absence of undesired side reactions, the short reaction times,
the mild conditions required, the wide range of functionalities tolerated, the good yields,
the environment-friendly reaction conditions, and the low catalyst loading. In addition,
the supported catalyst can be recovered and maintains a good activity for at least three
cycles. Thus, the Pd-catalysed coupling of bromovinyl chromones and aryl boronic acids
under ohmic heating afforded the corresponding dienes in high yields and total E se-
lectivity (Scheme 16). Interestingly, the coupling of 2.0 equiv. of arylboronic acids with
gem-dibromovinyl bromoflavones afforded the corresponding bisarylvinyl chromones
in good yields. For the preparation of the catalyst, Pd(OAc)2 was supported on amor-
phous silica with the aid of the imidazolium ionic liquid 1-butyl-3-methylimidazolium
hexafluorophosphate ([bmim]PF6), which was previously physisorbed in the SiO2 pores.
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2.1.2. Cross-Coupling of One Unactivated Vinylic Carbon

The formation of C−C bonds from vinylic C−H bonds is a powerful strategy for the
synthesis of dienes. Unlike the methods reviewed above, which require activation of both
coupling partners, this type of processes can deliver complex and stereodefined 1,3-dienes
with prior activation of just one vinylic carbon.

Among them, the most popular is the Heck vinylation reaction [78], which enables
direct formation of dienes from an activated coupling partner and a vinylic C−H bond of a
terminal olefin substrate [79,80]. Depending on the activated coupling partner, there are
two main types of Heck vinylation reactions: the Mirozoki-Heck reaction of alkenes and
vinyl halides and the oxidative Heck reaction of alkenes and vinylboronic acids.

Despite their evident synthetic potential, the classical methods for Heck vinylation
has had limited application in the preparation on biologically relevant 1,3-dienes because
the scope is often limited to resonance activated olefins (e.g., α,β-unsaturated carbonyls
and stryenes) and also because Pd−H isomerization usually results in moderate stereos-
electivity [81–83]. However, the past few years have witnessed important advances in
the Heck vinylation reaction, that resulted in a renewed interest in the application of this
methodology to the stereoselective synthesis of 1,3-dienes [84].
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One those crucial recent advances in the Heck vinylation reaction was reported in 2015.
In this work, Madden and co-workers demonstrated that vinyliodides could be employed
as coupling partners in the Heck–Mizoroki reaction with alkenes to access directly to
dienes. Interestingly, coupling of vinyliodides with vinylboronate esters afforded the
corresponding dienylboronates in good yields, which can undergo a Suzuki–Miyaura
coupling with a range of aryl and alkenyl halides to furnish further functionalized dienes
with total E selectivity (Scheme 17).
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It is quite surprising that, until Madden’s research, vinyliodides had been almost
completely overlooked in such couplings, except for one report from Heck et al. in 1975 [85].

The recent investigations aimed at overcoming the limitations of the Heck vinyla-
tion reaction for the construction of the 1,3-diene moiety were focused not only in the
discovery of new coupling partners, but also in the development of novel catalyst systems.
For example, Xu et al. developed a convenient methodology for the Heck reaction of
alkenes and β-bromostyrenes based on the use of a µ-OMs palladium–dimer complex as
promotor [86]. µ-OMs dimer is a non-phosphorus Pd-precatalyst which was developed
by Buchwald for C–N/C–C coupling reactions [87]. When applied to the Heck reaction
of (E)-(2-bromovinyl)benzene and styrene, the corresponding (1E,3E)-1,4-diphenylbuta-
1,3-diene was isolated in good yield with total stereoselectivity (Scheme 18). It is widely
assumed that the regioselectivity of the Heck vinylation reaction is substrate-controlled.
Electron-deficient alkenes, such as acrylates and styrenes, afford linear dienes [88–91]
whereas electron-rich alkenes, such as vinyl amides, furnish branched dienes [92,93].
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However, in 2012 Stahl and co-workers reported a oxidative coupling of alkenes and
vinylboronic acids in which the regioselectivity was established via catalyst control [94].
Thus, reaction of (E)-styrenylboronic acid and 1-octene in the presence of palladium(II)
trifluoroacetate [Pd(TFA)2] catalyst and neocuproine as ligand afforded the corresponding
branched diene in good yield with 20/1 selectivity over the linear diene (Scheme 19).
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This work represented a very significant advance in the Heck vinylation, enabling
access to synthetically useful branched 1,3-disubstituted conjugated dienes and expanding
the scope and synthetic utility of Heck vinylation reactions.
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In 2013, Delcamp et al. reported an oxidative Heck vinylation for the formation
of dienes and polyenes [95]. In this methodology, the reaction of limiting quantities
of non-stabilized terminal olefins and slight excesses of vinyl boronic esters proceeds
via oxidative Pd(II)/sulfoxide catalysis to afford 1,3-dienes in good yields and excellent
stereoselectivities. The potential of this powerful cross-coupling reaction in the synthesis of
medicinally relevant complex diene targets was also explored. As a representative example,
the synthesis of the amphidinolide C C17−C29 segment is presented in Scheme 20.
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As yet another contribution to the oxidative Heck vinylation reaction, McAlpine and
co-workers reported the coupling of arylboronic acids and cyclobutene to form terminal
linear 1,3-dienes in near quantitative yield and total E stereoselectivity (Scheme 21) [96].
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Scheme 21. Oxidative Heck vinylation of cyclobutene with arylboronic acids.

Since its discovery twenty years ago [97], 1,4-palladium migration has become an
essential synthetic tool to permit the remote functionalization of C-H bonds [98–101].
Hu et al. demonstrated the usefulness of the combination of an aryl to vinyl 1,4-palladium
migration with a Heck reaction for the synthesis of 1,3-dienes [102]. This method not
only provides the desired dienes with high stereocontrol, but also with stereoselectivities
inaccessible by previous conventional methods (Scheme 22) [103].
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acrylate.

In 2013, Xiao et al. developed a novel methodology for the stereoselective synthesis
of 1,3-dienes based on a three-component reaction of allenes, aryl iodides, and diazo
compounds, furnishing the corresponding dienes in moderate to good yields as a single
stereoisomer (Scheme 23) [104].
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Scheme 23. Palladium-catalysed three-component coupling of aryl iodides, allenes, and diazo
compounds.

Also belonging to the subtype of transition-metal catalysed cross-coupling of one
unactivated vinylic carbon is the allylic C−H olefination reported in 2014 by Wang and
co-workers [105]. The olefination reaction of a wide scope of allyl compounds and α-diazo
esters synergistically catalysed by a palladium(II) complex and (salen)CrCl generated
diverse 1,3-diene derivatives in moderate yields and with good stereoselectivities. The
(salen)CrCl was hypothesized to act as a Lewis acid to enhance the nucleophility of the
α-diazo esters by coordinating to the nitrogen, thus facilitating the formation of π-allylic
palladium carbenoid (Scheme 24).

Molecules 2021, 26, x FOR PEER REVIEW 12 of 41 
 

 

 

Scheme 23. Palladium-catalysed three-component coupling of aryl iodides, allenes, and diazo 

compounds. 

Also belonging to the subtype of transition-metal catalysed cross-coupling of one un-

activated vinylic carbon is the allylic C−H olefination reported in 2014 by Wang and co-

workers [105]. The olefination reaction of a wide scope of allyl compounds and α-diazo 

esters synergistically catalysed by a palladium(II) complex and (salen)CrCl generated di-

verse 1,3-diene derivatives in moderate yields and with good stereoselectivities. The 

(salen)CrCl was hypothesized to act as a Lewis acid to enhance the nucleophility of the α-

diazo esters by coordinating to the nitrogen, thus facilitating the formation of π-allylic 

palladium carbenoid (Scheme 24). 

 

Scheme 24. Allylic C−H olefination of α-diazo esters. 

In a recent report, Revathi and co-workers developed a synthetic approach towards 

1,3-dienes based on a Pd-catalysed, sulfuryl fluoride (SO2F2) mediated dehydrative cross-

coupling reaction of alcohols with acrylates [106]. The process can be regarded as a Heck-

type protocol, as it formally is the cross-coupling of an acrylate with an in situ formed 

vinyl sulfurofluoridate. Pd-catalysed reaction of an homobenzylic alcohol with methyl 

acrylate under a difluorosulfone atmosphere generated a mixture of E and Z dienes, which 

on iodine-catalysed isomerization finally furnished (E,E)-dienes in moderate yields 

(Scheme 25). 

 

Scheme 25. Pd-catalysed, SO2F2 mediated dehydrative cross-coupling reaction of alcohols with 

acrylates. 

2.1.3. Cross-Coupling of Two Unactivated Vinylic Carbons 

Transition-metal-catalysed direct functionalization of C–H bonds is emerging as one 

of the most important tools for carbon–carbon bond formation [107–112]. In particular, 

direct alkenylation of an inert vinylic C−H bond is particularly attractive for constructing 

Scheme 24. Allylic C−H olefination of α-diazo esters.

In a recent report, Revathi and co-workers developed a synthetic approach towards
1,3-dienes based on a Pd-catalysed, sulfuryl fluoride (SO2F2) mediated dehydrative cross-
coupling reaction of alcohols with acrylates [106]. The process can be regarded as a
Heck-type protocol, as it formally is the cross-coupling of an acrylate with an in situ
formed vinyl sulfurofluoridate. Pd-catalysed reaction of an homobenzylic alcohol with
methyl acrylate under a difluorosulfone atmosphere generated a mixture of E and Z dienes,
which on iodine-catalysed isomerization finally furnished (E,E)-dienes in moderate yields
(Scheme 25).
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2.1.3. Cross-Coupling of Two Unactivated Vinylic Carbons

Transition-metal-catalysed direct functionalization of C–H bonds is emerging as one of
the most important tools for carbon–carbon bond formation [107–112]. In particular, direct
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alkenylation of an inert vinylic C−H bond is particularly attractive for constructing the
1,3-diene moiety, as alkenes are naturally abundant an readily available [113]. Moreover, a
one-step conversion of C-H bonds to the desired diene functionality reduces the number of
synthetic steps, thereby saving reagents, solvents and time.

In 2004, Ishii reported the direct cross-coupling reaction of vinyl carboxylate acids
with acrylates [114]. Although the diene motif was effectively constructed, the yields
were moderate and the stereoselectivity was poor. Despite overlooked for some years,
the decade started with a renewed interest in the direct olefination of double bonds,
with extensive studies by Loh [115–118], Yu [119], Ge [120], Glorious [121], Georg [122],
Hong [123–125], Gillaizeau [126] and Liu [127,128] groups. These pioneering works have
been thoroughly reviewed in 2013. Therefore, in the following part of this section, the most
relevant contributions from this date will be presented.

There are two basic approaches currently being adopted for the formation of vinylic
C−C bonds by combining two metal-catalysed C(alkenyl)−H activations. (a) the non-
directed cross-coupling of olefins via alkenyl-Pd intermediates; (b) the transition metal-
catalysed olefinic C−H alkenylation based on directed syn C(alkenyl)-H activation.

A relevant recent example of the first strategy is the palladium-catalysed cross-
coupling reaction between mono-substituted common olefins and electron-deficient alkenes
reported by Loh et al. in 2013 [129]. Thus, Pd-catalysed cross-coupling of alkenes with
tert-butyl acrylate in the presence of an amino acid ligand (Ac-Ile-OH) furnished the
corresponding (E,E)-diene products in good yield and excellent E/Z ratio (Scheme 26).
Regarding the scope of the alkene coupling partners, various α,β-unsaturated amides,
esters and phosphonates gave the corresponding butadiene products in moderate yields
and good E/Z ratios.
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Scheme 26. Olefination of alkenes with tert-butyl acrylate.

Notwithstanding that non-directed cross-coupling was extensively studied at the be-
ginning of the decade, this procedure is usually restricted to the synthesis of E,E-dienes. In
order to switch the selectivity to the Z-diene, Loh’s group also developed a hydroxy group
chelation-assisted procedure for the oxidative cross-coupling of alkenes and acrylates,
affording E,Z-dienes in moderate yields and good EZ/EE ratios (Scheme 27) [130].
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Another significant contribution of Loh to the stereoselective C-H functionalization of
alkenes utilizing directing groups was the Rh-catalysed regio- and stereoselective cross-
couplings of enol phosphates with electron-deficient alkenes reported in 2015 [131]. The
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coupling products are also substrates for further cross-coupling reactions, giving rise to
highly functionalized conjugated dienes. For example, reaction of enol phosphates with
methyl acrylate in the presence of [{Cp*RhCl2}2], AgSbF6 and Cu(OAc) 2·H2O afforded the
corresponding dienol phosphate, which on Ni-catalysed Suzuki–Miyaura cross-coupling
with phenyl boronic acid generated the corresponding highly functionalized diene in
moderate yield and stereoselectivity (Scheme 28).
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The utilization of directing groups to improve stereoselectivity in palladium-catalysed
sp2 C-H cross-couplings via chelation was further explored by Liu et al [132]. These authors
reported the synthesis of 1,3-dienes from a directing-group-containing alkene (4-pentenoic
acid, allyl alcohol, or 4-pentenamine derivative) and an electron-poor coupling partner
using a palladium(II)-mediated directed site-selective C(alkenyl)−H activation strategy.
Reoxidation of the palladium(II) catalyst was accomplished using benzoquinone (BQ),
O2 and catalytic Co(OAc)2. For example, oxidative Pd-catalysed cross-coupling of a (Z)-
alkenamide bearing an aminoquinoline directing group with tert-butyl acrylate gave the
corresponding diene in excellent yield and stereoselectivity (Scheme 29).
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As yet another relevant example of the synthesis of 1,3-dienes by means of amide-
directed C−H bond functionalization, Zhao and co-workers described the palladium-
catalysed cross-coupling of α-substituted acrylamides with 2-bromo-3,3,3-trifluoropropene
(BTP) to produce stereoselectively trifluoromethylated 1,3-butadienes in moderate yields
(Scheme 30) [133].
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An emerging strategy in the domain of C–H activation chemistry is the use of an
internal oxidizing directing group (DGOx) that acts as both a directing group and an internal
oxidant for redox-neutral coupling reactions [134–137]. This approach avoids the use of
stoichiometric amounts of metal oxidants, improving the reaction scope on account of the
milder conditions and also reducing the waste formation of the oxidant. Zhang and Zhong
applied this strategy to the cross-coupling of electron-deficient alkenes, which was carried
out with the assistance of the oxidizing directing group CONH(OMe) and promoted by
an inexpensive ruthenium catalyst to provide 1,3-butadienes with excellent selectivities
(Scheme 31) [138].
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The strategy reported by Boelke and co-workers for the directing-group-mediated
C−H alkenylation also avoids the use of metal oxidants, utilizing a hypervalent iodine
reagent as both oxidant and coupling partner [139]. The methodology involved aromatic
amines as directing groups and alkenyl-λ3-iodanes as electrophilic alkene-transfer reagents,
in combination with an Ir(III) catalyst (Scheme 32).
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Besides C−H alkenylation, transfer hydrogenation [140–143] is another research field
of the greatest importance in modern Organic Chemistry. However, the combination of
both areas remained elusive due to difficulties associated with olefin isomerization and
hydrogenation of double bond. A truly game-changing report was published in 2019
and described the first example of alkene−alkene coupling integrating C−H activation
and hydrogen transfer. In this work, Zhong and Zhang reported the iridium-catalysed
cross-coupling between electron-deficient olefins in the presence of inexpensive chloranil
as the hydrogen acceptor to provide (Z,E)-configurated dienamides [144]. Thus, reaction
of acrylamides with diethyl vinylphosphonate in the presence of [IrCp*Cl2]2 (10 mol%),
a silver(I) salt and chloranil as hydrogen acceptor provided stereoselectively (Z,E)-1,3-
dienes in good yields (Scheme 33).
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2.2. Carbon(sp)−Carbon(sp3) Cross-Coupling

Methods based on the transition metal-catalysed alkylation of alkynes can be divided
into two broad types: allylic C-H functionalization and alkyne carbometallation.

2.2.1. Allylic C-H Functionalization

Allylic C-H functionalization have attracted some recent interest for the synthesis of
1,3-dienes. Procedures based in allylic alkylation are redox-neutral and allow bypassing
pre-functionalization of the substrates, which is very relevant from the perspective of atom
economy, functional group tolerance and sustainability.

In 2017, a seminal article was published describing the palladium-catalysed redox-
neutral allylic alkylation of pronucleophiles with unactivated skipped enynes to construct
1,3-dienes with high atom economy [145]. Indolinones, cyclic ketones, diketones, esters,
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nitroesters, cyanoesters, carbonates and indoline and tetrahydroquinolines are all effi-
ciently alkylated, giving the desired 1,3-dienes in moderate to good yields and moderate E
selectivity (Scheme 34).
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Scheme 34. Palladium-catalysed allylic alkylation of pronucleophiles with unactivated skipped
enynes.

Using a similar strategy, Lu and co-workers reported the allylic alkylation of oxindole
pronucleophiles with cyclopropyl aryl acetylenes [146]. Pd-catalysed cross-coupling of
aromatic-substituted cyclopropylethynyls with N-methyl-3-phenyloxindole afforded the
1,3-diene products in good yields and moderate E selectivity (Scheme 35).
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Scheme 35. Allylic alkylation of cyclopropyl acetylene for the synthesis of 1,3-diene.

In 2018. Su et al. described the asymmetric α-allylation of aldehydes with alkynes
promoted by a ternary catalyst system, consisting of an achiral palladium complex, a primary
amine, and a chiral phosphoric acid [147]. The oxidative addition of Pd(0) to chiral phos-
phoric acid generated an hydridopalladium complex, which then reacted with acetylenes to
form chiral electrophilic π-allylpalladium phosphate complexes. The enamine formed from
the aldehyde and the amine catalyst then underwent asymmetric allylic substitution with
the chiral π-allylpalladium complex, furnishing the corresponding dienes with good yields
and enantioselectivities, albeit with moderate diastereoselectivity (Scheme 36).
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Scheme 36. Asymmetric allylation of aldehydes with alkynes.

Despite the evident synthetic potential, one source of weakness in this strategy and a
problem that should be addressed in the future is the moderate stereoselectivity.

2.2.2. Alkyne Carbometallation

Transition-metal-catalysed carbometalation of alkynes would be an ideal methodology
for generating dienyl organometallic compounds that could be further functionalized.
However, the search for a catalyst enabling such transformation proved futile until a report
in 2016. In this work, Liu et al. described an iron(II)-N-heterocyclic carbene (NHC) complex
which can serve as a precatalyst for the double carbometalation of internal unsymmetrical
alkynes with alkyl Grignard reagents, producing highly substituted 1,3-dienyl magnesium
reagents with high regio- and stereoselectivity (Scheme 37) [148].
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Scheme 37. Carbometalation of phenyl(methyl)acetylene followed by transformations of the resultant
1,3-dienyl magnesium reagent.

The in situ formed 1,3-dienyl magnesium intermediate can also be trapped by elec-
trophiles such as iodine, paraformaldehyde or allyl bromide to form the 1,3-dienyl iodide,
the homoallylic alcohol or 1,3,6-triene, respectively, in good yields reflecting the synthetic
utility of the 1,3-dienyl magnesium synthons.

3. Transition Metal-Free Cross-Coupling Reactions

Both the ‘classical’ transition-metal-catalysed cross-coupling methodologies based on
the Heck, Negishi and Suzuki protocols and the ‘cutting-edge’ cross-coupling processes
relying on the so called “C-H activation” described in the previous section have one thing in
common: they are mediated by expensive late transition metals (e.g., ruthenium, rhodium,
palladium and platinum). The use of these metals present two main disadvantages: on
the one hand, trace metal contamination is a major problem in industry, particularly the
pharmaceutical and organic electronic industries. On the other hand, the supply of these
metals is at risk and it is widely assumed that their use will become unsustainable in the
near future.

An important research field, therefore, involves the development of cross-coupling
reactions that do not involve the use of a transition metal. There are several recent strategies
for the synthesis of 1,3-dienes which are based in transition-metal free cross-coupling
reactions.

A recent strategy to achieve the transition metal free cross coupling is the use a
sulphur-based directing group to set up carbon-carbon bond formation [149]. Thus, the easy
formation of a carbon-sulphur bond is used to trigger the formation of a more-challenging
carbon-carbon bond in a process resembling to a reductive elimination from a transition
metal, with sulphur taking the place of palladium. Such methodology was applied to the
selective C(sp2)-C(sp2) coupling to deliver 1,3-dienes [150]. In this process, addition of an
organolithium or organomagnesium to a key sulphurane intermediate, formed in situ by
means of an interrupted Pummerer reaction of sulfoxides and alkene coupling partners,
provided (E,Z)-1,3-dienes in good yields with total stereocontrol (Scheme 38).
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Undoubtedly, the most relevant of the emerging areas of research in synthetic chem-
istry is visible-light photoredox catalysis [151–154]. Photoredox catalysed cross-coupling
offers an opportunity to develop greener processes and to overcome the shortcomings
of using transition-metal catalysts in C−H functionalization. However, the photoredox
catalysed direct C(sp2)−H/C(sp2)−H cross-coupling between two alkenes under external
oxidant-free conditions was first reported in 2020. In this very recent work, Li’s group
described the synthesis of substituted 1,3-dienes from vinylarenes and ketene dithioacetals
under photoinduced cross-coupling reaction, providing the desired 1,3-dienes in a regio-
and stereospecific manner and in good to excellent yields (Scheme 39) [155].
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Scheme 39. Photoinduced C(sp2)−H/C(sp2)−H cross-coupling of alkenes.

The proposed mechanistic cycle for the photoinduced cross-coupling reaction is de-
picted in Scheme 40. Initially, the styrene radical cation is formed upon electron transfer
from the styrene to the excited state of the photosensitizer, generated under blue LED
irradiation. Then, the nucleophilic attack of the radical cation to the α,β-unsaturated
ketone would furnish a radical intermediate, which on a SET process with cobalt would
form a carbocation. Finally, 1,3-diene is produced from the carbocation with the release of
a proton.
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It is noteworthy that the reaction can be carried out using photocatalyst and cobalt
dual catalyst without using noble metal and external oxidants and with hydrogen gas
as the only by-product. On view of these results and also of the great recent interest in
photoredox catalysis we will, no doubt, witness more advances in the near future on the
photocatalytic-based synthesis of 1,3-dienes.
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4. Aldehyde Dienylation

For total synthesis, the ideal scenario would be the installation of the 1,3-diene moiety
in one step with high stereoselectivity. In this regard, the direct synthesis of 1,3-dienes
via olefination of carbonyl groups is a very attractive alternative, which have enjoyed
considerable attention. Perhaps the most common strategy for the dienylation of aldehydes
is the Wittig reaction and its variants. Thus, diene formation through Wittig [156,157],
Wittig-Horner [158,159], Horner–Wadsworth–Emmons (HWE) [160] olefination reactions
have been thoroughly investigated. However, these methodologies often require strongly
basic reaction conditions and produce dienes with moderate and substrate-dependent
(E/Z)-selectivity. To avoid the basic conditions and the interference from alkali metal salt
by-products inherent to the conventional Wittig reaction, much effort has been directed
toward developing neutral and salt-free processes. In 2010, Zhou and co-workers reported
a nearly neutral and salt-free Wittig olefination between of aldehydes in the presence of
allylic carbonates and a tertiary phosphine, providing a convenient methodology for the
synthesis of trisubstituted 1,3-dienes (Scheme 41) [161].

Molecules 2021, 26, x FOR PEER REVIEW 19 of 41 
 

 

It is noteworthy that the reaction can be carried out using photocatalyst and cobalt 

dual catalyst without using noble metal and external oxidants and with hydrogen gas as 

the only by-product. On view of these results and also of the great recent interest in pho-

toredox catalysis we will, no doubt, witness more advances in the near future on the pho-

tocatalytic-based synthesis of 1,3-dienes. 

4. Aldehyde Dienylation 

For total synthesis, the ideal scenario would be the installation of the 1,3-diene moiety 

in one step with high stereoselectivity. In this regard, the direct synthesis of 1,3-dienes via 

olefination of carbonyl groups is a very attractive alternative, which have enjoyed consid-

erable attention. Perhaps the most common strategy for the dienylation of aldehydes is 

the Wittig reaction and its variants. Thus, diene formation through Wittig [156,157], Wit-

tig-Horner [158,159], Horner–Wadsworth–Emmons (HWE) [160] olefination reactions 

have been thoroughly investigated. However, these methodologies often require strongly 

basic reaction conditions and produce dienes with moderate and substrate-dependent 

(E/Z)-selectivity. To avoid the basic conditions and the interference from alkali metal salt 

by-products inherent to the conventional Wittig reaction, much effort has been directed 

toward developing neutral and salt-free processes. In 2010, Zhou and co-workers reported 

a nearly neutral and salt-free Wittig olefination between of aldehydes in the presence of 

allylic carbonates and a tertiary phosphine, providing a convenient methodology for the 

synthesis of trisubstituted 1,3-dienes (Scheme 41) [161]. 

 

Scheme 41. Synthesis of 1,2,4-trisubstituted 1,3-dienes from allylic carbonates and aldehydes. 

In order to improve the results of the Wittig reaction, many efforts have been devoted 

to the modification of semi-stabilized triphenylphosphonium ylide reagents. On contrary, 

little attention has been paid to the electrophiles in the Wittig reaction. In this regard, 

Dong et al. reported a modified Wittig dienylation protocol which consist on replacing 

the starting aldehyde with N-sulfonyl imines, which possess distinct electronic and steric 

properties [162]. Thus, the reaction of in situ prepared allylidene triphenylphosphoranes 

with a range of p-tolyl-activated imines provided the corresponding (E,E)-1,3-dienes, 

whereas the use of 2,6-dichlorobenzenesulfonyl-activated imines resulted in the exclusive 

formation of the (Z,E)-1,3-dienes (Scheme 42). 

 

Scheme 42. Stereoselective olefination of allylidenetriphenylphosphoranes with N-sulfonyl 

imines. 

In 2011, Jacobsen and co-workers reported the Wittig olefination of phosphonium 

ylides generated in situ from the reaction of a 2-alkynoate and a phosphine, forming 1,3-

dienes with excellent E-selectivity and good yields (Scheme 43) [163]. 

Scheme 41. Synthesis of 1,2,4-trisubstituted 1,3-dienes from allylic carbonates and aldehydes.

In order to improve the results of the Wittig reaction, many efforts have been devoted
to the modification of semi-stabilized triphenylphosphonium ylide reagents. On contrary,
little attention has been paid to the electrophiles in the Wittig reaction. In this regard,
Dong et al. reported a modified Wittig dienylation protocol which consist on replacing the
starting aldehyde with N-sulfonyl imines, which possess distinct electronic and steric prop-
erties [162]. Thus, the reaction of in situ prepared allylidene triphenylphosphoranes with a
range of p-tolyl-activated imines provided the corresponding (E,E)-1,3-dienes, whereas the
use of 2,6-dichlorobenzenesulfonyl-activated imines resulted in the exclusive formation of
the (Z,E)-1,3-dienes (Scheme 42).
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Scheme 42. Stereoselective olefination of allylidenetriphenylphosphoranes with N-sulfonyl imines.

In 2011, Jacobsen and co-workers reported the Wittig olefination of phosphonium
ylides generated in situ from the reaction of a 2-alkynoate and a phosphine, forming
1,3-dienes with excellent E-selectivity and good yields (Scheme 43) [163].
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As previously stated, the past few years have seen increasingly rapid advances in
the field of photoredox catalysis. Inspired by the robustness of the Wittig reaction for
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the formation of C=C bonds and important achievements of photoredox catalysis, Fu’s
group developed a methodology for the C=C bond formation via coupling of alkyl halides
with aldehydes and their derivatives using triphenylphosphine as a reductive quencher, to
provided terminal 1,3-dienes in good yields albeit with poor E/Z ratio (Scheme 44) [164].
This procedure enabled access to 1,3-dienes in good yields with mild reaction conditions,
operational simplicity and wide functional group tolerance. An important drawback is
the moderate stereoselectivity, a factor that sure will by further considered in subsequent
studies. In fact, the lack of stereoselection is a recurrent problem in the Wittig-based
approaches for the synthesis of 1,3-dienes.
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Scheme 44. Visible-light photoredox synthesis of terminal 1,3-dienes.

In an attempt to overcome this limitation, Hilt’s group developed a procedure for the
isomerization of double bonds by applying a tridentate ligand system which, in combi-
nation with a stereo-unspecific Wittig olefination, enabled the selective formation of Z-
configured 1,3-dienes (Scheme 45) [165]. In this procedure, a mixture of E and Z 1,3-dienes
in a 1:1 ratio, which was generated by a stereo-unspecific Wittig olefination of octanal, is
converted selectively into (Z)-1,3-diene in the presence of cobalt catalyst [CoBr2(py-imine)],
zinc powder, and ZnI2.

Molecules 2021, 26, x FOR PEER REVIEW 20 of 41 
 

 

 

Scheme 43. Synthesis of 1,3-dienes from aldehydes and alkynoates. 

As previously stated, the past few years have seen increasingly rapid advances in the 

field of photoredox catalysis. Inspired by the robustness of the Wittig reaction for the for-

mation of C=C bonds and important achievements of photoredox catalysis, Fu’s group 

developed a methodology for the C=C bond formation via coupling of alkyl halides with 

aldehydes and their derivatives using triphenylphosphine as a reductive quencher, to pro-

vided terminal 1,3-dienes in good yields albeit with poor E/Z ratio (Scheme 44) [164]. This 

procedure enabled access to 1,3-dienes in good yields with mild reaction conditions, op-

erational simplicity and wide functional group tolerance. An important drawback is the 

moderate stereoselectivity, a factor that sure will by further considered in subsequent 

studies. In fact, the lack of stereoselection is a recurrent problem in the Wittig-based ap-

proaches for the synthesis of 1,3-dienes. 

 

Scheme 44. Visible-light photoredox synthesis of terminal 1,3-dienes. 

In an attempt to overcome this limitation, Hilt’s group developed a procedure for the 

isomerization of double bonds by applying a tridentate ligand system which, in combina-

tion with a stereo-unspecific Wittig olefination, enabled the selective formation of Z-con-

figured 1,3-dienes (Scheme 45) [165]. In this procedure, a mixture of E and Z 1,3-dienes in 

a 1:1 ratio, which was generated by a stereo-unspecific Wittig olefination of octanal, is 

converted selectively into (Z)-1,3-diene in the presence of cobalt catalyst [CoBr2(py-

imine)], zinc powder, and ZnI2. 

 

Scheme 45. Sequence Wittig reaction/double-bond isomerization for the stereoselective generation of (Z)-dienes. 

Other classical aldehyde olefination methodology that have been widely employed 

for the synthesis of 1,3-dienes from aldehydes is the Julia reaction. In particular, the sec-

ond-generation Julia olefination developed in mid-1990s, has become a popular synthetic 

method for the aldehyde dienylation on account of its wide functional group tolerance 

and mild reaction conditions. In general terms, the Julia–Kocienski reaction yields dienes 

predominantly in (E)-configuration on newly formed double bond. Notwithstanding, low 

or even inversed selectivity was also observed in several cases. In an attempt to overcome 

this important drawback, Billard and co-workers developed a modification of Julia−Ko-

cienski olefination reaction based on the use of cation-specific chelating agents which pro-

vides yields 1,3-dienes with predictable (E/Z)-selectivity [166]. Thus, reaction of the po-

tassium salt of 1-phenyl tetrazoyl (PT) sulfone with an aldehyde afforded the correspond-

ing dienes in moderate yields (Scheme 46). Regarding the stereoselectivity, it is substrate 

Scheme 45. Sequence Wittig reaction/double-bond isomerization for the stereoselective generation of (Z)-dienes.

Other classical aldehyde olefination methodology that have been widely employed
for the synthesis of 1,3-dienes from aldehydes is the Julia reaction. In particular, the second-
generation Julia olefination developed in mid-1990s, has become a popular synthetic
method for the aldehyde dienylation on account of its wide functional group tolerance
and mild reaction conditions. In general terms, the Julia–Kocienski reaction yields dienes
predominantly in (E)-configuration on newly formed double bond. Notwithstanding,
low or even inversed selectivity was also observed in several cases. In an attempt to
overcome this important drawback, Billard and co-workers developed a modification of
Julia−Kocienski olefination reaction based on the use of cation-specific chelating agents
which provides yields 1,3-dienes with predictable (E/Z)-selectivity [166]. Thus, reaction
of the potassium salt of 1-phenyl tetrazoyl (PT) sulfone with an aldehyde afforded the
corresponding dienes in moderate yields (Scheme 46). Regarding the stereoselectivity,
it is substrate (aldehyde) dependent. From primary α-non-branched aldehydes the (Z)-
dienes were obtained, whereas when α disubstituted or aromatic aldehydes were used, the
(E)-dienes were formed as main products of the reaction.
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The studies presented so far provide a clear indication of the inherent limitations of
the classic aldehyde olefination methodologies. Despite the recent advances in the field,
none of the Wittig- and Julia-based aldehyde dienylation methods yet provided a univer-
sal solution in terms of yield and selectivity, which prompted the search for alternative
procedures. Among them, processes based on a vinylogous Peterson elimination reaction
have been widely investigated [167]; in fact, quite a few natural products displaying the
1,3-dienic moiety have been prepared by the means of the addition of a γ-silyl-substituted
allylmetal reagent to an aldehyde followed by a Peterson-type olefination protocol [168].
For this purpose, silylated allylboronates [169], allyltitanates [170], allyl sulfonates [171]
and allylzirconium reagents [172] have been used, affording dienes in high E-selectivity.
Despite their utility, these methodologies usually lack generality and require strict reaction
conditions and/or the use of highly toxic reagents. In order to overcome these limitations,
a series of improved methodologies were described in the past few years.

For example, in 2011 Rodríguez-Solla and co-workers described the synthesis of
dienes with total E-stereoselectivity from easily available α-halo-β-hydroxy esters, with
catalytic amounts of samarium diiodide in the presence of magnesium and zinc chloride
(Scheme 47) [173].
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The same year Borg et al. reported the synthesis of (E)-1,3-dienes via Lewis acid-
promoted addition of 1,3-bis(silyl)propene to aldehydes (Scheme 48) [174].

Molecules 2021, 26, x FOR PEER REVIEW 21 of 41 
 

 

(aldehyde) dependent. From primary α-non-branched aldehydes the (Z)-dienes were ob-

tained, whereas when α disubstituted or aromatic aldehydes were used, the (E)-dienes 

were formed as main products of the reaction. 

 

Scheme 46. Synthesis of 1,3-dienes via Julia−Kocienski reaction. 

The studies presented so far provide a clear indication of the inherent limitations of 

the classic aldehyde olefination methodologies. Despite the recent advances in the field, 

none of the Wittig- and Julia-based aldehyde dienylation methods yet provided a univer-

sal solution in terms of yield and selectivity, which prompted the search for alternative 

procedures. Among them, processes based on a vinylogous Peterson elimination reaction 

have been widely investigated [167]; in fact, quite a few natural products displaying the 

1,3-dienic moiety have been prepared by the means of the addition of a γ-silyl-substituted 

allylmetal reagent to an aldehyde followed by a Peterson-type olefination protocol [168]. 

For this purpose, silylated allylboronates [169], allyltitanates [170], allyl sulfonates [171] 

and allylzirconium reagents [172] have been used, affording dienes in high E-selectivity. 

Despite their utility, these methodologies usually lack generality and require strict reac-

tion conditions and/or the use of highly toxic reagents. In order to overcome these limita-

tions, a series of improved methodologies were described in the past few years. 

For example, in 2011 Rodríguez-Solla and co-workers described the synthesis of 

dienes with total E-stereoselectivity from easily available α-halo-β-hydroxy esters, with 

catalytic amounts of samarium diiodide in the presence of magnesium and zinc chloride 

(Scheme 47) [173]. 

 

Scheme 47. Formation of the (E)-dienes promoted by catalytic SmI2. 

The same year Borg et al. reported the synthesis of (E)-1,3-dienes via Lewis acid-pro-

moted addition of 1,3-bis(silyl)propene to aldehydes (Scheme 48) [174]. 

 

Scheme 48. Formation of the (E)-dienes from aldehydes via allylsilanes. 

The procedure is operationally straightforward but requires a 2.0 molar excess of a 

Lewis acid, which can be problematic from the point of view of functional group tolerance. 

Moreover, the starting 1,3-bis(silyl)propene is not commercially available and has to be 

prepared from relatively expensive allylsilane using highly flammable sec-butyllithium. 

As a convenient alternative, Soengas and Rodríguez-Solla developed a methodology 

for stereoselective synthesis of (E)-1,3-dienes which involves the reductive β-elimination 

of 2-chloroallyl acetates, prepared by indium-promoted allylation of aldehydes with com-

mercially available and unexpensive 1,3-dichloropropene [175]. Thus, reductive β-elimi-

nation of 2-chloroallyl acetates promoted by either In/CuI or Mg/ZnCl2 afforded (E)-1-

Scheme 48. Formation of the (E)-dienes from aldehydes via allylsilanes.

The procedure is operationally straightforward but requires a 2.0 molar excess of a
Lewis acid, which can be problematic from the point of view of functional group tolerance.
Moreover, the starting 1,3-bis(silyl)propene is not commercially available and has to be
prepared from relatively expensive allylsilane using highly flammable sec-butyllithium.

As a convenient alternative, Soengas and Rodríguez-Solla developed a methodology
for stereoselective synthesis of (E)-1,3-dienes which involves the reductive β-elimination of
2-chloroallyl acetates, prepared by indium-promoted allylation of aldehydes with commer-
cially available and unexpensive 1,3-dichloropropene [175]. Thus, reductive β-elimination
of 2-chloroallyl acetates promoted by either In/CuI or Mg/ZnCl2 afforded (E)-1-substituted-
1,3-dienes in good yields with high control of the stereoselectivity (Scheme 49).
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In a further improvement of this methodology, Soengas and Rodríguez-Solla demon-
strated the beneficial effects of the combination of a novel and increasingly popular reaction
media such as an ionic liquid with a cutting-edge heating technology like ohmic heating
(ΩH) in the dienylation reaction [176]. In this process, synthetically useful (1E)-4-chloro-1-
substituted-1,3-dienes were prepared from 2,4-dichlorohomoallyl acetates, derived from
the indium-promoted allylation of aldehydes with 3-bromo-1,3-dichloro-propene and sub-
sequent acetylation. The elimination process was carried out by reductive β-elimination
promoted by indium and, in contrast to previously reported procedures, by using ionic liq-
uid media and ohmic heating desired 4-chloro-1,3-dienes were obtained in good yields and
excellent E-selectivities without need of any additive. The presence of the 4-chloro-1,3-diene
moiety makes these compounds ideal precursors for palladium-catalysed coupling reac-
tions, which can be exploited for the introduction of new substituents and the elongation
of the carbon chain. For example, indium-promoted allylation of a galactose-derived alde-
hyde, followed by acetylation, afforded the chloroacetate intermediate. Indium-promoted
elimination under ohmic heating furnished the corresponding 1-chlorodiene, which on
Kumada cross-coupling gave the (E,E)-diene in good yield (Scheme 50).
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of 1,3-dienes.

More recently, Soengas and Rodríguez-Solla reported the stereoselective synthesis of
highly functionalized (E)-1,3-dienes from carbonyl compounds and 1,3-dichloropropene
through a cascade allylation/β-elimination reaction promoted by a cooperative zinc/catalytic
indium system [177]. Thus, aldehydes or ketones were effectively dienylated in the pres-
ence of zinc and catalytic indium trichloride, affording the corresponding (E)-dienes in
good yields and selectivities (Scheme 51).
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Another recent example of aldehyde dienylation is the TiCl4/Et3N-mediated con-
densation of aldehydes with α,β-unsaturated carboxylates to generate 1,3-dienes in good
yields and stereoselectivities reported in 2016 (Scheme 52) [178]. Despite the satisfactory
results, the procedure is restricted to the synthesis of butadiene-2-carboxylates.
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5. Olefin Methathesis

Olefin metathesis is one of the most powerful existing methods for the formation
of C-C double bonds. It basically provides the same end goal of the Wittig reaction but
through a catalytic pathway. In this regard, is an extraordinarily atom-economical reaction,
compatible with many functional groups. Although olefin metathesis has been known
since mid-1950s, it was Grubbs’ work on ruthenium based catalysts what put this reaction
at the forefront of organic synthesis [179,180] (Figure 3).
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There are two basic types of olefin metathesis for the formation of C-C bonds: the
cross-metathesis and the ring closing metathesis (RCM).

A recent example of the application of olefin cross-metathesis to the synthesis of
1,3-dienes is the cross-metathesis/elimination sequence reported by Bilel and co-workers
in 2014 [181]. Thus, olefin cross-metathesis of allylic chlorides and alkenes afforded
chloroallylic substrates, which on Ru-catalysed elimination generated the corresponding
dienes in good yields and moderate E-selectivity (Scheme 53).
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When the ring closing metathesis is performed on an enyne system, the so-called
ring closing enyne metathesis (RCEYM), it provides cyclic 1,3-dienes with one exocyclic
double bond, which are of special interest for the synthesis of bioactive compounds. Both
heterocyclic and carbocyclic 1,3-dienes can be prepared by means of a RCEYM reaction.
For example, Tan and co-workers reported the Ru-catalysed RCEYM of chiral propargyl
amines bearing an allyl group bonded to the nitrogen atom, to provide vinylpyrrolines in
high yields (Scheme 54) [182].
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More recently, Dolan et al. described the use of ruthenium (IV) dihydride complexes as
new catalysts for the metathesis of oxygenated and nitrogenated enynes (Scheme 55) [183].
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Some recent contributions on the synthesis of 1,3-diene carbocyclic rings includes the
work of Fustero’s group on the synthesis of enantiopure cyclic dienes through the ring-
closing metathesis of homoallylic benzylic or amines with an alkenyl group at ortho-position
of the aromatic ring [184,185]. For example, chiralω-alkynyl homoallylic(homopropargylic)
alcohols, easily available from asymmetric allyl(propargyl)-boration of ortho-alkynyl ben-
zaldehydes, were transformed to the corresponding cyclic 1,3-dienes via ring-closing enyne
metathesis (RCEYM) (Scheme 56).

More recently, Yus and Foubelo performed the ring-closing metathesis of chiral N-tert-
butanesulfinyl amino derivatives, prepared by means of an indium-promoted enantioselec-
tive propargylation protocol developed in their group, [186,187] producing the enantiopure
cyclic dienes in high yields (Scheme 57) [188].
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6. Rearrangement/Isomerization

Synthetic methodologies based in isomerizations or rearrangements of other chemical
motifs have been extensively investigated as atom-economic alternatives for the synthesis of
1,3-dienes. Taking into account that other unsaturated functions as allenes and alkynes have
the same oxidation state as 1,3-dienes, their transformation into dienes just requires some
internal hydrogen reorganization. This is considerably more atom economical than external
sequential reduction-oxidation operations, hence the considerable amount of literature that
has been published on this matter. Rearrangements of other diene derivatives as well as
other functional groups, as enols or cyclobutenes, has also been considered for the synthesis
of dienes. The next section presents some major studies on this field that were conducted in
the past decade.

6.1. From Allenes

Translation of allene derivatives is a particularly effective method for the synthesis
of functionalized dienes, thereby being a research area of much recent interest [189–195].
Isomerization of an allenic system to a conjugated diene was first demonstrated by Trost and
co-workers [196]. Inspired by Trost’s seminal study, Tin et al. developed a gold-catalysed
isomerization of unactivated allenes into 1,3-dienes [197]. Reaction of and tetrasubstituted
allenes with catalytic gold(III) in the presence of nitrosobenzene as additive afforded highly
functionalized dienes in excellent yields in the E-form only. The most likely mechanism
would involve a gold allylic cation intermediate, which on an intramolecular proton
transfer mediated by nitrosobenzene, generates the final 1,3-diene (Scheme 58).
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In 2014, Hampton and Harmata reported the isomerization of allenic sulfones to
arylsulfonyl 1,3-dienes [198]. Under conditions of palladium catalysis in the presence of a
weak acid, allenic sulfones were converted to 1-arylsulfonyl 1,3-dienes in good yields and
total stereo- and regio-control (Scheme 59).
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Scheme 59. Regiodivergent synthesis of 1- and 2-arylsulfonyl 1,3-dienes.

On the other hand, nucleophilic catalysis using triphenylphosphine in the presence of
a proton shuttle yields 2-arylsulfonyl 1,3-dienes.

More recently, Kimber’s group developed the rearrangement of an allene to a 1,3-diene
by means of a palladium hydride complex generated in situ from a Pd(0) source and boric
acid. [199] Under these conditions, allenes were transformed in 1,3-dienes in good yields
and total E-stereoselectivity (Scheme 60). The reaction was hypothesized to occur via
formation of a π-allylpalladium complex and subsequent syn-β-hydride elimination to
give the 1,3-diene products.
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Scheme 60. Rearrangement of unactivated allenes to 1,3-dienes.

1,3-Transposition of C-O bonds across a π-system is an important reaction in organic
synthesis and has been widely studied for allylic and propargylic alcohols. On contrary,
the rearrangement of allenic alcohols and their derivatives remained underdeveloped until
several recent examples highlighted the interest in this transformation for the stereoselective
synthesis of 1,3-dienes. In one of this pioneering works, Alcaide, observed the formation
of mesylated 1,3-dienes upon treating allenic alcohols with methanesulfonyl chloride and
triethylamine (Scheme 61) [200].
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Later in 2011, Kraft’s group developed a gold-catalysed Claisen-type rearrangement of
allenyl vinyl ethers to give 1,3-dienes with different substitution patterns (Scheme 62) [201].
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Scheme 62. Gold (I)-catalysed Claisen rearrangement of allenyl vinyl ethers.

More recently, Rinaolo et al. developed a methodology for the synthesis of 1,3-
dienes via reductive transposition of allenols (Scheme 63) [202]. Reaction of 1,2-allenols
with N-isopropylidene-N′-2-nitrobenzenesulfonyl hydrazine (IPNBSH) under Mitsunobu
conditions [PPh3/diethyl azodicarboxylate(DEAD)] generated in situ the corresponding
monoalkyl diazene intermediate, which upon treatment with trifluoroethanol provided
through the loss of dinitrogen, 1,3-dienes in good yields albeit in moderate Z-selectivity.
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Scheme 63. Reductive transposition of allenols.

As yet another contribution of Alcaide’s group, the synthesis of 2-halo-1,3-dienes
was achieved on rearrangement of terminal allenic alcohols [203] in the presence of a
stoichiometric amount of an iron(III) halide (Scheme 64) [204].
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Scheme 64. Halogenation/rearrangement of indolinone allenols.

In 2013, Sabbasani et al. reported a metal-free rearrangement of allenic alcohols
to (E,E)-1,3-dien-2-yl triflates or chlorides by using trimethylsilyl triflate (TMSOTf) or
trimethylsilyl chloride (TMSCl) respectively [205]. It was observed that the outcome of the
reaction was strongly dependent on the electronic effects of the substituents. Therefore,
vinyl triflates were obtained from electron-deficient substrates and TMSOTf whereas vinyl
chlorides were generated on reaction of electron-rich substrates and TMSCl (Scheme 65).
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Scheme 65. Allylic 1,3-transposition of allenols with TMSOTf or TMSCl.

Nucleophilic additions to allenols offer a unique opportunity for the synthesis of trisub-
stituted dienes. To date, several studies have investigated different strategies to attain this
goal. For example, Wu and co-workers prepared 2-amino-1,3-dienes via metal-free decar-
boxylative amination of allenols by TsNCO [206], while Lee’s group described the indium(III)-
catalysed addition of thiols to allenols to provide 2-thio-1,3-dienes (Scheme 66) [207].
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6.2. From Alkynes

Metal-catalysed alkyne isomerization has long been regarded as an efficient, atom-
economical approach for the synthesis of 1,3-dienes. Several transition-metal complexes
(e.g., Ru, Ir, and Pd) are known to catalyse the isomerization of acylalkynes and related
substrates with strongly electron-withdrawing groups [208]. On the other hand, until
recently little progress had been described for the use of unactivated alkynes as sub-
strates [209–211]. During the last decade, the research on the field of alkyne isomerization
was mainly focused on achieving a larger scope by developing improved strategies for
the isomerization of unactivated alkynes to the corresponding 1,3-dienes. Zhang envi-
sioned that a gold(I) complex possessing orthogonally positioned “push” and “pull” forces
would enable soft propargylic deprotonation, which could led to efficient isomerization
of alkynes into 1,3-dienes [212]. Thus, Zhang’s group designed a gold(I) cationic complex
combining a LAu+ soft Lewis acid as the “pull” force with an optimally positioned basic
site “pushing” force, both linked by a rigid ligand framework. Treating alkynes with the
gold complex L4AuCl in the presence of chloride scavenger NaBARF (sodium tetrakis
[3,5-bis(trifluoromethyl)phenyl]borate) resulted in the formation of the (1E,3E)-dienes in
good yields and stereoselectivities (Scheme 67).
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In a further application of this methodology, N-alkynyl-o-nosylamides were converted
to (1E,3E)-1-amido-1,3-dienes with excellent regio and stereoselectivities under gold catal-
ysis, in a process that can be combined with a one-pot Diels−Alder reaction leading to
valuable bicyclic compounds, as depicted in Scheme 68 [213].

Molecules 2021, 26, x FOR PEER REVIEW 28 of 41 
 

 

gold catalysis, in a process that can be combined with a one-pot Diels−Alder reaction lead-

ing to valuable bicyclic compounds, as depicted in scheme 68 [213]. 

 

Scheme 68. Ynamide isomerization−cycloaddition domino reaction. 

In these Au-catalysed isomerizations, as well as in the classical Pd-, Ru- and Rh-cat-

alysed reactions, the electron density of the π-system extends in a single direction. In con-

trast, Cera et al. disclosed in a recent report a bidirectional dual isomerization of alkynes 

to dienes via Pd(0)/carboxylic acid catalysis. [214] In this protocol, a palladium hydride 

catalyst formed in situ on combination of palladium(0) with cheap benzoic acid, enables 

a bi-directional p-walk involving the two α-C(sp3) of a 2-butynyl fragment to form the 1,3-

diene moiety in moderate yields with total E-stereoselectivity (Scheme 69). 

 

Scheme 69. Bi-directional alkyne tandem isomerization. 

The past decade has also witnessed some relevant advances in the synthesis of 1,3-

dienes by means of rearrangements of propargyl alcohols. For example, Vidhani and co-

workers developed a Rh(I)-catalysed approach to functionalized (E,Z)-1,3-dienals based 

on a tandem Claisen rearrangement/stereoselective hydrogen transfer (Scheme 70) [215]. 

Z-Stereochemistry of the first double bond suggests the involvement of a six-membered 

cyclic intermediate whereas the E-stereochemistry of the second double bond stems from 

the subsequent protodemetalation step giving an (E,Z)-dienal. Overall, this procedure en-

ables access to stereodefined dienals with great atom economy and minimal waste gener-

ation. 

 

Scheme 70. Rh(I)-catalysed tandem Claisen rearrangement/stereoselective hydrogen transfer. 

In 2012, Gevorgyan and co-workers reported the synthesis of 1,3-dienes by means of 

a double migratory cascade reaction of α-halogen-substituted propargylic phosphates 

[216]. The main feature of this transformation is a 1,3-phosphatyloxy group migration fol-

lowed by a 1,3-shift of an halogen, a relevant example of an extraordinarily unusual dou-

ble migration of two different functionalizable groups. Moreover, this transformation is 

stereodivergent: copper-catalysed reactions produced (Z)-1,3-dienes, whereas using a 

gold catalyst resulted in the formation of the corresponding E-diene derivatives (Scheme 

71). 

Scheme 68. Ynamide isomerization−cycloaddition domino reaction.

In these Au-catalysed isomerizations, as well as in the classical Pd-, Ru- and Rh-
catalysed reactions, the electron density of the π-system extends in a single direction. In
contrast, Cera et al. disclosed in a recent report a bidirectional dual isomerization of alkynes
to dienes via Pd(0)/carboxylic acid catalysis. [214] In this protocol, a palladium hydride
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catalyst formed in situ on combination of palladium(0) with cheap benzoic acid, enables
a bi-directional p-walk involving the two α-C(sp3) of a 2-butynyl fragment to form the
1,3-diene moiety in moderate yields with total E-stereoselectivity (Scheme 69).
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Scheme 69. Bi-directional alkyne tandem isomerization.

The past decade has also witnessed some relevant advances in the synthesis of 1,3-
dienes by means of rearrangements of propargyl alcohols. For example, Vidhani and
co-workers developed a Rh(I)-catalysed approach to functionalized (E,Z)-1,3-dienals based
on a tandem Claisen rearrangement/stereoselective hydrogen transfer (Scheme 70) [215].
Z-Stereochemistry of the first double bond suggests the involvement of a six-membered
cyclic intermediate whereas the E-stereochemistry of the second double bond stems from
the subsequent protodemetalation step giving an (E,Z)-dienal. Overall, this procedure
enables access to stereodefined dienals with great atom economy and minimal waste
generation.
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Scheme 70. Rh(I)-catalysed tandem Claisen rearrangement/stereoselective hydrogen transfer.

In 2012, Gevorgyan and co-workers reported the synthesis of 1,3-dienes by means of a
double migratory cascade reaction of α-halogen-substituted propargylic phosphates [216].
The main feature of this transformation is a 1,3-phosphatyloxy group migration followed by
a 1,3-shift of an halogen, a relevant example of an extraordinarily unusual double migration
of two different functionalizable groups. Moreover, this transformation is stereodivergent:
copper-catalysed reactions produced (Z)-1,3-dienes, whereas using a gold catalyst resulted
in the formation of the corresponding E-diene derivatives (Scheme 71).
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6.3. From Dienes

1,3-Dienes can be also obtained from isomerization other dienyl derivatives. For
example, it has been described that 1,4-dienols can undergo facile isomerization to the
thermodynamically favored 1,3-dienols via an acid catalysed 2-oxonia-Cope rearrange-
ment [217]. Capel et al. took advantage of this reaction to develop the synthesis of
1,3-dienols from aldehydes by means of a synthetic sequence involving the addition of
pentadienylindium followed by the indium-catalysed 2-oxonia Cope rearrangement of the
resulting 1,4-dienol product to the corresponding 1,3-dienol (Scheme 72) [218].
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In a recent report, Tang et al. described an iridium-catalysed regio-divergent allylic
amination of unactivated dienyl allylic alcohols [219]. The protocol proceeds under mild
conditions and tolerates a wide scope of substrates, but probably the most relevant feature
is the possibility of producing either branched or linear amino-1,3-dienes just by slightly
tuning the reaction conditions. Thus, treatment of secondary dienyl allylic alcohols with
secondary amines in the presence of an iridium catalyst and scandium triflate as additive
in dichloromethane at room temperature afforded C5 amination products in good yields
(Scheme 73).
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Scheme 73. Regio-divergent allylic amination of dienyl allylic alcohols.

On contrary, when the reaction was performed in toluene at 80 ◦C, the corresponding
C1 amination products were obtained in moderate yields and stereoselectivities.

6.4. From Other Functions

In 2011 Crouch and co-workers reported a conceptually new route to substituted
1,3-dienes via palladium-catalysed elimination/isomerization of enol triflates [220]. Both
E- and Z-enol triflates are capable of providing the corresponding functionalized, highly
substituted 1,3-dienes. However, Z-enol triflates are considerably less reactive and require
a strong Lewis acid, such as TMSOTf, to generate the corresponding dienes in synthetically
useful yields. Thus, two separate sets of reaction conditions were used based on the starting
olefin geometry of the enol triflate. E-enol triflates were treated with sodium carbonate and
water at 50 ◦C in toluene in the presence of a palladium catalyst. Under these conditions,
the corresponding (E,E)-dienes were obtained in good yields, as depicted in Scheme 74.
For the Z-enol triflates, the above reagents and conditions were used, plus addition of
trimethylsilyl triflate (TMSOTf) and Hünig’s base. Again, the (E,E)-dienes were obtained
in good yields.

Molecules 2021, 26, x FOR PEER REVIEW 30 of 41 
 

 

a strong Lewis acid, such as TMSOTf, to generate the corresponding dienes in syntheti-

cally useful yields. Thus, two separate sets of reaction conditions were used based on the 

starting olefin geometry of the enol triflate. E-enol triflates were treated with sodium car-

bonate and water at 50 C in toluene in the presence of a palladium catalyst. Under these 

conditions, the corresponding (E,E)-dienes were obtained in good yields, as depicted in 

Scheme 74. For the Z-enol triflates, the above reagents and conditions were used, plus 

addition of trimethylsilyl triflate (TMSOTf) and Hu ̈nig’s base. Again, the (E,E)-dienes 

were obtained in good yields. 

 

Scheme 74. Palladium-catalysed elimination/isomerization of enol triflates. 

Ukaji group developed the sequence 1,4-elimination/[1,2]-Wittig rearrangement for 

the selective synthesis of (Z)-dienyl alcohols. Initially, δ-benzyloxy-substituted allylic sul-

fones were used as starting materials, obtaining the corresponding (Z)-2,4- pentadien-1-

ols in good yields and stereoselectivities. [221] The Z-selectivity was attributed to the “syn-

effect”, namely, a stereoelectronic effect owing to σC−H→π*C=C interaction in the transition 

step of the 1,4-elimination. Notwithstanding the good results, the protocol was restricted 

to α,α-disubstituted allylic sulfones. When subjected to the same reaction conditions, the 

more acidic α-proton of α-monosubstituted allylic sulfones was deprotonated first, caus-

ing the elimination the benzyloxy group instead the sulfone moiety. In order to overcome 

this limitation and improve the reaction scope, Ukaji and co-workers applied the sequen-

tial 1,4-elimination and [1,2]-Wittig rearrangement δ-benzyloxy-substituted allylic benzo-

ates, providing (2Z,4E)-2,4-pentadien-1-ols in moderate yields and stereoselectivities 

(Scheme 75) [222]. 

 

Scheme 75. Z-Selective synthesis of dienyl alcohols. 

Campbell and Sammis developed in 2014 a protocol for the diastereoselective syn-

thesis of E dienes based on the radical cyclization of bromoallyl hydrazones [223]. This 

process involves a radical 6-endo-cyclization, followed by an elimination and a cyclorever-

sion assisted by the release of nitrogen. Interestingly, this methodology was further ex-

tended to the direct synthesis of 1,3-dienes from aldehydes by means of a one-pot conden-

sation/radical cyclization/cycloreversion cascade (Scheme 76). 

 

Scheme 76. One-pot hydrazone formation followed by one-electron/pericyclic cascade for the syn-

thesis of dienes. 

Scheme 74. Palladium-catalysed elimination/isomerization of enol triflates.



Molecules 2021, 26, 249 30 of 40

Ukaji group developed the sequence 1,4-elimination/[1,2]-Wittig rearrangement for
the selective synthesis of (Z)-dienyl alcohols. Initially, δ-benzyloxy-substituted allylic sul-
fones were used as starting materials, obtaining the corresponding (Z)-2,4- pentadien-1-ols
in good yields and stereoselectivities. [221] The Z-selectivity was attributed to the “syn-
effect”, namely, a stereoelectronic effect owing to σC−H→π*C=C interaction in the transition
step of the 1,4-elimination. Notwithstanding the good results, the protocol was restricted
to α,α-disubstituted allylic sulfones. When subjected to the same reaction conditions,
the more acidic α-proton of α-monosubstituted allylic sulfones was deprotonated first,
causing the elimination the benzyloxy group instead the sulfone moiety. In order to over-
come this limitation and improve the reaction scope, Ukaji and co-workers applied the
sequential 1,4-elimination and [1,2]-Wittig rearrangement δ-benzyloxy-substituted allylic
benzoates, providing (2Z,4E)-2,4-pentadien-1-ols in moderate yields and stereoselectivities
(Scheme 75) [222].
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Campbell and Sammis developed in 2014 a protocol for the diastereoselective synthesis
of E dienes based on the radical cyclization of bromoallyl hydrazones [223]. This process in-
volves a radical 6-endo-cyclization, followed by an elimination and a cycloreversion assisted
by the release of nitrogen. Interestingly, this methodology was further extended to the
direct synthesis of 1,3-dienes from aldehydes by means of a one-pot condensation/radical
cyclization/cycloreversion cascade (Scheme 76).
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A classic example pericyclic rearrangement is the thermal conrotatory 4π-electrocyclic
ring opening of cyclobutenes to afford 1,4-butadienes [224]. As the cyclobutene config-
uration is transferred into the diene geometry, this process generates the double bonds
with high stereocontrol, hence its relevance in the context of natural products synthe-
sis [225]. Maulide et al. decided to take advantage of the 4π-electrocyclic ring opening
of cyclobutene derivatives to prepare diene carboxylates. Starting from simple bicyclic
lactones, the synthesis of functionalized dienoic carboxylates was achieved by a domino
allylic alkylation/4π- electrocyclic ring opening using oxygen- or nitrogen-based nucle-
ophiles [226]. This approach has shown interesting applications in the total synthesis of
diverse polyene natural products [227]. For example, a double cyclobutene electrocyclic
ring opening was employed for the preparation of the southeastern fragment of macrolactin
A (Scheme 77).
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Kim and Oh extensively investigated the eliminative reaction pathways of (E)-β-
chlorovinyl ketones and discovered that, in the presence catalytic amount of Lewis base
and triphenylphosphine, 1,3-dienones were formed in high yields (Scheme 78) [228].
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7. Miscellaneous

Maji and Tunge described an elegant palladium-catalysed decarboxylative allyla-
tion protocol for the synthesis of conjugated acyclic dienes utilizing pyrones as C4 syn-
thons [229]. The process occurs via addition of a nucleophile generated by decarboxylation
of an allylic carbonate to highly electrophilic 2-carboxypyrones (Scheme 79).
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Ding et al. reported a NBS-promoted allyloxyl addition−Claisen rearrangement−dehy
drobromination cascade reaction of alkynylsulfonamides and allyl alcohols to provide
(Z)-2,4-dienamides in moderate to high yields (Scheme 80) [230].
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In 2018, Wang and co-workers described the preparation of conjugated dienamides
and dienoic acids by the means of a direct aerobic α,β-dehydrogenation of γ,δ-unsaturated
amides and acids using a simple iridium/copper relay catalysis system [231]. The reaction
proceeds via allyl−Ir intermediate species, which on direct hydride elimination or ketone
tautomerization, followed by 1,5-hydrogen shift, afforded the desired dehydrogenation
products preserving the olefin geometry of the starting material (Scheme 81).
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8. Conclusions

The 1,3-diene moiety has played a central role in chemical synthesis since the inception
of organic chemistry as a field. This vast interest in 1,3-dienes is mainly motivated by the
ubiquity of the butadiene moiety in natural and synthetic compounds of pharmacological
relevance, by the emergence of diene feedstock for applications in industry and by their
long-known usefulness as synthetic intermediates in a broad range of chemical processes.
In this regard, the stereochemistry of dienes is crucial, since it determines the physical
and biological properties but also control the outcome of further chemical transformations.
Nevertheless, to date it remains challenging to target specific 1,3-diene geometries and to
position substituents and functional groups along the C4 framework at prescribed locations.
As it has been stated before, the synthetical interest on the stereoselective construction
of the 1,3-butadienyl moiety has shown a great interest by the synthetical community
since is present in many natural and non-natural products displaying a broad spectrum
of biological activities. To this end, these synthetic challenges continue to fuel the interest
of organic chemists in the development of novel methodologies for the stereoselective
synthesis of dienes and we expect further exciting developments in coming years.
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