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Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) offer a
new means to study and understand the human cardiac action potential, and can give key
insight into how compoundsmay interact with important molecular pathways to destabilize
the electrical function of the heart. Important features of the action potential can be readily
measured using standard experimental techniques, such as the use of voltage sensitive
dyes and fluorescent genetic reporters to estimate transmembrane potentials and
cytosolic calcium concentrations. Using previously introduced computational
procedures, such measurements can be used to estimate the current density of major
ion channels present in hiPSC-CMs, and how compounds may alter their behavior.
However, due to the limitations of optical recordings, resolving the sodium current
remains difficult from these data. Here we show that if these optical measurements are
complemented with observations of the extracellular potential using multi electrode arrays
(MEAs), we can accurately estimate the current density of the sodium channels. This
inversion of the sodium current relies on observation of the conduction velocity which turns
out to be straightforwardly computed using measurements of extracellular waves across
the electrodes. The combined data including the membrane potential, the cytosolic
calcium concentration and the extracellular potential further opens up for the possibility
of accurately estimating the effect of novel drugs applied to hiPSC-CMs.

Keywords: action potential model, bidomain model, computational inversion, human induced pluripotent stem cell
derived cardiomyocytes, multielectrode array recording, conduction velocity, ion channel block

1 INTRODUCTION

In recent reports (Tveito et al., 2018; Jæger et al., 2020a) we have demonstrated how
microphysiological systems utilizing human induced pluripotent stem cell derived
cardiomyocytes (hiPSC-CMs) (Mathur et al., 2015; Mathur et al., 2016) can be used to estimate
drug induced changes to the cardiac action potential using computational approaches. These
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methods use optical measurements of the membrane potential
and the cytosolic calcium concentration to quantitate changes in
underlying ion channel conductances and calcium handling
pathways using a mathematical model of the hiPSC-CM
dynamics. We have further shown how these estimates, at
least in principle, carry over from immature cells to adult
cardiomyocytes. This methodology provides information on a
number of the major ion channels and when compared to data
presented in (Mohammad et al., 1997; Di Stilo et al., 1998; Zhang
et al., 1999; Zhabyeyev et al., 2000; Mirams et al., 2011; Kramer
et al., 2013; Crumb et al., 2016), the method is able to provide
reasonable estimates of the IC50 values of well-known drugs like
Nifedipine, Lidocaine, Cisapride, Flecainide and Verapamil; see
Table 2 of (Jæger et al., 2020a). These drug affects the ICaL, INaL or
IKr currents and the effect is well estimated by our methodology.

However, difficulties remain in the characterization of the fast
sodium current, INa. This is a major issue since this current more
or less completely governs the rapid upstroke of the action
potential and thus also the conduction velocity. Therefore, it is
of great importance to characterize the effect of drugs on this
current. The reason for this deficiency in our methodology is the
time resolution of the data obtained by fluorescence; the data used
in the inversions are provided with a resolution of 10 ms and this
is far too coarse to be able to estimate the strength of INa. Time
resolution can be improved but at the cost of less accurate data
and therefore another experimental technique is needed to pin
down the channel density of and drug effects on INa. It is well
known that the extracellular potential can be measured in
microphysical systems using multielectrode arrays; see, e.g.,
(Zwi et al., 2009; Clements and Thomas, 2014; Asakura et al.,
2015; Bouyssier and Zemzemi, 2017; Tixier et al., 2018). In this
report we will show that the extracellular data can be used to
determine the sodium current. And therefore, by combining
imaging data for the membrane potential (V) and the cytosolic
calcium concentration (Ca) with data for the extracellular
potential (U), we are able to identify both the fast sodium
current and other major currents characterizing the action
potential of the hiPSC-CMs.

The main challenge in combining V, Ca and U data is that a
spatial problem needs to be resolved. When the data are given by
V and Ca only, we have simply used a data trace obtained by
taking the average over the whole chip (see Mathur et al., 2015;
Tveito et al., 2018) and the inversion of the data has amounted to
estimating parameters describing a system of ordinary differential
equations. But when U is added to the data, the extracellular
potential needs to be calculated. In our present implementation,
we use the bidomain model (see, e.g., Franzone et al., 2014) for
this purpose. The bidomain model has already been used for
inversion of U data (but not V and Ca) by several authors; see
(Bouyssier and Zemzemi, 2017; Raphel et al., 2017; Abbate et al.,
2018; Tixier et al., 2018; Raphel et al., 2020). However, it is
demonstrated in (Abbate et al., 2018) that the bidomain model
does not provide an extracellular repolarization wave. Such a
wave is clearly present in the experimental data and
inhomogeneities have to be introduced in the bidomain model
in order to enforce a repolarization wave. These inhomogeneities
are difficult to obtain from measurements, and therefore we

choose to use U only to estimate the currents involved in
generating the upstroke and not the whole action potential.
This turns out to determine INa accurately, - at least in data
generated by simulations.

2 METHODS

In this section, we describe the methods applied to identify drug
response by combining measurements of the membrane
potential, the cytosolic calcium concentration and the
extracellular potential in microphysiological systems of
hiPSC-CMs.

2.1 Bidomain-Base Model Simulations
In order to represent the electrical properties of a
microphysiological system, we conduct simulations of the
bidomain model of the form

χCm(zv
zt

+ Iion(v, s) + Istim) � ∇ · (σ i∇v) + ∇ · (σ i∇ue), (1)

0 � ∇ · (σ i∇v) + ∇ · [(σ i + σe)∇ue], (2)

zs
zt

� F(v, s) (3)

(see, e.g., Tung, 1978; Sundnes et al., 2007; Keener and James,
2009; Franzone et al., 2014). Here, v and ue are the membrane
potential and the extracellular potential, respectively. In addition,
σi and σe are the bidomain conductivities of the extracellular and
intracellular spaces, respectively, Cm is the specific membrane
capacitance, and χ is the surface-to-volume ratio of the cell
membrane. The values chosen for these parameters are given
in Table 1.

Furthermore, Iion represents the density of currents
through different types of ion channels, pumps and
exchangers on the cell membrane. We use an adjusted
version of the hiPSC-CM base model introduced in (Jæger
et al., 2020a) to represent these currents. The current density is
then given on the form

Iion(v, s) � ∑
i

Ii(v, s), (4)

TABLE 1 | Parameter values used in the bidomain-base model simulations.

Parameter Value

Cm 1 μF/cm2

σ i 0.4 mS/cm
σe 10 mS/cm
X 1,400 cm−1

Domain size 1,600 μm × 1,600 μm
Electrode size 50 μm × 50 μm
Electrode distance 100 μm
Δx, Δy 50 μm
Δt (recordings of V and Ca) 10 ms
Δt (extracellular recordings) 0.05 ms
Δt (simulations) 0.05 ms for t ≤ 50 ms

0.2 ms for t > 50 ms
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where each Ii represents the current through a specific type of ion
channel, pump or exchanger. The hiPSC-CM base model
includes a number of additional state variables representing
the gating of ion channels and intracellular Ca2+

concentrations. These variables are represented by s in the
model above, and their dynamics are modeled by a set of
ordinary differential equations (ODEs) given by F(v, s). A
number of parameters in the hiPSC-CM base model have been
adjusted to make the size of eight currents of particular interest
(IKr, INaL, ICaL, INa, Ito, IKs, IK1, and If) close to the size of the
currents in the model described in (Kernik et al., 2019), which is
fitted to recordings of hiPSC-CMs from several different studies.
The adjusted parameter values of the hiPSC-CM base model are
given in Table 2, and the base model is, for completeness, given in
the Supplementary Material.

The geometry of the domain used to represent a
microphysiological system is described in Figure 1 and
Table 1. We consider a two-dimensional domain, and initiate
a traveling wave by stimulating the lower left corner.
Furthermore, 8 × 8 electrodes are distributed in the center of
the domain, and we record the extracellular potential in these
electrodes. On the boundary of the domain, we apply the
Dirichlet boundary condition ue � 0.

In addition to the bidomain simulations, we in some cases
conduct simulations in which the spatial variation of the variables
are ignored. In that case, the system Eqs 1–3 can be written as a
pure ODE system of form

dv
dt

� − 1
Cm

(Iion + Istim), (5)

ds
dt

� F(v, s). (6)

Below, we refer to the system Eqs 5 and 6 as the pure ODE system.

2.1.1 Adjustment Factors
In order to investigate whether we are able to identify drug
responses from combined measurements of V, Ca and U data, we
perform numerical simulations representing a number of
different drugs reported in (Crumb et al., 2016). More

specifically, we simulate ion channel blockers by introducing
adjustment factors −1 ≤ λi ≤ 0, such that Iion is given by

Iion(v, s) � ∑
i

(1 + λi)Ii(v, s). (7)

In our simulation, we consider the drug effect on three major
ionic currents, IKr, ICaL and INa, believed to be of importance in
evaluation of drug safety (see, e.g., Crumb et al., 2016), and we
therefore introduce the four adjustment factors λKr, λCaL and λNa.

2.1.2 Bidomain-Base Model Simulations Used to
Generate Data
We wish to investigate how V, Ca and U data from a
microphysiological system can be used to identify the effect of
drugs. In order to generate data representing this type of
recordings, we perform bidomain-base model simulations. The
simulation procedure used to generate the data is illustrated in
Figure 2.

As illustrated in the upper panel of Figure 2, for a given
combination of λ-values, we first perform bidomain-base model
simulations for the duration of an entire action potential and
store the extracellular potential, the membrane potential, and the
cytosolic calcium concentration in each mesh point for each time
step. We then wish to convert these recorded solutions into
corresponding measurements that may be performed in
microphysiological systems.

The first considered type of measurement is optical
measurements of voltage-sensitive dyes. This type of
measurement is mimicked in the computations by extracting
the mean membrane potential over the entire domain for each
time step. Because the exact conversion factor between the pixel
intensity of the optical measurements and the associated
membrane potential (in mV) is not known for this type of
optical measurement, we normalize the mean V-trace to

TABLE 2 | Parameter values used in the hiPSC-CM base model. The remaining
parameter values are the same as specified in (Jæger et al., 2020a).

Parameter Value Parameter Value

[Ca2+]e 0.42 mM INaK 1.9 μA/μF
[K+]e 5 mM INaCa 9.4 μA/μF
[Na+]e 140 mM IpCa 0.12 μA/μF
gNa 2.6 mS/μF JSERCA 0.00016 mM/ms
gNaL 0.03 mS/μF αRyR 0.0052 ms−1

gto 0.21 mS/μF βRyR 0.0265 mM
gKr 0.075 mS/μF αcd 0.0027 ms−1

gKs 0.0127 mS/μF αcsl 0.3 ms−1

gKl 0.05 mS/μF αsn 0.0093 ms−1

gf 0.012 mS/μF Bc
tot 0.063 mM

gbCl 0.0001 mS/μF Bd
tot 2.7 mM

gbCa 0.0005 mS/μF Bsl
tot 1.45 mM

gCaL 1.8 nL/(μF ms) Bs
tot 60 mM

FIGURE 1 | Geometry used in the bidomain-base model simulations.
The domain contains 8 × 8 evenly spaced electrodes, and the propagating
wave is initiated by stimulating the lower left corner of the domain. The
conduction velocity is computed between the electrodes marked as a
and b, and when we plot the extracellular potential of just a single electrode,
we consider the electrode marked as c.
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values between 0 and 1. Moreover, because the time resolution of
the measurement equipment for the optical measurements
typically is quite limited (see, e.g., Tveito et al., 2018), we only
store the membrane potential at relatively large time steps (every
10 ms). Traces representing optical measurements of the cytosolic
calcium concentration is generated in exactly the same manner.

In addition to the optical measurements of V and Ca, the
extracellular potential may also be measured in electrodes located
in the microphysiological system. In the simulations, we extract
this type of measurements by storing the mean extracellular
potential in the grid points overlapping the location of the

electrodes. We are primarily interested in the extracellular
potential during the depolarization wave, and we therefore
only store the extracellular potential in the beginning of the
simulation (typically the first 50 ms).

2.1.3 Pure ODE Simplification Used in the Inversion
Procedure
During the inversion procedure, we wish to identify the λ-values
associated with some considered data, generated as explained in
the previous section. In this inversion procedure, we need to
conduct simulations using a large number of different λ-values

FIGURE 2 | Simulation procedure used to generate data for the inversions. In Step 1, we conduct bidomain-base model simulations, recording V, Ca and U for a
number of time steps. In Step 2, we extract V and Ca data for inversion by recording the mean V and Ca over the domain at each time step and normalizing the traces to
values between 0 and 1. In addition, U is recorded (in mV) in 8 × 8 electrodes at each time step during the depolarization wave.
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for comparison to the data. As mentioned above, the
repolarization wave is known to be poorly represented by
the bidomain model when applied to small collections of
hiPSC-CMs. Therefore, we perform spatial simulations only
for the start of the action potential. The data from this part of
the simulation is used to determine the conduction velocity,
the Ca transient time to peak and the terms of the cost
function related to the extracellular potential, U. By
performing spatial simulations only for the beginning of
the action potential, we save time by avoiding a full
bidomain simulation for all of the different parameter
combinations. To generate the full V and Ca traces, we
instead run a simple pure ODE simulation of the form Eqs
5 and 6 of the full action potential. The solution of this ODE
simulation is used to compute all the terms in the cost function
(see Section 2.2.1), except for the ones related to U, the Ca
transient time to peak and the conduction velocity.

2.1.4 Stimulation Protocol and Update of Initial
Conditions
In the pure ODE simulations, the cell is stimulated by a constant
stimulus current of −5 μA/cm2 until v is above −40 mV. In the
bidomain simulations, we stimulate the domain in the lower left
corner as illustrated in Figure 1 by a 5-ms-long constant
membrane stimulus current of −40 μA/cm2. Note that after
each parameter change, and before any bidomain or pure
ODE simulation is performed, we conduct an ODE simulation
for 10 AP cycles, stimulating at 1 Hz, to update the initial
conditions.

2.1.5 Numerical Methods
The numerical simulations of the bidomain model are performed
using an operator splitting procedure (see, e.g., Sundnes et al.,
2005; Sundnes et al., 2007; Schroll et al., 2007). For each time step,
we first solve the non-linear part of the system (i.e., Eqs 1 and 3
with the left-hand side of Eq. 1 set to zero), using the GRL2
method (Sundnes et al., 2009). Then, we solve the remaining
linear part of the system (i.e., Eqs 1 and 2 with Iion � 0) using a
finite difference discretization in space and a backward Euler
discretization in time. The discretization parameters used in the
numerical simulations are given in Table 1. In the pure ODE
simulations used in the inversion procedure we apply the same
GRL2 method as in the non-linear part of the bidomain
simulations, and in the pure ODE simulations used to update
the initial conditions after a parameter change, we use the ode15s
ODE-solver in Matlab.

2.2 Inversion Procedure
In this section, we will describe the inversion procedure applied to
identify the effect of drugs based on V, Ca and U data in the form
of adjustment factors, λ (see Section 2.1.1).

2.2.1 Cost Function
In the inversion procedure, we wish to find appropriate
adjustment factors, λ, such that the solution of the model
specified by λ is as similar as possible to the considered data.
To this end, we define a cost function H(λ), measuring the

difference between the data and the model solution. This cost
function is defined as

H(λ) � ∑
j

(wjHj(λ)2) + δ⎛⎝∑
i

|λi|⎞⎠
2

, (8)

where each Hj(λ) represent various differences between the data
and the model solution specified by λ, and wj are weights for each
of these terms. In addition, δ is the weight of the regularization
term (∑i|λi|)2, which is included so that small adjustments, λ, are
preferred if several choices of λ result in almost identical
solutions. The individual cost function terms, Hj(λ), are
defined below.

2.2.1.1 Action Potential and Calcium Transient Durations
A number of terms in the cost function measure differences in the
action potential and calcium transient durations. These terms
take the form

HAPDp(λ) �
∣∣∣∣APDp(λ) − APDp*

∣∣∣∣∣∣∣∣APDp*∣∣∣∣ , (9)

HCaDp(λ) �
∣∣∣∣CaDp(λ) − CaDp*

∣∣∣∣∣∣∣∣CaDp*∣∣∣∣ , (10)

for p � 20, 30, . . ., 70, 80 The APDp value is measured as the time
from V is p% below its maximum value during the upstroke of
the action potential to the time at which V reaches a value below
p% of the maximum during the repolarization phase; see
Figure 3. APDp(λ) is the value obtained from the solution of
the model given by the parameter vector λ, whereas APDp* is
the value obtained from the data. The calcium transient
durations, CaDp, are defined just like the action potential
durations. Note also that the notation of a * marking the
data values is used for all the terms in the cost function (see
below).

2.2.1.2 Membrane Potential Integral
The cost function also includes a term of the form

HInt30(λ) �
∣∣∣∣Int30(λ) − Int30*

∣∣∣∣
|Int30*| , (11)

where Int30 is defined as

Int30 � ∫t2

t1
[v − v(t1)]dt (12)

and v is the membrane potential. The values t1 and t2 are here
time points corresponding to when V is 30% below the maximum
value during the depolarization and repolarization phases of the
action potential (see Figure 3).

2.2.1.3 Calcium Transient Time to Peak
The typical time resolution of the V and Ca data (10 ms) is too
coarse to be able to detect changes in the upstroke velocity of the
action potential. However, the upstroke of the calcium transient is
slower, and therefore, changes in the upstroke of the calcium
transient may be detected. To measure this upstroke velocity, we
include a term of the form
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Ht,Ca(λ) �
∣∣∣∣CaP(λ) − CaP*

∣∣∣∣
|CaP*| , (13)

where CaP is the time from Ca is 10% above its minimum value
until it reaches its maximum (see Figure 3).

As mentioned above, we use a bidomain simulation instead of
a pure ODE simulation to compute an estimate of CaP(λ) (and
CaP* in the case of simulated data). We conduct this bidomain
simulation for a rather short time interval (typically 50 ms) and
record Ca in all the grid points. Then, we extract the grid points
that have reached their peak Ca concentration during this
simulation, and set up a normalized mean Ca-trace for these
grid points. The value of CaP is then computed from this
normalized mean Ca-trace. When the data is generated, we
use the same procedure of considering the solution for only
the first part of the simulation (e.g., 50 ms) when we
compute CaP*.

2.2.1.4 Extracellular Potenial
In order to detect changes in U measured at the electrodes, we
include a cost function term of the form

HU(λ) � ∑k

����uk
e(λ) − uk,pe

����2∑k

����uk,p
e

����2 , (14)

where uke is a vector denoting U (in mV) in electrode k for each of
the recorded time steps.

2.2.1.5 Average Conduction Velocity
In addition, the cost function includes a term for the average
conduction velocity of the form

Hcv(λ) �
∣∣∣∣cv(λ) − cv*

∣∣∣∣
|cv*| , (15)

where cv denotes the average conduction velocity (in cm/s)
computed from U recorded in the electrodes. More
specifically, the average conduction velocity is computed
as the distance between the center of the two electrodes
marked as a and b in Figure 1 divided by the time between U
crosses 0 mV after the peak in these two electrodes (see
Figure 3).

2.2.1.6 Cost Function Weights
In the applications of the inversion procedure reported below, we
have used the weight wj � 1 for each of the cost function terms,
except forHAPD80 andHCaD80, which are given the weight of 5. In
addition, we use the value δ � 0.01 for the regularization term. All
terms of the cost function are scaled and thus have no unit, and
therefore also w and δ are unit free.

2.2.2 Continuation-Based Optimization
In order to find the optimal λ-values minimizing the cost function
H defined in Eq. 8, we apply a continuation-based minimization
procedure. This approach is described in detail in (Jæger et al.,
2020a). In short, we attempt to find the optimal λ-values by
gradually moving from a known solution λ0 � 0 to the final λ
fitting the data as best possible. To this end, we introduce a
parameter θ that is gradually increased from 0 to 1, and define an
intermediate cost function

H(λ, θ) � ∑
j

(wjHj(λ, θ)2) + δ

max(θ, ξ)
⎛⎝∑

i

|λi|⎞⎠
2

, (16)

where Hj(λ, θ) are adjusted versions of each of the cost function
terms defined above and ξ is some small number (e.g., 10−10). In
general, Hj(λ, θ) is defined as

Hj(λ, θ) �
∣∣∣∣∣Rj(λ) − R*

j(θ)
∣∣∣∣∣∣∣∣∣∣R*

j(θ)
∣∣∣∣∣ , (17)

where Rj is some property of the solution, for example an
action potential duration. Moreover, Rj(λ) is the property
computed in the solution of the model defined by λ, and
R*
j(θ) is defined as

R*
j(θ) � (1 − θ)Rj(λ0) + θR*

j , (18)

where Rj(λ0) is the property computed from the model solution
defined by λ0 � 0, and R*

j is the property computed from the data
we are trying to invert.

Considering the cost function terms, Hj, defined above, all the
termsmay straightforwardly be defined on the form Eq. 17 except
for the termHU defined in Eq. 14. For this term, we instead define

FIGURE 3 | Illustration of some of the properties included in the cost function Eq. 8. From the V-trace, we include a number of APD-values (see Eq. 9), and the
integral of V above APD30 (seeEq. 11). From the Ca-trace, we include a number of CaD-values (seeEq. 10) in addition to the Ca transient time to peak, CaP (seeEq. 13).
From theU data, we include the value in each time point and each electrode (see Eq. 14) and the conduction velocity computed using the time points in which U crosses
0 mV after the peak in different electrodes (see Eq. 15 and Figure 1).
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HU(λ, θ) � (1 − θ)H0
U + θHU(λ), (19)

where H0
U is defined by Eq. 14 with uk,pe replaced by the model

solution uke(λ0), and HU(λ) is defined by Eq. 14.
From the definitions Eqs 16–19, we observe that for θ � 0,

R*
j � Rj(λ0) and Hj(λ0, 0) � 0, implying that the known solution

λ � λ0 minimize Eq. 16 for θ � 0. Furthermore, for θ � 1, R*
j(1) �

R*
j defined by the data, Hj(λ, 1) � Hj(λ), and H(λ, 1) � H(λ).

Consequently, for θ � 1, the minimum of H defined in Eq. 16 is
the same as the minimum of H defined in Eq. 8.

The advantage of the continuation algorithm is that we can
move from the known optimal value λ0 to the final optimal value
λ gradually in a number of iterations, and that we for each
iteration can assume that the new estimated λ is in the vicinity of
the optimal λ from the previous iteration. In the applications of
the inversion procedure reported below, we use four θ-iterations
in the continuation algorithm (θ � 1/4, θ � 1/2, θ � 3/4 and θ �
1). In the first three iterations, m, we draw 63 random initial
guesses of λ(θm) in the vicinity of λ(θm−1), and in the last
iteration, we draw 126 initial guesses. More specifically, the
initial guesses for λi(θm) are drawn from [λi(θm−1) − 0.2, λi(θm−1)
+ 0.2], where λi(θ0) is defined to be 0. From these initial guesses
we minimize the cost function H(λ, θ) using the Nelder-Mead
algorithm (Nelder and Mead, 1965). In the first three
θ-iterations, we use 10 iterations of the Nelder-Mead
algorithm for each initial guess, and in the last θ-iteration,
we use 25 iterations.

2.3 Adjustment of Extracellular
Concentrations
In order to better distinguish between different ion channel
blockers, we consider the drug effects under different
extracellular conditions. In particular, we vary the extracellular
calcium concentration by introducing a number of known
adjustment factors cCa such that

[Ca2+]e � (1 + cCa)[Ca2+]*e, (20)

where [Ca2+]e is the extracellular calcium concentration and
[Ca2+]*e is the default extracellular calcium concentration
reported in Table 2.

In the inversions reported below, we use the two values
cCa,1 � 0 and cCa,2 � 0.25. We generate V, Ca and U data
using the approach described in Section 2.1.2 for both of
these values of cCa. Furthermore, for a given choice of λ in the
inversion procedure, we compute a version of the solutions for
each of these cCa-values, and define the cost function

H(λ) � ∑
q

∑
j

(wjHj(λ, cCa,q)2) + δ⎛⎝∑
i

|λi|⎞⎠
2

, (21)

where q counts the different extracellular conditions and
Hj(λ, cCa,q) represents the cost function terms computed
using the extracellular calcium concentration defined
by cCa,q.

2.4 Measuring the Extracellular Potential
Experimentally, the extracellular potential was measured in a
monolayer of cardiomyocytes using the microelectrode array
system MED64-Basic with P515 electrode dishes.
Cardiomyocytes (CM) were differentiated from the human
induced-pluripotent stem cell (hiPSC) line Wild Type C
(WTC, Coriell Repository, # GM25256) expressing the
fluorescent calcium reporter GCaMP6f (Huebsch et al., 2015).
Cells were differentiated into CM using a modified version of the
Palecek protocol (Lian et al., 2012) applying 6 μm CHIR, 5 μM
IWP4 and minus insulin media for 48 h each. PCR analysis of
these cells, see (Huebsch et al., 2018), revealed MYL2 expression,
which is indicative of an atrial phenotype, however at lower levels
than found in adult atria. Similarly, the levels of MYL7 were
higher than in adult atria but lower than in adult ventricles.
Overall, MLY2 and MLY7 expression together with the
ventricular-like action potential waveform indicate these are
immature ventricular cardiomyocytes (Veevers et al., 2018).
MED64 electrode dishes were coated with polyethyleneimine
followed by Matrigel and handled as suggested in the vendor
application notes (MED64 Application Note, 2015; MED64
Application Note, 2016). CM were seeded to form a confluent
cell layer and allowed to stabilize for 30 days with media changes
of RPMI 1640 + B27 supplement (Gibco) every 2–3 days.
Flecainide (Abcam, ab120504) doses were prepared in RPMI
1640 + B27 from a 25 mM stock in DMSO. Each drug dose (0, 1,
2.5 and 10 μM flecainide) was incubated for at least 30 min before
measurements. Extracellular potential recordings were
performed using the Mobius software (Version Win 7 0.5.1)
with the template for spontaneous QT recording. Traces of
spontaneous beating activity were recorded on all 64
electrodes and directly exported as raw data without any pre-
filtering or peak extraction. Recordings were performed on a
heated stage (37°C sample temperature) in ambient atmosphere.

3 RESULTS

In this section, we report the results of some applications of the
inversion procedure defined above. First, we investigate the
sensitivity of the V, Ca and U data in response to
perturbations of the IKr, ICaL and INa currents, and how this
sensitivity may be increased when data for several different
extracellular calcium concentrations are included. Next, we
show some examples of extracellular repolarization waves, and
explain why we have chosen to only consider the extracellular
depolarization waves in the inversion procedure. Afterward, we
show some examples of how bidomain-base model simulations
are able to reproduce measured drug induced effects on the
average conduction velocity, illustrating that including U data
in the inversion procedure improves the identifiability of drug
effects on INa. Finally, we test the inversion procedure by using it
to identify drug effects for a number of simulated drugs and
investigate how the accuracy of the inversion is affected when
noise is included in the simulated data.
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3.1 Sensitivity of Currents
In Figure 4, we investigate the effect on the simulatedV, Ca andU
data of perturbing the IKr, ICaL and INa currents. We compute the
data for the default base model (λ � 0) and for two perturbations
λi � −0.2 and λi � −0.4 for each of the currents i � Kr, CaL, Na,
corresponding to 20% and 40% block of the currents, respectively
(see Section 2.1.1). Note that in the upper panel (investigating
block of IKr), we have used a pacing frequency of 0.5 Hz instead of
1 Hz in order to allow for increased action potential durations
resulting from block of IKr.

We observe that block of the IKr current results in increased
action potential and calcium transient durations, whereas block
of ICaL results in decreased action potential and calcium transient
durations. Moreover, no effects are visible in the U data resulting
from block of IKr or ICaL (recall that the U data is only considered
for the first 20 ms). For block of the INa current, on the other
hand, no effects on the action potential and calcium transient
durations are visible, but there are clearly visible effects on the U
data. Specifically, the amplitude of U is decreased and the timing
of the peaks is delayed in response to block of the INa current.

Furthermore, in Figure 5, we report the conduction velocities
computed from the U data in response to perturbations of the
three currents. We observe that for perturbations of IKr and ICaL,
the effects on the conduction velocity are quite small, whereas
block of INa results in a considerably decreased conduction
velocity.

3.2 Adjustment of Extracellular
Concentrations
Because the effect on the V, Ca and U data of blocking IKr is
almost exactly the opposite of the effect of blocking ICaL (see
Figure 4), we expect that determining the correct combination of
block for these two currents will be difficult. Therefore, it could be
useful to consider drug effects under different extracellular
conditions in order to increase the chance of identifying the
correct block for the two currents.

Figure 6 shows the effect of block of the IKr, ICaL and INa
currents for three different extracellular calcium concentrations.
We consider the default extracellular calcium concentration
specified in Table 2 (cCa � 0), a 10% increased concentration

FIGURE 4 | Effect of perturbing IKr, ICaL and INa on the V, Ca andU data. For theU data, we show the extracellular potential in the electrode marked as c in Figure 1
and the time scale is zoomed in on the first 20 ms of the simulation.

FIGURE 5 | Effect of perturbing IKr, ICaL and INa on the computed conduction velocity. The conduction velocities are computed from the U data as explained in
Section 2.2.1.
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(cCa � 0.1), and a 25% increased concentration (cCa � 0.25). The
solid lines show the default solutions for each of these
extracellular environments, and we observe that the action
potential and calcium transient durations are increased as the
extracellular calcium concentration is increased. Furthermore,
the dotted lines show the solutions corresponding to 20% block
of the considered currents. For all the considered U data and for
the V and Ca data for block of INa, the different extracellular
calcium concentrations do not seem to have a significant effect.
However, for the V and Ca data for block of IKr and ICaL, we
observe that the effect of the block varies for the different

concentrations. For example, the effect of block of IKr is
more prominent for an increased extracellular calcium
concentration.

In Figure 7, we show an example of a case where including an
additional extracellular calcium concentration could help identify
the correct block of IKr and ICaL. In the upper panel, we use the
default extracellular calcium concentration of Table 2. The solid
line shows V and Ca for the default base model, and the dotted
line shows the solution for a case with 20% block of IKr and 33%
block of ICaL. We observe that V and Ca look very similar in these
two cases. As a result, the inversion procedure might mistake the

FIGURE 6 | Effect of perturbing IKr, ICaL and INa on the V, Ca and U data for three different adjustments, cCa, of the extracellular calcium concentration (see Section
2.3). For the U data, we show the extracellular potential in the electrode marked as c in Figure 1 and the time scale is zoomed in on the first 20 ms of the simulation.

FIGURE 7 | Illustration of how including an extra extracellular calcium concentration adjustment may improve the identifiability of IKr and ICaL. In the upper panel, we
compare V and Ca for two different block combinations for the default extracellular calcium concentration (cCa � 0), and in the lower panel we consider the solutions for a
25% increased extracellular calcium concentration (cCa � 0.25). For cCa � 0, the two solutions are very similar, but the difference is increased for cCa � 0.25.
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case of (λKr � −0.2, λCaL � −0.33) to the case with no block. In
the lower panel, however, we compare the two solutions for
the case with an increased extracellular calcium
concentration, and in this case, the difference between the
solutions is more prominent. Consequently, the inversion
procedure can more easily distinguish between the two cases
when the solutions for both extracellular calcium
concentrations are included.

3.3 Estimating the Action Potential Duration
Figure 8A shows measurements of the extracellular potential in
64 electrodes recorded for collections of hiPSC-CMs. In the
upper panel, we observe that there is some early activity,
corresponding to the time of the upstroke of the action
potential, in addition to a weaker signal after some hundred
milliseconds. This weaker signal occurs at the time of
repolarization of the action potential and is therefore referred

FIGURE 8 | Repolarization wave in hiPSC-CM data and bidomain-base model simulations. The upper panel shows measurements of U during an action potential
for three different data sets. The traces for the 64 electrodes are overlaid in the plots. In the second panel, we zoom in on the repolarization wave. The third panel showsU
in three bidomain-base model simulations, and the bottom panel shows the corresponding repolarization waves. The parameters used in the simulations are given in
Table 1, except for σ i and σe which are reported in the plot titles.

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 11 | Article 56948910

Jæger et al. Computational Identification of Drug Response

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


to as the repolarization wave. In the lower panel, we zoom in on
this repolarization wave, and we observe that the extracellular
potential reaches a magnitude of up to about 0.1–0.2 mV in this
period.

It has been demonstrated (see, e.g., Abbate et al., 2018), that
bidomain simulations of small collections of hiPSC-CMs tend to
give rise to very weak or even non-exsisting repolarization waves.
Indeed, in the leftmost panel of Figure 8B, we plot the
extracellular potential in a bidomain-base model simulation
using the default parameter values of Table 1, and we observe
that the magnitude of the wave in this case is very small, and
completely invisible in the upper plot over the entire action
potential duration. If we decrease the intracellular
conductivity, σi, on the other hand, a repolarization wave is
visible, but the entire extracellular signal is quite weak (see the
center panel of Figure 8B). However, if the extracellular
conductivity, σe, is decreased as well, the size of both the
depolarization wave and the repolarization wave are quite
similar to the recorded data (see the rightmost panel of
Figure 8B).

In theory, the repolarization waves observed in the data and
simulations could be used to estimate the action potential
duration in the inversion procedure. However, as observed in
the lower panels of Figure 8, the repolarization waves are quite
smooth, and it is not clear which time points represent different
degrees of repolarization. For the V-traces on the other hand (see,
e.g., Figure 2), it is straightforward to define accurate measures of
different degrees of repolarization in the form of APD-values (see
Section 2.2.1 and Figure 3). Therefore, we use the optical
measurements of V to define the action potential durations
and only use the U data for information regarding the
depolarization wave.

3.4 Estimating Drug Induced Effects on the
Average Conduction Velocity
One of the advantages of including measurements of the
extracellular potential in addition to optical measurements of V
and Ca in the inversion procedure is that the extracellular
measurements can be used to estimate the average conduction

velocity of the cell collection. This information could be useful
for determining drug effects on the INa current (see Figure 5). The
left column of Table 3 reports the conduction velocity computed
from measurements of the extracellular potential in a collection of
hiPSC-CMs exposed to different doses of the drug Flecainide
(measured data, not simulated). We observe that as the drug
dose is increased, the conduction velocity is decreased. This could
indicate that the drug blocks the INa current, which has also been
found in previous studies (Kramer et al., 2013; Crumb et al., 2016).

In the paper (Jæger et al., 2020a), we estimated IC50-values for
ICaL, INaL and IKr based on optical measurements of V and Ca of
hiPSC-CMs exposed to Flecainide, but we were not able to
estimate the effect on INa due to the low time resolution for
the optical measurements. The IC50-values were estimated to
IC50CaL � 9 μM, IC50NaL � 47 μM, and IC50Kr � 1.9 μM, where
the conductance of each current was scaled according to

gdi � ⎡⎢⎢⎢⎢⎢⎣ 1

1 + ( D
IC50i

)hi⎤
⎥⎥⎥⎥⎥⎦ · gci , for i � CaL, NaL, Kr, (22)

where gdi is the conductance of current i in presence of the drug
dose D and gci is the conductance in the control case with no drug
present. Furthermore, hi is the so-called Hill coefficient, assumed
to be one in (Jæger et al., 2020a). Incorporating these IC50-values
in addition to some estimated IC50-values for INa in bidomain-
base model simulations, we obtain the conduction velocities
reported in the center and right columns of Table 3. In the
center column we use IC50Na � 2.2 μM and hNa � 1, and in the
right column we use IC50Na � 0.2 μM and hNa � 0.4. The IC50Na
value in the case of hNa � 1 compares relatively well with literature
values; 6.7, 6.2 and 4.4 μM from Crumb et al., (2016), Kramer
et al., (2013) and Qu and Vargas, (2015), respectively.

Note that since high doses of Flecainide result in increased action
potential durations (see, e.g., Jæger et al., 2020a), we have used a pacing
frequency of 0.5 Hz instead of 1Hz when updating the initial
conditions for these simulations. In addition, to match the
conduction velocity in the control case, the default value of gNa
value of Table 2 is increased by 45%. We observe that the
bidomain-base model simulations are able to roughly reproduce
the drug induced reduction in conduction velocity observed in the
measurements, indicating that a comparison of measured and
simulated conduction velocities could help identify drug effects on INa.

The data and model solutions are further compared in
Figure 9. Here, we show the U solutions and the measured U
data in the 64 electrodes for the control case and for the 10 μM
dose case at some different points in time. In the simulations,
we use IC50Na � 0.2 μM and hNa � 0.4, and we have adjusted the
stimulation location to correspond to the propagation
direction observed in the measured data. In the control
case, the wave moves in the y-direction from the lower part
of the domain to the upper part, and in the drug case, the wave
moves from the upper left corner to the lower right corner of
the domain. In both the data and the simulations, we observe
that the extracellular depolarization wave moves more slowly
across the domain for 10 μM Flecainide than in the control
case, consistent with the reduced conduction velocities
observed in Table 3.

TABLE 3 | Effect of the drug Flecainide on the conduction velocity computed from
the extracellular potential.

Dose CV data CV simulation
(IC50Na = 2.2 μM,

hNa = 1)

CV simulation
(IC50Na = 0.2 μM,

hNa = 0.4)

0 μM 23.7 cm/s 23.6 cm/s 23.7 cm/s
1 μM 17.9 cm/s 20.0 cm/s 14.2 cm/s
2.5 μM 11.7 cm/s 16.7 cm/s 12.0 cm/s
10 μM 9.3 cm/s 9.2 cm/s 8.9 cm/s

The left panel reports values based on measurements of hiPSC-CMs and the center and
right panels report values computed in bidomain-base model simulations with IC50CaL �
9 μM, IC50NaL � 47 μM, IC50Kr � 1.9 μM, and hi � 1, for i �CaL, NaL, and Kr (seeEq. 22).
The drug effect on INa is set to IC50Na � 2.2 μM, hNa � 1 in the center column and IC50Na �
0.2 μM, hNa � 0.4 in the right column. The parameters used in the simulations are given in
Tables 1 and 2, and the default gNa value is increased by 45% to match the conduction
velocity in the control case.
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3.5 Inversion of Simulated Drugs
In order to investigate how well the inversion procedure outlined
above is able to identify the effect of drugs on IKr, ICaL and INa, we
generate simulated data for twelve drugs whose effect on IKr, ICaL and
INa was investigated in (Crumb et al., 2016). The block percentages
used to generate the data are based on the block percentages for drug
concentrations corresponding to three times the free plasma Cmax

reported in (Crumb et al., 2016). However, large block percentages
for IKr have been reduced in order to obtain reasonable V and Ca
traces. In the inversions, we use two extracellular calcium
concentrations, as explained in Section 2.3. Furthermore, we save
U data and information about the Ca peak time extracted from the
first 50 ms of the bidomain simulations for all the drugs, except for
the drug Diltiazem. For Diltiazem we had to increase the bidomain
simulation time to 100ms in order to ensure that some of the grid
points in the domain had reached their peak calcium concentration
to compute the Ca peak time (see Section 2.2.1).

In Figure 10, we compare the block percentages estimated by
the inversion procedure to those used to generate the data for the
twelve drugs. We observe that for all the considered drugs, the
inversion procedure is able to identify the block of the three
currents quite accurately.

3.6 Effect of Noise
In Figure 10, we considered how well the inversion procedure
was able to identify drugs based on data generated by bidoman-
base model simulations, and we observed that the inversion
procedure was able to identify the correct channel blocking
quite accurately. However, when the V, Ca and U data are
recorded from real measurements from microphysiological
systems, the data will include some noise. In order to
investigate how well the inversion procedure is able to
identify the effect of drugs from data including noise, we
include 5% noise in the V data, 3% noise in the Ca data and
1% noise in the U data and repeat the inversions shown in
Figure 10. The noise is added by drawing a random number
between −p·A and p·A for each point in time, where A is the
difference between the maximum and minimum value of the
considered data and p is the noise percentage. This random
number is then added to the V, Ca and U traces.

The result of the inversions with noise included in the data is
given in Figure 11. We observe that the inversion procedure is
able to estimate the block percentage quite accurately in most
cases, but that the accuracy is reduced compared to the case with
no noise in Figure 10.

FIGURE 9 | Measured and simulated U data in 64 electrodes for the control case and for 10 μM Flecainide, modeled using IC50CaL � 9 μM, IC50NaL � 47 μM,
IC50Kr � 1.9 μM, IC50Na � 0.2 μM, hi � 1 for i �CaL, NaL, and Kr, and hNa � 0.4. The parameters used in the simulations are given in Tables 1 and 2, and the default gNa
value is increased by 45%. The stimulation location is adjusted to correspond to the propagation direction in the data.
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4 DISCUSSION

4.1 Sensitivity of Parameters Is Necessary
for Identification
A generic problem in mathematical models of physiology is to
determine the parameters included in the model. For models of
the action potential of excitable cells, there is a large number of
parameters that needs to be determined in order to use themodel; see,
e.g., (Sobie, 2009; Otte et al., 2016; Mora et al., 2017; Jæger et al.,
2019b). If amodel is insensitive to changes in a specific parameter, that
parameter is impossible to determine by comparing experimental
results and results of numerical simulations. Contrarily, if themodel is
sensitive to a parameter, numerical experiments can be used to match
themodel to the data by fine-tuning the parameter. In Figure 4 above,
we saw that the membrane potential is clearly sensitive to changes in
the IKr and ICaL currents. The upstroke is also sensitive to changes in
the INa current, but since the upstroke is very fast, the sensitivity is
difficult to see in the plot of the entire AP. Since optical measurements

have a relatively coarse time resolution, we have been unable to
identify the strength of the sodium current based solely on voltage and
calcium traces. However, we note from Figure 4 that the extracellular
potential is indeed sensitive to changes in the sodium current. This
sensitivity also carries over to sensitivity of the average conduction
velocity (CV) with respect to changes in the sodium current, and this
sensitivity is utilized in the cost function; see Eq. 15.

4.2 The Conduction Velocity Is Governed by
the Sodium Current
The conduction of the electrochemical signal through the cardiac
muscle is essential for the functioning of the heart. Surprisingly, the
conduction process is still not completely understood; see, e.g.,
(Veeraraghavan et al., 2014), for a review of the development of
the understanding of cardiac conduction. Globally (mm scale),
cardiac conduction is usually modeled using homogenized
models like the bidomain or monodomain models (see, e.g.,

FIGURE 10 | Result of the inversion procedure applied to simulated data of twelve drugs, based on the block percentages corresponding to three times the free
plasma Cmax reported in (Crumb et al., 2016).

FIGURE 11 | Result of the inversion procedure applied to simulated data of the twelve drugs of Figure 10.We have here included 5% noise in the V data, 3% noise
in the Ca data and 1% noise in the U data.
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Sundnes et al., 2007; Keener and James, 2009; Franzone et al., 2014),
but locally (μm scale) more detailed models are used; see, e.g.,
(Kucera et al., 2002; Kucera et al., 2017; Jæger et al., 2019a). The
microphysiological system is somewhere in between these scales (the
size is about 1.2 mm × 1.2 mm) and we would have liked to use the
detailed EMI model introduced for cardiac conduction in (Tveito
et al., 2017). However, the EMI approach is challenging from a
computational point of view and we have therefore used the much
simpler bidomain model to consider how the CV depends on
changing the different ion currents.

In Figure 5 we observe that the CV is very sensitive to changes
of the INa current, but almost insensitive to changes in the IKr and
ICaL currents. This means that we can use the measurements of U
to identify the INa current first and then only look for the IKr and
ICaL currents based on the V- and Ca-traces.

4.3 Improving Visibility of Parameters by
Changing the Extracellular Concentrations
In using experimental data to determine parameters of a
computational model, it is desirable to use protocols designed
to highlight the effect of different parameters. For instance, it is
argued in (Groenendaal et al., 2015) that random stimulation
protocols can improve visibility of the parameters, and this is
confirmed in (Jæger et al., 2019b). Another experimental
parameter that can be changed is the ionic concentrations of
the extracellular environment. In Figures 6 and 7 we show that
using two different extracellular calcium concentration can
improve identifiability of the model parameters. One particular
important effect of this is that multiple extracellular calcium
concentration can aid in distinguishing changes of the IKr and
ICaL currents. Since blocking IKr has more or less the same effect
as increasing ICaL, it is difficult to distinguish these effects in
measurements of the AP. But it is apparent from Figure 7 that the
level of blocking changes with the extracellular calcium
concentration, and this can be used to distinguish between
different blocking combinations for these two currents.

4.4 Inversion of Simulated Drugs
Simulated data is often used as a proxy for real data when the real
data are cumbersome to obtain. Here, we have used real data forU
both for the case of no drug and when various doses of Flecainide
have been applied. Furthermore, the base model used to represent
the membrane dynamics has been parameterized using real data;
see (Tveito et al., 2018; Jæger et al., 2020a). However, in order to
study inversion for the range of data provided in the CIPA report
(Crumb et al., 2016), we have used simulated data. One advantage
of this is that we can get data to any desired accuracy and that we
can control the level of noise inevitably introduced in the
measurements. The disadvantage is clearly the reduced realism
of the data and it is a priority of future work to use combined V,
Ca, and U data to do inversion of both well characterized and
novel drugs with hitherto unknown properties.

For simulated data, we notice that the inversion procedure
provides quite accurate estimates. Systematically, we observe a
tendency to overestimate the block of both the IKr and ICaL
currents. As alluded to above, it is notoriously difficult to

distinguish reduced IKr from increased ICaL and vice versa.
This can be improved (Figures 6 and 7), by using several
values of the extracellular calcium concentration, but the
problem is not completely removed.

4.5 Repolarization Waves in Bidomain
Simulations
As mentioned above, the bidoman model has been used by many
authors (see, e.g., Abbate et al., 2018; Bouyssier and Zemzemi, 2017;
Raphel et al., 2017; Raphel et al., 2020; Tixier et al., 2018) to simulate
the electrophysiology of collections of hiPSC-CMs. One problem
pointed out by several authors is the lack of a repolarization wave in
the simulated results although the repolarization wave is clearly
present in measurements of the extracellular potential; see, e.g.,
Figures 3 and 4 of (Abbate et al., 2018). This feature of the bidomain
solution is repaired by introducing heterogeneities in the tissue
which lead to a repolarization wave. In Figure 8A, we show that
there is indeed a repolarization wave present in the extracellular
data obtained from collections of hiPSC-CMs. The repolarization
wave is also present in our bidomain simulations, but the strength
of the wave depends critically on the intracellular conductivity,
σi. The repolarization wave becomes stronger as σi is reduced.
Since the intracellular conductivity represents the geometrical
average of the intercellular conductivity (regulated by gap
junctions) and the cytosolic conductivity, it is reasonable to
use a reduced value of σi for immature cells, since the gap
junctions are most likely less developed in collections of
hiPSC-CMs than for collections of adult cardiomyocytes.
Experimentally, this has been observed in these cells, with
indications of incomplete maturity and underdeveloped gap
junctions by connexin-43 staining that localized in small
speckles (Huebsch et al., 2018) rather than distinct disks as
found in the adult human heart. Furthermore, immature tissue
geometry, in terms of cell alignment, shape, and orientation of
connectivity may also change these dynamics, and while these
cells have demonstrated good agreement of geometric cell
parameters, such as alignment within a microphysiological
system compared to the adult human heart (Huebsch et al.,
2018), more study is needed on the relative effects of these
features on conduction properties. In (Abbate et al., 2018), it is
argued that it is reasonable to introduce heterogeneities in the
tissue and we agree. However, our results indicate that it is not
necessary in order to see a repolarization wave in the
simulation results.

5 CONCLUSION

We have shown that by using data traces of the membrane
potential, the intracellular calcium concentration and the
extracellular potential, we can estimate the major sodium,
calcium and potassium currents in the base model. It remains
to enable concurrent observation of all three modalities, but when
such data become available, the methodology described in the
present report may be used to invert the data and thus obtain
channel densities and estimate drug effects on the channels.
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