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Chronic myeloid leukemia (CML) accounts for a major cause of death in adult leukemia
patients due tomutations or other reasons for dysfunction in the ABL proto-oncogene. The
ubiquitous BCR–ABL expression stimulates CML by activating CDK1 and cyclin B1,
promoting pro-apoptotic, and inhibiting antiapoptotic marker expression along with
regulations in RAS pathway activation. Thus, inhibitors of cyclins and the RAS pathway
by ERK are of great interest in antileukemic treatments. Mikanolide is a sesquiterpene
dilactone isolated from several Asteraceae family Mikania sp. plants. Sesquiterpene
dilactone is a traditional medicine for treating ailments, such as flu, cardiovascular
diseases, bacterial infections, and other blood disorders. It is used as a cytotoxic
agent as well. The need of the hour is potent chemotherapeutic agents with cytotoxic
effects inhibition of proliferation and activation of apoptotic machinery. Recently, ERK
inhibitors are used in clinics as anticancer agents. Thus, in this study, we synthesized 22-
mikanolide derivatives that elucidated to be potent antileukemic agents in vitro. However, a
bioactive mikanolide derivative, 3g, was found with potent antileukemic activity, through
the Ras/Raf/MEK/ERK pathway. It can arrest the cell cycle by inhibiting phosphorylation of
CDC25C, triggering apoptosis, and promoting DNA and mitochondrial damage, thus
suggesting it as a potential chemotherapeutic agent for leukemia patients.
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INTRODUCTION

Chronic myeloid leukemia (CML) is a myeloproliferative syndrome of primitive hematopoietic
progenitor cells. It accounts for around 20% of leukemic cases reported in adults. The major triggers
for this type of leukemia are the BCR–ABL tyrosine kinase dysfunctions due to mutations or other
causes (Ben-Neriah et al., 1986; Jackson and Baltimore, 1989; Branford et al., 2002). The ABL is a
proto-oncogene that coordinates many cellular activities, such as cell differentiation, adhesion, DNA
damage response, and apoptosis. This BCR–ABL gene, when expressed, monitors the expression of
cyclin-dependent kinase 1 (CDK1). Therefore, the mutations in this gene cause DNA damage and
the activation of RAS pathways. BCR–ABL expression promotes CML due to damaged cell adhesion
capacity cells (Overduin et al., 1992; Musacchio et al., 1994; Willis et al., 2005; Vaidya et al., 2015),
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causing uncontrolled blood cells’ growth in CML patients. Thus,
recently the chemotherapeutic drugs such as imatinib and several
tyrosine inhibitors (Wan et al., 2016; Liu et al., 2020; Maiti et al.,
2020) focusing on BCR–ABL gene regulation and related
pathways are of great attraction for leukemia treatment
researchers.

Deregulation of the ERK pathway usually happens due to
genetic adjustments of several crucial molecules of this pathway.
In contrast, uncontrolled leukemic proliferation can occur due to
diminished compassion to apoptosis-initiating factors or due to
chemo-resistance correlated to pro-survival molecules activation.
Nevertheless, inactivated ERK pathway molecules could
considerably alter reactions toward small molecule inhibitors.
Moreover, the ERK pathway is inhibited by many usual
chemotherapeutic drugs used for leukemia (McCubrey et al.,
2007; McCubrey et al., 2008a; Steelman et al., 2008).
Mikanolide is a sesquiterpene dilactone isolated from many
kinds of Mikania plants. It has been used as a folk medicine
for a long time and has been paid attention by researchers due to
its antibacterial, antitumor, antimicrobial, and cytotoxic
functions (Bohlmann et al., 1984; Gutierrez et al., 1985;
Pickman, 1986; Ysrael and Croft, 1990; Facey et al., 1999;
Ahmed et al., 2001; Zhuang et al., 2010). Sesquiterpenes are
biosynthesized in the plant endoplasmic reticulum by farnesyl
pyrophosphate as colorless lipophilic compounds. Sesquiterpenes
are a 15-carbon backbone molecule with diverse structural
orientations and some functional cyclic ones. The most
bioactive compounds having cardiovascular effects inhibit
iNOS and NF-κB (Giordano et al., 1990). Another study
revealed parthenolide— a germacranolide sesquiterpene
lactone—inhibits JNK activation in CNE1, COLO205, HELA,
HBL-100, and MDA-MB-231 cells. Parthenolide sensitizes TNF-
related apoptosis-inducing ligand (TRAIL) proteins offering
anticancer action (Nakshatri et al., 2004; Zhang et al., 2004;
Guzman et al., 2005). Consequently, as treatment regimens for
CML, novel mikanolide derivatives that can act as inhibitors of
abnormal cell growth with reduced side effects are investigated.
Likewise, the ERK pathway inhibitors can control the sensitivity
as well as resistance in leukemia treatment. Thus, in this study, we
synthesized 22-mikanolide derivatives that can be antileukemic
agents by targeting inhibition of cell proliferation signaling
molecules, thus suggesting them as a potential
chemotherapeutic agent for leukemia patients.

MATERIALS AND METHODS

Synthesis of Compounds
Proton nuclear magnetic resonance (1H NMR) spectra were
recorded using Bruker AV 400 MHz or 700 MHz
spectrometers. Proton chemical shifts are reported in parts per
million (d scale) and are referenced using residual protium in the
NMR solvent [CDCl3: δ 7.26 (CHCl3), DMSO-d6: d 2.54
(DMSO)]. Data are reported as follows: chemical shift
[multiplicity (s = singlet, d = doublet, dd = doublet of
doublets, ddd = doublet of doublet of doublets, t = triplet, q =
quartet, m = multiplet, and br s = broad singlet), coupling

constant(s) (Hz), and integration]. Carbon-13 nuclear
magnetic resonance (13C NMR) spectra were recorded using
Bruker AV 100 MHz or 151 MHz or 176 MHz spectrometers.
Carbon chemical shifts are reported in parts per million (d scale),
and are referenced using the carbon resonances of the solvent
[CDCl3: δ 77.0 (CHCl3), DMSO-d6: δ 40.45 (DMSO)]. Data are
reported as follows: chemical shift [multiplicity (if not singlet)
and assignment (Cq = fully substituted carbon)]. High resolution
mass spectra (HRMS) were documented on a Waters SYNAPT
G2 using an electrospray (ESI) ionization source. Column
chromatography was performed on silica gel (400–500 mesh)
eluting with ethyl acetate and petroleum ether. TLC was
performed on glass-backed silica plates, and visualized by UV
light and I2 products.

A mixture of mikanolide or deoxymikanolide (1.0 mmol) and
an appropriate aromatic iodide (1.1 mmol) was refluxed at 115°C
using palladium (II) ferrocene (0.01 mmol) and DIPEA
(3.0 mmol) in dry toluene (1 ml) under air for 6–12 h. A TLC
monitor was used until the reaction was complete, then the
reaction mixture was allowed to cool to room temperature,
water (10 ml) was added, and the resultant mixture was
extracted with ethyl acetate (15 ml × 3). The separated
organics were dried over Na2SO4. Later it was filtered. The
filtrate was concentrated under reduced pressure. The obtained
crude residue was purified by silica flash chromatography (500:1
to 100:1, dichloromethane/methanol) to afford the corresponding
aryl-substituted parthenolide as a solid (65–195 mg) in 15–45%
isolated yield.

Reagents
Roswell Park Memorial Institute 1640 (RPMI-1640, Gibco) was
purchased from Thermo Fisher Scientific (Shanghai, China).
Fetal bovine serum (FBS) was purchased from the VACCA
Biologics LLC. (United States). Dimethyl sulfoxide (D8371),
bovine serum albumin (A8020), BCA protein assay kit
(PC0020), thiazolyl blue tetrazolium bromide (M8180), and
color mixed protein marker (PR 1920) were obtained from
Solarbio Life Sciences (Beijing, China). Annexin V-FITC
apoptosis detection kit was purchased from BD (United States,
Cat. No. 556547). JC-1 mitochondrial membrane potential
detection kit (C2006), Hoechst staining kit (C0003), reactive
oxygen species assay kit (S0033), SDS-PAGE gel preparation
kit (P0012AC), cell lysis buffer (P0013), SDS-PAGE sample
loading buffer, 5X (P0015L), and transfer buffer (P0021B)
were purchased from Beyotime Biotechnology (Shanghai,
China). Ras (ab52939), Bim (ab32158), ERK (ab184699),
p-ERK (ab32538), p-PKCδ (ab76181), PKCδ (ab182126),
cyclin B1 (ab32053), CDK1 (ab133327), p90RSK(ab32413),
caspase 8 (ab25901), Bcl-2 (ab32124), Bcl-xl (ab2568), and
p-γH2AX (ab11174) were purchased from Abcam (Abcam,
Cambridge, United Kingdom); BID (#2002), P-B-Raf (#2696),
P-MEK1/2 (#9154), MEK1/2 (#8727), PARP (#9542), P-CDC25C
(#4901), CDC25C (#4688), p21 (#2947), Bad (#9292), Phospho-
CDC2 (#4539), caspase 3 (#9662), cleaved caspase 3 (#9661),
cleaved caspase 9 (#7237), and c-FLIP (#56343S) were purchased
from Cell Signaling Technology; p27 (380960), caspase 9
(381336), and GAPDH (301341) were purchased from Zen
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Bioscience, China; B-Raf (AF6171) was purchased from Affinity
Biosciences, United States .

Cell Culture
HEL (erythroleukemia), K562 (chronic myeloid leukemia), CEM-
C7H2 (T-cell acute lymphoblastic leukemia), and HL7702
(normal hepatic cell line) were purchased from ATCC,
Manassas, VA, United States . The cells were cultured in
RPMI 1640 medium supplemented with 5% FBS at 37°C in a
CO2 incubator (5% CO2 and 95% air, 95% humidity), as per
standard conditions of passage.

Cell Viability Assays
The cell viability assay was performed by treating different
concentrations of compounds on HEL, K562, and CEM-C7H2
cells to find their IC50 values. The control groups were treated
with 0.1% DMSO or compounds. After 72 h treatment, the cells
were added with an MTT solution of 20 µl (5 mg/mL) for 4 h.
Later, the 96 well-plates were centrifuged at 2,500 rpm for 20 min
and discarded the medium, then DMSO (160 µl) was used to
dissolve formazan crystals. The resulting solution was determined
using absorbance at 490 nm (BioTek, Winooski, VT,
United States). The cell morphology was analyzed under an
inverted microscope (Nikon) and photographed (Gajendran
et al., 2020a).

Flow Cytometric Analysis
Cells were seeded at 3 × 106 cells per 60 mm dish in 3 ml medium
with different concentrations of 3g (0.3, 0.5, and 1 µM). After
growing for 24 and 48 h, the cells were harvested, washed twice
with cold PBS, and then the cells were resuspended in 1X binding
buffer at a concentration of 1 × 106 cells/ml. Later, 100 µl of cells
(1 × 105) were transferred to a 2 ml Eppendorf tube, added with
5 µL of FITC Annexin V and PI (BD FITC Annexin V apoptosis
detection kit I) in each tube. After gently vortexing the cells and
incubating for 15 min at RT (25°C) in the dark, 400 µl of 1X
binding buffer to each tube was added and analyzed by flow
cytometry within 1 h (ACEA Biosciences Inc. San Diego, CA,
United States) and compared with controls (Varier and Sumathi,
2019).

Cell Cycle Measurement
Cells were seeded in a 6-well culture plate at a density of 1 × 106 cells/
ml in 2 ml medium and were treated with 3g at different
concentrations (0.3, 0.5, and 1 µM) for 24 and 48 h. After the
incubation period, the cells were harvested and transferred into a
sterile centrifuge tube for cell cycle analysis (Gajendran et al., 2020b).
Cells were washed with pre-cool PBS and suspended in 70% ice
ethanol, incubated for 4 h at 4°C, and preserved in a refrigerator at
−20°C overnight. To remove the stationary liquid, the cells were
centrifuged and washed twice with cold PBS. Then, 500 µL mix dye
solution (RNaseA 100 μg/mL, PI 50 μg/mL, and Triton X-100 0.2%)
were added into each tube, gentlymixed, and incubated for 10min at
room temperature in the dark. Before analysis by flow cytometry, the
cells were washed with cold PBS, and 200 µl suspensions were used
for analysis by a NovoCyte flow cytometer (ACEA Biosciences, Inc.
San Diego, CA, United States).

Measurement of Mitochondrial Membrane
Potential (ΔΨm)
Cells (1 × 106) were seeded in a 3 ml medium with different
concentrations of 3g (0.3, 0.5, and 1 µM) to detect the change in
the membrane potential of treated cells concerning control cells.
After being treated with 3g for 48 h, the cells were preincubated
with JC-1 working solution for 20 min at 37°C, 5% CO2. After
incubation, the dye was removed, and the cells were washed two
times with JC-1 (Ma et al., 2021) and investigated using a Nikon
fluorescent microscope.

Hoechst 33258 Staining
K562 cells (1 × 106) were seeded into a 6-well plate and treated
with different concentrations of 3g (0.3, 0.5, and 1 µM) for 72 h
(Ma et al., 2021). Cells were consequently collected, rinsed twice
with PBS, and stained with Hoechst 33258 (Beyotime, Jiangsu,
China) for 10 min and examined by using a Nikon fluorescence
microscope.

Western Blot Analysis
Cells were treated with 3g in different concentrations (0.3, 0.5,
and 1 µM) for 24 h, cells were extracted, and total protein was
collected from cell lysis buffer. Protein concentration was
determined by the BCA test kit (Solarbio Life Sciences,
China), and proteins were separated by 10% SDS-PAGE, then
blotted onto the PVDF membrane (0.22 µm, Merck KGaA,
Germany). The membranes were incubated in solution with
5% milk (dissolved in TBST) at room temperature for 1 h and
probed with primary antibodies and GAPDH at 4°C overnight.
After TBST washing, the membrane was developed with a
secondary antibody (Hu et al., 2021). The antibodies were
diluted according to the manufacturer’s instructions. Last,
immunoreactive protein signals were spotted by the Odyssey
Infrared Imaging System. GAPDH served as an internal loading
control.

AutoDock Analysis
The molecular docking simulation was performed via the
AutoDock Vina program (Morris et al., 2009; Varier et al.,
2017). ERK (PDB code: 5V60) interaction with U0126
(PubChem ID: 3006531) and 3g were carefully analyzed.

Statistical Analysis
All statistical analyses by two-way ANOVA test were performed,
followed by Tukey’s post hoc test analysis by GraphPad Prism 8
software (San Diego, CA, United States). All the experiments were
organized in triplicates. The data were expressed as mean ± SD
with significant p values (*p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001).

RESULTS

Chemistry
Mikanolide and deoxymikanolide were isolated according to the
reported procedures (Li et al., 2013; Li et al., 2013), and 22 novel
E-olefinic coupling products of mikanolides (3a-u and 4) were
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prepared in 15–45% yields under heck reaction conditions
utilizing palladium ferrocene [Pd (dppf)Cl2] as a catalyst in
toluene and heating the mixture with an appropriate iodo-

aromatic or iodo-heteroaromatic compound in the presence of
di-isopropylethyl-amine (DIPEA) as the base (Figure 1A;
Supplementary Material).

FIGURE 1 |Mikanolide derivatives offer antileukemic action. (A) Schematic diagram explaining the procedure of synthesis of mikanolide derivatives. (B)Cytotoxicity
(IC50) of mikanolide derivatives against indicated cancer cells. Data represented as means ± SD of three independent experiments.
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Compound 3a (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-7-[(E)-
benzylidene]-10a-methyl-1a,1b,2a,6a,7,9a,10,10a-octahydro-4H-
3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:2’,3’-h] [1]
oxacycloundecine-4,8 (6H)-dione: 149.5 mg; isolated yield
39.5%; white solid; IR (KBr): 2,926.49, 2,359.84, 1,755.88,
1,645.58, 1,645.58, 1,195.91, 1,079.00, 1,021.15, 804.95, 696.93,
and 472.58 cm−1; 1H NMR (600 MHz, CDCl3): δ 7.87 (d, J =
3.0 Hz, 1H), 7.62 (d, J = 7.8 Hz, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.47
(t, J = 7.5 Hz, 1H), 7.11 (s, 1H), 5.20 (s, 1H), 4.37 (m, 1H), 4.05 (s,
1H), 3.83 (m, 1H), 3.38 (d, J = 3.6 Hz, 1H), 2.94 (s, 1H), 2.21 (m,
2H), and 1.24 (m, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ
170.0, 169.0, 146.2, 141.3, 131.8, 131.4, 130.9, 130.5, 129.0, 124.6,
79.7, 78.5, 58.4, 57.8, 54.9, 51.0, 50.6, 43.4, and 21.1 ppm. HRMS
calculated for C21H19NO6, (M + H)+: 367.1176 found 367.1168.

Compound 3b (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-7-[(E)-4-
aminobenzylidene]-10a-methyl-1a,1b,2a,6a,7,9a,10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione: 161.6 mg;
isolated yield 41.0%; light yellow solid; IR (KBr): 3,473.59,
3,365.14, 3,239.04, 2,935.41, 2,360.15, 1744.47, 1,519.48,
1,365.13, 1,309.06, 1,261.56, 1,199.75, 1,177.24, 1,106.54,
1,078.05, 1,035.83, 1,012.46, 928.06, 831.10, and 626.06 cm−1;
1H NMR (600 MHz, CDCl3): δ 7.67 (d, J = 3.6 Hz, 1H), 7.47
(d, J = 8.4 Hz, 2H), 7.17 (s, 1H), 6.75 (d, J = 8.4 Hz, 2H), 5.30 (s,
1H), 4.59 (d, J = 7.8 Hz, 1H), 3.88 (dd, J = 10.8, 3.0 Hz, 1H), 2.70
(m, 2H), 2.56 (m, 1H), 2.18 (s, 2H), and 1.32 (s, 3H) ppm; 13C
NMR (125 MHz, CDCl3): δ 171.6, 170.3, 149.3, 147.6, 140.9,
133.1, 133.0, 121.8, 118.7, 114.7, 78.5, 78.2, 61.8, 57.0, 50.5, 44.0,
22.8, 22.3, and 19.9 ppm. HRMS calculated for C21H20NO6, (M +
H)+: 382.1285 found 382.1275.

Compound 3c (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-7-[(E)-2-
amino-5-chlorobenzylidene]-10a-methyl-
1a,1b,2a,6a,7,9a,10,10a-octahydro-4H-3,6-(metheno) furo [3,2-c]
bis (oxireno) [2,3-f:2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione:
180.3 mg; isolated yield 42.0%; light yellow solid: IR (KBr):
3,367.06, 2,935.41, 2,360.36, 1748.95, 1,635.78, 1,487.85,
1,418.17, 1,364.27, 1,300.64, 1,265.09, 1,228.68, 1,188.36,
1,105.23, 1,035.56, 1,012.47, 930.06, and 635.04 cm−1; 1H NMR
(600 MHz, CDCl3): δ 7.70 (d, J = 3.6 Hz, 1H), 7.36 (d, J = 1.8 Hz,
1H), 7.20 (dd, J = 10.8, 2.4 Hz, 1H), 7.09 (s, 1H), 6.73 (d, J =
9.0 Hz, 1H), 5.05 (s, 1H), 4.58 (m, 1H), 3.88 (m, 1H), 2.69 (m,
2H), 2.52 (m, 1H), 2.20 (m, 2H), and 1.32 (s, 3H) ppm; 13C NMR
(125 MHz, CDCl3): δ 171.3, 169.3, 146.9, 144.0, 134.2, 133.3,
131.8, 128.6, 126.3, 123.6, 118.4, 117.9, 78.4, 77.9, 61.8, 56.9, 50.5,
44.0, 22.7, 22.1, and 20.0 ppm. HRMS calculated for
C21H19ClNO6, (M + H)+: 416.0895 found 416.0886.

Compound 3 d (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-7-[(E)-2-
amino-5-(trifluoromethyl)benzylidene]-10a-methyl-
1a,1b,2a,6a,7,9a,10,10a-octahydro-4H-3,6-(metheno) furo [3,2-c]
bis (oxireno) [2,3-f:2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione:
180.3 mg; isolated yield 42.0%; white solid; IR (KBr): 3,400.39,
2,359.86, 1775.83, 1,634.46, 1,510.61, 1,333.31, 1,266.66, 1,230.21,
1,111.72, 1,017.45, 843.14, 802.66, 730.89, and 602.09 cm−1; 1H
NMR (600 MHz, DMSO-d6): δ 7.68 (s, 1H), 7.54 (m, 2H), 7.38
(dd, J = 10.2, 1.8Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.16 (s, 2H), 5.01
(s, 1H), 4.77 (m, 1H), 4.00 (m, 1H), 3.93 (d, J = 3.0 Hz, 1H), 3.38
(d, J = 3.6 Hz, 1H), 3.20 (s, 1H), 2.30 (t, J = 12.0 Hz, 1H), 1.84 (dd,

J = 17.4, 4.2 Hz, 1H), and 1.05 (s, 3H) ppm, 13C NMR (125 MHz,
DMSO-d6): δ 170.4, 169.2, 150.8, 149.6, 133.4, 128.7, 128.4, 127.6,
127.5, 125.9, 124.1, 115.6, 114.9, 81.1, 77.4, 57.5, 57.3, 54.9, 50.2,
48.9, 42.1, and 20.6 ppm; 19F NMR (125 MHz, DMSO-d6): 59.2
(3) ppm. HRMS calculated for C22H19F3NO6, (M + H)+:
450.1159 found 450.1160.

Compound 3e N-{4-(E)-[(1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-
10a-methyl-4,8-dioxo-1a,1b,2a,6,6a,9a,10,10a-octahydro-4H-
3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:2’,3’-h] [1]
oxacycloundecin-7 (8H)-ylidene)methyl] phenyl} acetamide:
155.3 mg; isolated yield 35.5%; light yellow solid: IR (KBr):
3,577.39, 2,359.53, 1769.28, 1748.68, 1,683.73, 1,635.05,
1,592.76, 1,514.66, 1,415.59, 1,371.33, 1,313.69, 1,259.48,
1,199.65, 1,179.40, 1,079.17, 1,024.75, 840.01, 803.69, and
679.07 cm−1; 1H NMR (600 MHz, DMSO-d6): δ 10.2 (s, 1H),
7.69 (m, 4H), 7.56 (t, J = 6.0,Hz, 2H), 5.13 (s, 1H), 4.73 (m, 1H),
4.11 (t, J = 3.6 Hz, 1H), 3.98 (d, J = 3.0 Hz, 1H), 3.40 (d, J = 3.0 Hz,
1H), 3.16 (s, 1H), 2.24 (t, J = 12.6 Hz, 1H), 2.08 (d, J = 6.0 Hz, 3H),
1.84 (dd, J = 16.8, 3.0 Hz, 1H), and 1.07 (s, 3H) ppm; 13C NMR
(125 MHz, DMSO-d6): δ 170.7, 169.6, 168.7, 150.0, 141.0, 137.6,
131.4, 128.6, 127.0, 125.8, 118.3, 81.2, 77.8, 57.7, 57.4, 54.7, 50.3,
48.8, 42.0, 24.2, and 20.5 ppm. HRMS calculated for C23H22NO7,
(M + H)+: 424.1391 found 424.1393.

Compound 3f (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-7-[(E)-4-
methoxybenzylidene]-10a-methyl-1a,1b,2a,6a,7,9a,10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione: 163.8 mg;
isolated yield 41.4%; white solid; IR (KBr): 2,358.91, 1751.23,
1,644.06, 1,604.30, 1,514.57, 1,307.14, 1,216.08, 1,199.72,
1,176.07, 1,021.69, and 805.33 cm−1; 1H NMR (600 MHz,
CDCl3): δ 7.78 (d, J = 3.0 Hz, 1H), 7.62 (d, J = 8.4 Hz, 2H),
7.16 (s, 1H), 7.03 (d, J = 8.4 Hz, 2H), 5.28 (d, J = 1.8 Hz, 1H), 4.38
(m, 1H), 4.06 (d, J = 3.0 Hz, 1H), 3.88 (s, 3H), 3.80 (m, 1H), 3.38
(d, J = 3.0 Hz, 1H), 2.95 (s, 1H), 2.22 (m, 2H), and 1.25 (s, 3H)
ppm; 13C NMR (125 MHz, CDCl3): δ 170.1, 169.5, 161.8, 146.6,
141.1, 132.7, 131.2, 124.3, 121.5, 114.5, 79.7, 78.5, 58.3, 57.9, 55.5,
54.9, 51.0, 50.7, 43.3, and 21.1 ppm. HRMS calculated for
C22H21O7, (M + H)+: 397.1282 found 397.1283.

Compound 3g (1aR,1bR,2aR,6R,6aR,9aS, 10aS,Z)-10a-
methyl-7-[(E)-4-methylbenzylidene]-1a,1b,2a,6a,7,9a, 10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8(6H)-dione: 78.0 mg; isolated
yield 39.7%; white solid; IR (KBr):2,959.55, 2,359.98, 1764.47,
1,651.30, 1,608.26, 1,510.49, 1,353.13, 1,261.73, 1,197.54,
1,081.93, 1,022.75, 896.31, 736.61, and 677.40 cm−1; 1H NMR
(600 MHz, CDCl3): δ 7.82 (d, J = 3.6 Hz, 1H), 7.53 (d, J = 7.8 Hz,
2H), 7.33 (d, J = 8.4 Hz, 2H), 7.13 (s, 1H), 5.24 (d, J = 1.8 Hz, 2H),
4.37 (m, 1H), 4.05 (d, J = 2.4 Hz, 1H), 3.82 (m, 1H), 3.38 (d, J =
3.6 Hz, 1H), 2.94 (s, 1H), 2.42 (s, 3H), 2.22 (m, 2H), and 1.25 (s,
3H) ppm; 13C NMR (125 MHz, CDCl3): δ 170.0, 169.3, 146.6,
141.6, 141.4, 131.3, 130.6, 129.7, 128.9, 123.3, 79.7, 78.5, 58.3,
57.9, 54.9, 51.0, 50.7, 43.3, 21.6, and 21.1 ppm. HRMS calculated
for C22H20O6Na, (M + Na)+: 403.1152 found 403.1144.

Compound 3h (1aR,1bR,2aR,6R,6aR,9aS, 10aS,Z)-10a-
methyl-7-[(E)-3-methylbenzylidene]-1a,1b,2a,6a,7,9a, 10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione: 149.4 mg;
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isolated yield 38.0%; white solid; IR (KBr): 2,929.12, 2,359.41,
1764.42, 1,372.25, 1,347.99, 1,264.94, 1,209.79, 1,165.25, 1,084.03,
1,022.65, 892.60, 790.61, and 697.10 cm−1; 1H NMR (600 MHz,
DMSO-d6): δ 7.84 (d, J = 3.6 Hz, 1H), 7.46 (s, 1H), 7.41 (d, J =
5.4 Hz, 2H), 7.28 (m, 1H), 7.10 (s, 1H), 5.20 (d, J = 1.8 Hz, 2H),
4.37 (m, 1H), 4.05 (d, J = 3.0 Hz, 1H), 3.82 (m, 1H), 3.38 (d, J =
3.0 Hz, 1H), 2.94 (s, 1H), 2.46 (s, 3H), 2.18 (m, 2H), and 1.25 (s,
3H) ppm; 13C NMR (125 MHz, DMSO-d6): δ 169.9, 169.1, 146.2,
141.5, 138.8, 131.7, 131.6, 131.3, 131.0, 128.8, 127.7, 124.3, 79.6,
78.4, 58.3, 57.8, 54.9, 51.0, 50.7, 43.4, 21.1, and 18.4 ppm. HRMS
calculated for C22H21O6, (M + H)+: 381.1333 found 381.1323.

Compound 3i (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-10a-methyl-
7-[(E)-2-methylbenzylidene] 1a,1b,2a,6a,7,9a,10,10a-octahydro-
4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:2’,3’-h] [1]
oxacycloundecine-4,8 (6H)-dione: 143.5 mg; isolated yield 36.5%;
white solid; IR (KBr): 2,920.46, 2,359.93, 1,743.78, 1,662.12,
1,457.26, 1,376.24, 1,349.31, 1,262.43, 1,212.20, 1,083.32,
1,024.69, 804.54, 755.47, and 678.90 cm−1; 1H NMR (600 MHz,
CDCl3): δ 7.68 (d, J = 3.6 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.47 (d,
J = 1.2 Hz, 1H), 7.32 (m, 1H), 7.29 (m, 2H), 4.96 (s, 1H), 4.74 (m,
1H), 4.02 (m, 1H), 3.93 (d, J = 3.6 Hz, 1H), 3.37 (dd, J = 4.8,
1.2 Hz, 1H), 3.18 (s, 1H), 2.35 (s, 3H), 2.26 (t, J = 12.3 Hz, 1H),
1.85 (dd, J = 16.8, 3.6 Hz, 1H), and 1.02 (s, 3H) ppm; 13C NMR
(125 MHz, CDCl3): δ 170.6, 169.2, 149.7, 137.3, 136.3, 131.9,
129.8, 129.7, 129.3, 129.1, 128.6, 125.7, 81.4, 77.7, 57.5, 57.3, 54.8,
50.2, 48.4, 42.1, 20.6, and 19.6 ppm. HRMS calculated for
C22H21O6, (M + H)+: 381.1333 found 381.1323.

Compound 3j (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-7-[(E)-3,4-
dimethylbenzylidene]-10a-methyl-1a,1b,2a,6a,7,9a,10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8(6H)-dione: 144.3 mg; isolated
yield 35.4%; white solid; IR (KBr): 2,918.19, 2,359.93, 1766.70,
1747.04, 1,652.51, 1,454.87, 1,373.63, 1,348.69, 1,265.66, 1,205.77,
1,163.64, 1,022.18, and 669.13 cm−1; 1H NMR (600 MHz, DMSO-
d6): δ 7.55 (m, 3H), 7.44 (d, J = 7.8 Hz, 1H), 7.24 (d, J = 7.8 Hz,
1H), 5.10 (s, 1H), 4.74 (m, 1H), 4.10 (m, 1H), 3.97 (d, J = 3.0 Hz,
1H), 3.16 (s, 1H), 2.27 (d, J = 9.0 Hz, 6H), 1.82 (m, 2H), and 1.07
(s, 3H) ppm; 13C NMR (125 MHz, DMSO-d6): δ 170.6, 169.6,
149.9, 138.9, 138.0, 136.4, 131.4, 129.9, 129.6, 128.6, 128.2, 126.4,
81.1, 77.9, 57.7, 57.4, 50.4, 50.2, 48.9, 42.0, 20.6, 19.4, and
19.1 ppm. HRMS calculated for C23H23O6, (M + H)+:
395.1489 found 395.1491.

Compound 3k (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-7-[(E)-2,4-
dimethylbenzylidene]-10a-methyl-1a,1b,2a,6a,7,9a,10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8(6H)-dione: 142.6 mg; isolated
yield 35.0%; white solid; IR (KBr): 2,989.49, 2,360.13, 1740.93,
1,632.70, 1,612.44, 1,496.93, 1,450.06, 1,407.02, 1,365.09,
1,297.59, 1,263.76, 1,226.20, 1,201.65, 1,123.63, 1,072.60,
1,025.97, 894.11, 803.86, and 747.24 cm−1; 1H NMR (600 MHz,
DMSO-d6): δ 7.64 (d, J = 3.6 Hz, 1H), 7.56 (d, J = 7.2 Hz, 1H),
7.49 (d, J = 1.2 Hz, 1H), 7.12 (m, 2H), 5.00 (t, J = 1.2 Hz, 1H), 4.73
(m, 1H), 4.05 (m, 1H), 3.94 (d, J = 3.0 Hz, 1H), 3.37 (d, J = 3.6 Hz,
1H), 3.17 (s, 1H), 2.32 (d, J = 5.4 Hz, 6H), 2.25 (m, 1H), 1.84 (dd, J
= 17.4, 3.6 Hz, 1H), and 1.04 (s, 3H) ppm; 13C NMR (125 MHz,
DMSO-d6): δ 170.7, 169.4, 149.8, 139.5, 137.5, 136.1, 130.7, 129.5,
128.9, 128.6, 127.9, 126.3, 81.3, 77.7, 57.5, 57.3, 54.8, 50.3, 48.5,

42.1, 21.0, 20.6, and 19.5 ppm. HRMS calculated for C23H23O6,
(M + H)+: 395.1489 found 395.1491.

Compound 3l (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-10a-methyl-
7-[(E)-2,4,6-trimethylbenzylidene]-1a,1b,2a,6a,7,9a,10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione: 164.6 mg;
isolated yield 39.0%; white solid; IR (KBr): 2,970.53, 2,359.70,
1759.72, 1,668.57, 1,342.95, 1,225.26, 1,202.19, 1,080.08, 1,018.43,
903.49, 848.07, 803.99, and 678.79 cm−1; 1H NMR (600 MHz,
DMSO-d6): δ 7.60 (d, J = 3.0 Hz, 1H), 7.43 (s, 1H), 6.97 (s, 1H),
6.87 (s, 1H), 4.73 (m, 2H), 3.88 (d, J = 3.0 Hz, 1H), 3.35 (d, J =
3.0 Hz, 1H), 3.24 (m, 1H), 3.20 (s, 1H), 2.33 (t, J = 12.3 Hz, 1H),
2.22 (m, 9H), 1.85 (dd, J = 17.4, 3.6 Hz, 1H), and 0.98 (s, 3H)
ppm; 13C NMR (125 MHz, DMSO-d6): δ 170.6, 169.5, 149.8,
146.1, 137.9, 130.5, 129.9, 128.6, 127.9, 126.7, 81.1, 77.9, 57.6,
57.4, 54.7, 50.3, 48.8, 42.0, 28.1, 20.5, and 15.2 ppm. HRMS
calculated for C24H25O6, (M + H)+: 409.1646 found 409.1647.

Compound 3m (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-7-[(E)-4-
ethylbenzylidene]-10a-methyl-1a,1b,2a,6a,7,9a,10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione: 152.0 mg;
isolated yield 37.3%; white solid; IR (KBr): 2,968.14, 2,360.02,
1741.34, 1,637.90, 1,606.81, 1,508.35, 1,420.09, 1,370.07, 1,260.38,
1,225.74, 1,200.81, 1,181.62, 1,073.20, 1,023.79, 896.50, 834.37,
796.24, and 679.52 cm−1; 1H NMR (600 MHz, DMSO-d6): δ 7.66
(d, J = 7.8 Hz, 2H), 7.60 (s, J = 3.6 Hz, 1H), 7.54 (s, 1H), 7.33 (d, J =
8.4 Hz, 2H), 5.13 (s, 1H), 4.73 (m, 1H), 4.12 (m, 1H), 3.98 (d, J =
3.0 Hz, 1H), 3.40 (d, J = 3.6 Hz, 1H), 3.16 (s, 1H), 2.67 (q, J =
7.6 Hz, 2H), 2.26 (t, J = 12.6 Hz, 1H), 1.84 (dd, J = 16.8, 3.6 Hz,
1H), 1.21 (t, J = 7.5 Hz, 3H), and 1.07 (s, 3H) ppm; 13C NMR
(125 MHz, DMSO-d6): δ 170.6, 169.5, 149.8, 146.1, 137.8, 130.5,
129.9, 128.6, 127.9, 126.7, 81.1, 77.9, 57.6, 57.4, 54.7, 50.3, 48.8,
42.0, 28.1, 20.5, and 15.2 ppm. HRMS calculated for C23H23O6,
(M + H)+: 395.1489 found 395.1491.

Compound 3n 4-{(E)-[(1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-10a-
methyl-4,8-dioxo-1a,1b,2a,6,6a,9a, 10,10a-octahydro-4H-3,6-
(metheno) furo [3,2-c] bis (oxireno) [2,3-f:2’,3’-h] [1]
oxacycloundecin-7 (8H)-ylidene]methyl}benzyl acetate:
140.4 mg; isolated yield 30.1%; white solid; IR (KBr): 3,409.25,
2,359.98, 1740.10, 1,635.00, 1,115.80, and 668.60 cm−1; 1H NMR
(600 MHz, DMSO-d6): δ 7.74 (d, J = 8.4 Hz, 2H), 7.63 (s, J =
3.6 Hz, 1H), 7.53 (d, J = 1.2 Hz, 1H), 7.48 (d, J = 8.4 Hz, 2H), 5.14
(s, 2H), 5.11 (s, 1H), 4.75 (m, 1H), 4.15 (m, 1H), 3.98 (d, J =
3.6 Hz, 1H), 3.40 (dd, J = 4.2, 0.6 Hz, 1H), 3.17 (s, 1H), 2.25 (t, J =
12.3 Hz, 1H), 2.10 (s, 3H), 1.85 (dd, J = 16.8, 3.6 Hz, 1H), and 1.07
(s, 3H) ppm; 13C NMR (125 MHz, DMSO-d6): δ 171.1, 170.7,
169.9, 150.3, 138.6, 137.7, 132.6, 130.9, 129.1, 128.5, 128.2, 81.7,
78.4, 65.5, 58.1, 57.8, 55.2, 50.8, 49.1, 42.5, 21.2, and 20.0 ppm.
HRMS calculated for C24H23O8, (M + H)+: 439.1387 found
439.1389.

Compound 3o (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-7-[(E)-4-
(hydroxymethyl)benzylidene]-10a-methyl-
1a,1b,2a,6a,7,9a,10,10a-octahydro-4H-3,6-(metheno) furo [3,2-c]
bis (oxireno) [2,3-f:2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione:
154.8 mg; isolated yield 37.8%; white solid; IR (KBr): 3,123.86,
2,975.22, 2,359.69, 1753.75, 1,644.59, 1,519.60, 1,376.80, 1,338.73,
1,257.45, 1,215.98, 1,167.84, 1,071.03, 1,020.90, 800.01, 738.41,

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8095516

Rao et al. Mikalanolide Derivatives as Antileukemic Agents

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


and 645.26 cm−1; 1H NMR (600 MHz, DMSO-d6): δ 7.70 (d, J =
7.8 Hz, 2H), 7.62 (d, J = 3.6 Hz, 1H), 7.54 (s, 1H), 7.43 (d, J =
8.4 Hz, 2H), 5.32 (t, J = 5.4 Hz, 1H), 5.11 (s, 1H), 4.74 (m, 1H),
4.56 (d, J = 5.4 Hz, 2H), 4.14 (m, 1H), 3.97 (d, J = 3.0 Hz, 1H), 3.40
(d, J = 3.0 Hz, 1H), 3.33 (s, 1H), 2.25 (t, J = 12.3 Hz, 1H), 1.85 (dd,
J = 16.8, 3.6 Hz, 1H), and 1.08 (s, 3H) ppm; 13C NMR (125 MHz,
DMSO-d6): δ 170.6, 169.5, 149.8, 144.8, 137.8, 130.8, 130.3, 128.6,
127.1, 126.2, 81.1, 77.9, 62.6, 57.6, 57.4, 54.7, 50.3, 48.8, 42.0, and
20.5 ppm. HRMS calculated for C22H20O7Na, (M + Na)+:
419.1101 found 419.1094.

Compound 3p (1aR,1bR,2aR,6R,6aR,9aS, 10aS,Z)-7-[(E)-4-
(tert-butyl)benzylidene]-10a-methyl-1a,1b,2a,6a,7,9a, 10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione: 196.8 mg;
isolated yield 45.1%; white solid; IR (KBr): 2,966.76, 2,359.91,
1741.72, 1,639.05, 1,607.81, 1,508.23, 1,458.24, 1,418.31, 1,364.24,
1,318.52, 1,287.23, 1,260.75, 1,188.70, 1,106.62, 1,072.97,
1,023.76, 895.73, 837.84, 795.91, and 752.83 cm−1; 1H NMR
(600 MHz, DMSO-d6): δ 7.69 (d, J = 8.4 Hz, 2H), 7.60 (d, J =
3.6 Hz, 1H), 7.56 (s, 1H), 7.50 (d, J = 7.8 Hz, 2H), 5.18 (s, 1H),
4.74 (m, 1H), 4.01 (m, 1H), 3.98 (d, J = 3.0 Hz, 1H), 3.39 (d, J =
3.6 Hz, 1H), 3.17 (s, 1H), 2.27 (t, J = 12.6 Hz, 1H), 1.85 (dd, J =
16.8, 3.0 Hz, 1H), 1.31 (s, 9H), and 1.08 (s, 3H) ppm; 13C NMR
(125 MHz, DMSO-d6): δ 170.7, 169.6, 152.9, 149.8, 137.7, 130.4,
129.7, 128.6, 126.6, 125.3, 81.2, 77.9, 57.6, 57.4, 54.7, 50.3, 48.8,
42.0, 34.7, 30.9, and 20.5 ppm. HRMS calculated for C25H27O6,
(M + H)+: 423.1802 found 423.1804.

Compound 3q (1aR,1bR,2aR,6R,6aR,9aS, 10aS,Z)-7-[(E)-4-
fluorobenzylidene]-10a-methyl-1a,1b,2a,6a,7,9a, 10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8(6H)-dione:142.2 mg; isolated
yield 35.8%; white solid; IR (KBr): 3,496.40, 2,977.92, 2,359.48,
1748.93, 1,655.73, 1,600.37, 1,508.59, 1,390.63, 1,349.85, 1,262.30,
1,218.84, 1,193.94, 1,159.43, 1,082.65, 1,022.77, 786.88, 737.41,
and 678.17 cm−1; 1H NMR (600 MHz, DMSO-d6): δ 7.74 (t, J =
9.9 Hz, 2H), 7.58 (d, J = 4.8 Hz, 1H), 7.48 (s, 1H), 7.27 (t, J =
12.9 Hz, 2H), 5.03 (s, 1H), 4.70 (m, 1H), 4.06 (t, J = 5.4 Hz, 1H),
3.92 (d, J = 3.0 Hz, 1H), 3.33 (d, J = 4.8 Hz, 1H), 3.13 (s, 1H), 2.18
(t, J = 18.6 Hz, 1H), 1.80 (dd, J = 23.4, 4.2 Hz, 1H), and 1.08 (s,
3H) ppm; 13C NMR (125 MHz, DMSO-d6): δ 170.6, 169.3, 163.6,
162.0, 149.8, 136.7, 132.7, 129.2, 128.6, 128.0, 115.5, 115.4, 81.3,
77.8, 57.6, 57.3, 54.8, 50.3, 48.5, 42.0, and 20.5 ppm; 19F NMR
(125 MHz, DMSO-d6): 110.3 ppm. HRMS calculated for
C21H18FO6, (M + H)+: 385.1082 found 385.1083.

Compound 3r (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-10a-methyl-
7-[(E)-4-(trifluoromethyl)benzylidene]-1a,1b,2a,6a,7,9a,10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8(6H)-dione (3r): 125.7 mg;
isolated yield 28.0%; white solid; IR (KBr): 3,396.13, 2,922.14,
2,851.70, 2,359.82, 1748.13, 1,644.99, 1,420.16, 1,373.28, 1,324.64,
1,261.53, 1,225.56, 1,202.77, 1,166.46, 1,130.27, 1,067.68,
1,023.34, 840.75, 797.18, 744.85, 677.19, and 601.81 cm−1; 1H
NMR (600 MHz, DMSO-d6): δ 7.93 (d, J = 7.8 Hz, 2H), 7.84 (d, J
= 7.8 Hz, 2H), 7.71 (d, J = 3.0 Hz, 1H), 7.50 (s, 1H), 5.06 (s, 1H),
4.77 (m, 1H), 4.16 (t, J = 3.3 Hz, 1H), 3.96 (d, J = 2.4 Hz, 1H), 3.39
(d, J = 3.6 Hz, 1H), 3.20 (s, 1H), 2.25 (t, J = 12.3 Hz, 1H), 1.86 (dd,
J = 16.2, 3.0 Hz, 1H), and 1.07 (s, 3H) ppm; 13C NMR (125 MHz,

DMSO-d6): δ 170.6, 169.1, 149.8, 137.0, 135.8, 130.9, 130.8, 129.6,
128.7, 125.2, 123.2, 81.6, 77.9, 57.5, 57.3, 54.8, 50.3, 48.4, 42.0,
29.8, and 20.6 ppm; 19F NMR (125 MHz, DMSO-d6): 61.1 3)
ppm. HRMS calculated for C22H18F3O6, (M + H)+: 435.1050
found 435.1051.

Compound 3s (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-10a-methyl-
7-[(E)-3-(trifluoromethyl)benzylidene]-1a,1b,2a,6a,7,9a,10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione: 121.2 mg;
isolated yield 27.0%; white solid; IR (KBr): 3,399.81, 2,918.51,
2,849.79, 2,360.10, 1748.57, 1,635.68, 1,558.17, 1,541.00, 1,507.72,
1,457.24, 1,130.23, and 668.88 cm−1; 1H NMR (600 MHz, DMSO-
d6): δ 8.10 (s, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 7.2 Hz,
1H), 7.71 (m, 2H), 7.49 (s, 1H), 5.05 (s, 1H), 4.77 (m, 1H), 4.16
(m, 1H), 3.95 (s, 1H), 3.19 (s, 1H), 2.25 (t, J = 12.0 Hz, 1H), 1.86
(dd, J = 15.6, 3.0 Hz, 1H), and 1.07 (s, 3H) ppm; 13C NMR
(125 MHz, DMSO-d6)：δ 170.3, 169.1, 149.7, 135.9, 134.0, 133.8,
130.3, 129.4, 128.7, 126.7, 126.3, 124.9, 123.1, 81.4, 77.8, 57.5,
57.3, 54.8, 50.3, 48.4, 42.0, and 20.6 ppm; 19F NMR (125 MHz,
DMSO-d6): 61.2 (3) ppm. HRMS calculated for C22H18F3O6, (M
+ H)+: 435.1050 found 435.1051.

Compound 3t (1aR,1bR,2aR,6R,6aR,9aS,10aS,Z)-10a-methyl-
7-[(E)-2-(trifluoromethyl)benzylidene]-1a,1b,2a,6a,7,9a,10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione: 67.3 mg; isolated
yield 15.0%; white solid; IR (KBr): 3,566.03, 2,988.58, 2,360.09,
1773.14, 1,665.68, 1,488.49, 1,455.59, 1,352.39, 1,318.49, 1,229.70,
1,203.73, 1,165.16, 1,109.05, 1,021.95, 770.30, and 679.70 cm−1;
1H NMR (600 MHz, DMSO-d6): δ 7.95 (d, J = 7.8 Hz, 1H), 7.82
(m, 2H), 7.67 (m, 2H), 7.47 (d, J = 1.2 Hz, 1H), 4.89 (m, 1H), 4.81
(m, 1H), 4.00 (m, 1H), 3.91 (d, J = 3.6 Hz, 1H), 3.37 (dd, J = 4.8,
1.2 Hz, 1H), 3.18 (s, 1H), 2.25 (t, J = 12.3 Hz, 1H), 1.86 (dd, J =
17.4, 4.2 Hz, 1H), and 1.02 (s, 3H) ppm; 13C NMR (125 MHz,
DMSO-d6): δ 170.4, 168.7, 149.8, 132.8, 132.7, 132.3, 131.2, 130.0,
128.7, 127.0, 125.9, 125.0, 123.7, 81.7, 77.6, 57.3, 57.2, 54.9, 50.1,
48.1, 42.0, and 20.6 ppm; 19F NMR (125 MHz, DMSO-d6): 58.9
(3) ppm. HRMS calculated for C22H18F3O6, (M + H)+: 435.1050
found 435.1051.

Compound 3u (1aR,1bR,2aR,3Z,6R,6aR,7E,9aS,10aS)-10a-
methyl-7-(thiophen-3-ylmethylene)-1a,1b,2a,6a,7,9a,10,10a-
octahydro-4H-3,6-(metheno) furo [3,2-c] bis (oxireno) [2,3-f:
2’,3’-h] [1] oxacycloundecine-4,8 (6H)-dione: 145.5 mg;
isolated yield 37.8%; white solid; IR (KBr): 3,564.51, 2,932.29,
2,359.82, 1750.94, 1,654.39, 1,508.66, 1,418.21, 1,390.71, 1,262.38,
1,231.78, 1,198.39, 1,083.17, 1,022.15, 898.23, 805.15, and
677.67 cm−1; 1H NMR (600 MHz, DMSO-d6): δ 8.16 (d, J =
3.0 Hz, 1H), 7.71 (q, J = 2.6 Hz, 1H), 7.63 (d, J = 3.6 Hz, 1H), 7.60
(m, 2H), 5.27 (m, 1H), 4.73 (m, 1H), 3.99 (m, 2H), 3.40 (d, J =
3.6 Hz, 1H), 3.17 (s, 1H), 2.23 (t, J = 12.6 Hz, 1H), 1.83 (dd, J =
16.8, 3.6 Hz, 1H), and 1.08 (s, 3H) ppm; 13C NMR (125 MHz,
DMSO-d6): δ 170.5, 169.7, 149.9, 134.4, 131.8, 131.1, 128.8, 128.6,
126.9, 125.6, 81.4, 77.8, 57.7, 57.4, 54.7, 50.3, 48.8, 42.0, and
20.5 ppm. HRMS calculated for C19 H17O6S, (M + H)+: 373.0740
found 373.0742.

Compound 4 (3aR,4R,9aR,10aS, 11aS,Z)-10a-methyl-3-[(E)-
4-methylbenzylidene]-3a,4,8,9,9a,10a, 11,11a-octahydro-6H-4,7-
(metheno) furo [3,2-c] oxireno [2,3-f] [1] oxacycloundecine-2,6
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(3H)-dione: 110.0 mg; isolated yield 41.5%; white solid; IR (KBr):
3,083.01, 2,967.20, 2,359.81, 1749.00, 1,636.71, 1,603.52, 1,509.84,
1,452.20, 1,360.58, 1,314.44, 1,193.36, 1,178.89,1,106.03, 1,033.82,
1,012.46, 817.58, and 473.69 cm−1; 1H NMR (600 MHz, DMSO-
d6): δ 7.73 (s, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 3.6 Hz,
1H), 7.33 (d, J = 7.8 Hz, 2H), 5.01 (s, 1H), 4.80 (m, 1H), 4.16 (m,
1H), 2.87 (dd, J = 13.8, 2.4 Hz, 1H), 2.54 (m, 1H), 2.45 (m, 1H),
2.36 (s, 3H), 2.22 (t, J = 12.6 Hz, 1H), 2.02 (m, 1H), 1.82 (dd, J =
17.4, 4.2 Hz, 1H), 1.29 (m, 1H), and 1.14 (s, 3H) ppm; 13C NMR
(125 MHz, DMSO-d6): δ 172.5, 170.1, 151.7, 140.6, 137.6, 131.0,
130.9, 130.3, 129.8, 126.8, 80.0, 78.2, 61.0, 57.2, 49.1, 43.5, 23.3,
21.7, 21.5, and 20.0 ppm. HRMS calculated for C22 H23O5, (M +
H)+: 367.1540 found 367.1541.

Mikanolide Derivatives Possess
Antileukemic Action
Using MTT assay, the cell viabilities of mikanolide derivatives
were assessed. Paclitaxel and imatinib served as positive controls.
Mikanolide derivatives were treated at different concentrations
(0.0075–10 μmol/L) in CEM-C7H2, HEL, and K562 cells. The
results exhibited significant antileukemic activity in the selected
human leukemic cells. Notably, the IC50 value of mikanolide
derivatives in 72 h showed good antiproliferative activity against
the three leukemia cell lines (Figure 1B). However, among the 22
mikanolide derivatives, the compound 3g exhibited improved
activity against the three leukemic cell lines.

Compound 3g Potently Impedes Cell
Proliferation in Leukemia Cells
The inhibition rate of 3g in K562 cells was effective in a dose- and
time-dependent manner. Furthermore, 3g was assessed vs. normal
hepatocyte cells, HL7702 (Figure 2A). When normal cells HL7702
were incubated with the 3g compound for 72 h, there were no
variations in the cellular viability. But this compound showed a
prominent decrease in cell viability to the human chronic myeloid
leukemia cells K562 at the concentration of 0.43 ± 0.05 µM in 72 h.
The results represented that 3g had a considerable antileukemic
property in K562 cells (Figures 1B, 2A, Supplementary Figure S1),
compared to the positive controls, imatinib (Supplementary Figure
S2), and paclitaxel.

3g Triggers Apoptosis in Leukemia Cells
Different concentrations of 3gwere treated inK562, HEL, andCEM-
C7H2 cells after 24 and 48 h of incubation, to analyze the apoptotic
effect using flow cytometry. The study revealed a significant
apoptotic rate at higher concentrations in 24 and 48 h treatment
of 3g (Figures 2B,C; Supplementary Figures S3, S4), compared to
non-tumor lineage cells (Supplementary Figure S5).

3g Induces Cell Cycle Arrest in Leukemia
Cells Both Dose- and Time-Dependently
The cell cycle was analyzed to facilitate the apoptosis study. The
study revealed a significant effect on the G2/M phase of the cell

FIGURE 2 | 3g induces apoptosis in both dose- and time-dependent manners. (A) Dose-dependent cell morphology variations in K562 and normal hepatocyte
cells at the indicated 3g concentrations (40X), for 72 h. (B) Flow cytometric analysis of apoptosis caused by indicated doses of 3g treatment at 24 and 48 h in K562 cells.
(C) Densitometry of the apoptotic cells percentage at an indicated time interval of 3g incubation. Data are represented as mean ± SD (n = 3; ***p < 0.001 and ****p <
0.0001 vs. control).
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cycle, both dose- and time-dependently after 3g treatment in
K562 cells (Figures 3A,B) and in the G1/G2 and S phases in HEL
and CEM-C7H2 cells (Supplementary Figures S6, S7),
respectively. There were no significant cell arrests in non-
tumor lineage cells (Supplementary Figure S8). To reconfirm
the hypothesis, Western blot was performed for cell cycle
markers. There was a dose-dependent significant reduction in
protein expressions of p-CDC25C and cyclin B1, with increased
expression of P27, and P21, after 3g post-treatment (Figure 3C).

3g Engenders Mitochondrial and DNA
Damage in K562 Cells
To study whether the K562 cell’s mitochondria were affected by
3g treatment, we analyzed the loss of mitochondrial membrane
potential (MMP). The results showed an increased green
fluorescence after 3g treatment compared with control cells
(Figures 4A,B). The reduced MMP suggests the damage to
the chondriosome, by releasing cytochrome C and
mitochondrial damage. Excitingly, the Western blot results
further confirmed that the mitochondrial damage was
accomplished by the 3g treatment in a dose-dependent
manner, by decreased expression of Bcl-2, Bcl-XL, caspase 3,
caspase 9, c-FLIPL, c-FLIPS, and cleaved BID. While, there was an
increased expression of caspase 8, cleaved caspase 3, cleaved
caspase 9, Bim, BAD, and BID proteins (Figure 4C). However,
the Hoechst 33,258 staining revealed DNA damage, detected after

K562 cells were treated with different concentrations of 3g. As
shown in Figures 5A,B, the DNA damage levels were increased in
a dose-dependent manner, suggesting cellular damage.

3g Selectively Targets the Ras/Raf/MEK/
ERK Pathway in K562 Cells
The effect of 3g on Ras- and Raf-related molecules was analyzed
byWestern blot. The protein expressions of B-Raf, PKCδ, cleaved
PARP1, p90RSK, and p-γH2AX were significantly increased. On
the other hand, the expression levels of p-B-Raf, RAS, p-MEK1/2,
p-PKCδ, PARP1, and p-ERK were significantly reduced,
compared to the control. There were no variations in the
expression levels of other molecules (Figure 5C). To further
facilitate the specific molecular target of 3g, AutoDock was
performed. The in silico study revealed that the 3g compound
is a potent inhibitor of ERK (Figures 6A–D). With a considerable
amount of binding energy and ligand efficiency such as U0126, 3g
proved to inhibit functional p-ERK, which was elucidated by
AutoDock (Figure 6E).

DISCUSSION

Leukemia is described by uncontrolled proliferation of blood
cells, with limited cell death. The existence of leukemia is severe,
generally affecting almost all ages of people. Thus, a strategy or

FIGURE 3 | 3g arrests the cell cycle in K562 cells. (A) Cell cycle arrest evaluation by flow cytometry after 24 and 48 h of 3g treatment. (B) Densitometry plots
depicting the variations in the stages of cell cycle arrest. (C)Protein expression levels of indicated proteins after 48 h of 3g incubation. Data are represented asmean ± SD
(n = 3; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 vs. control).
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drug of choice to treat the disease is in high demand. In this
investigation, we prepared 22 novel mikanolide derivatives using
heck reaction to study their antileukemic activities in human
leukemia cell lines.

Biological agents and their derivatives are widely in the
preclinical and clinical sectors for cancer chemotherapies.
These agents have mainly been investigated for their
properties to initiate apoptosis (Hanahan and Weinberg,
2000). Our investigation has indicated that mikanolide
derivatives have cytotoxic effects on leukemic cells such as
CEM-C7H2, HEL, and K562. The present study has proven
that mikanolide derivatives have appropriate antileukemic
activities. The selected mikanolide derivative compound, 3g
inspired us to focus on K562 cells to predict the specific
molecular antileukemic mechanism.

Apoptosis is a multi-stage process. Antiapoptosis is a key
factor in many types of cancer. Protein kinases participate in the
management of early stages of apoptosis by phosphorylating key
apoptotic proteins or in later events by enacting downstream
caspases. CDC25C can monitor G2/M phase progression and
DNA damage repair. It is a specific phosphatase family cyclin that
can trigger the cyclin B1/CDK1 complexes. These complexes can

manage the cells inflowing with mitosis by regulating G2/M
progression. They play as a checkpoint for protein regulation
and DNA damage. The regulation of CDC25C is closely
associated with tumorigenesis and is considered a possible
target for cancer conduct (Liu et al., 2020). Likewise,
dysfunction of p27 has been reported in human cancers,
resulting from p27 phosphorylation-dependent protein
degradation and cell cycle arrest (Sun et al., 2016). The p21
can regulate p53-dependent and independent cancer pathways,
consenting to DNA repair and sponsoring tumorigenesis (Al
Bitar and Gali-Muhtasib, 2019). In our investigation, a most
effective mikanolide derivative, 3g arrested the K652 cells by
entering the G2/M phase by increasing the expression of CDK1/
cyclin B1. This blockage entry of the M phase by the mikanolide
derivative is through inhibiting the activity of CDK1/cyclin B1 viz
decreased phosphorylation of CDC25C or increased expression
of p27 and p21 as explained earlier.

However, cancer cells have defective or uncontrolled cellular
proliferation (Fulda et al., 2010; Indran et al., 2011). This
apoptotic machinery may be either mitochondrial-dependent
or -independent (Adams, 2003; Redza-Dutordoir and Averill-
Bates, 2016). In our study, mikanolide derivative induced DNA

FIGURE 4 | Mitochondrial damage after 3g treatment in K562 cells. (A) Photomicrograph of JC-1 monomers and aggregates after 3g incubation at 24 h. (B)
Quantification of the red/green levels showing extent of mitochondrial damage. (C) Protein expression levels of indicated proteins at 48 h of 3g treatment.
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FIGURE 5 | DNA damage and the Ras/Raf/Mek/Erk pathway alterations induced by 3g in K562 cells. (A) Photomicrograph of DNA damage (in boxes) at indicated
concentrations of 3g treatment. (B) Quantification of the fluorescence levels showing extent of DNA damage. (C) Protein expression levels of indicated proteins after 3g
treatment at 48 h.
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and mitochondrial damage. So, disturbances in mitochondrial
function can lead to cell impairment (Dai et al., 2014), 3g could
downregulate cleaved caspase 3 and 9 and upregulate the Bim,
BAD, and BID proteins, ensuring cellular mortality. Moreover,
the cells treated with 3g decreased the expression of c-FLIP, Bcl-2,
and Bcl-xL. c-FLIP regulates the apoptosis by attenuating
autophagy by directly acting on the autophagy machinery by
inhibiting autophagosome formation. The upregulation of c-FLIP
has been found in various tumor types, and its silencing has been
shown to restore apoptosis triggered by cytokines and various
chemotherapeutic agents (Bagnoli et al., 2010). Similarly, 3g
reduced the expression levels of c-FLIP dose-dependently. The
nascent DNA responds to its damage by disrupting the histone
phosphorylation in H2AX on its ser4 residue of C-terminus
establishing γH2AX (Rogakou et al., 1998). This cellular
response gets augmented about 20 min after the initiation of
DNA damage (Redon et al., 2002). Thus, this molecule is
considered as a powerful maker of DNA that breaks in the
cancer cells experimentally. Likewise, the study elucidated that

the drug 3g conferred DNA damage of K562 cell lysates by
increasing the expression of γH2AX.

ERK is responsible for the broadcast of antiapoptotic signals
from membrane-bound receptors (James et al., 2011).
Chemotherapeutic drugs, frequently used in leukemia therapy,
often inactivate this pathway. Inhibition of Ras (or Ras-related
molecules), Raf, MEK, and ERK may prove useful in leukemia
treatment. These observations have boosted the pharmaceutical
industry to improve inhibitors that direct key factors of this
pathway and are currently in clinical trials (McCubrey et al., 2007;
McCubrey et al., 2008b; McCubrey et al., 2008b; Steelman et al.,
2008; Steelman et al., 2010). The protein kinase C family of
serine-threonine kinases is activated by diverse stimuli and
participates in cellular processes such as growth,
differentiation, and apoptosis (Abrams et al., 2010). The
90 kDa ribosomal S6 kinase (RSK) family of proteins is highly
conserved Ser/Thr kinases that can regulate the downstream
effectors of the ERK/MAPK trail (Hug and Sarre, 1993).
Likewise, the 3g treatment, dose-dependently reduced the

FIGURE 6 | 3g cause p-ERK inhibition. (A) AutoDock 3D image depicting the interactive site between U0126 and ERK. (B) AutoDock 2D amino acid interactive site
image between U0126 and ERK. (C) AutoDock 3D image depicting the interactive site between 3g and ERK. (D) AutoDock 2D amino acid interactive site image between
3g and ERK. (E) Binding energy and ligand efficiency between ERK and ligands. (F) Molecular mechanism of 3g as an antileukemic agent.
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protein expression of p-ERKmolecules, thus availing as a possible
treatment for leukemia.

The MEK/ERK cascade sends signals to cell surface
receptors and transcription factors that control gene
expression. Moreover, additional signal transduction
pathways usually interrelate with the Raf/MEK/ERK
pathway to regulate its action, positively or negatively, by
varying the phosphorylation of downstream targets (Anjum
and Blenis, 2008), including phosphorylation of ERK (Chang
et al., 2003; Ahearn et al., 2011). Thus, inhibitors of ERK
pathway molecules are currently in clinical trials as
anticancer agents (Knight and Irving, 2014). In line with
it, in our study, mikanolide derivative 3g could significantly
downregulate p-ERK. MEK is associated with apoptosis and
cell cycle and the activation of P38, which could cause the
p-CDC25C to dephosphorylate (Xiaofei and Kowalik, 2014),
arresting K562 cells in the G2/M phase. These studies
elucidated the inhibition of the pathway that could revive
apoptosis, suggesting its capability to act as an apoptotic
agent via p-ERK inhibition. Moreover, the in silico AutoDock
studies discovered that ERK is inhibited by significant
binding energies that might appeal for the downregulation
and effect of 3g in the pathway.

CONCLUSION

To conclude, our study revealed that mikanolide derivatives,
especially 3g, could cross the K562 cells plasma membrane
when administered an ideal dose. The 3g reduced the
phosphorylation of CDC25C by significantly diminishing the
expression of cyclin B1/CDK1, causing dysregulation of P27/P21,
triggering cell cycle arrest, and leading to cellular apoptosis.
Moreover, 3g could induce mitochondrial/DNA damage,
leading to activation of caspase 3/9 and increased expression
of cellular Bim, BAD, and BID proteins-mediated apoptosis.
Similarly, 3g could inhibit phosphorylation of ERK, causing
the dysregulation of the Ras/Raf/MEK/ERK pathway,
promoting cell death of K562 cells (Figure 6F). These results
thus suggest 3g as a novel potent chemotherapeutic agent for
leukemia.
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